Euler type triple integrals involving, general class of polynomials

and multivariable Aleph-function II

$F.Y. AYANT^1$

1 Teacher in High School, France

ABSTRACT

The aim of the present document is to evaluate three triple Euler type integrals involving general class of polynomials, special functions and multivariable Aleph-function. Importance of our findings lies in the fact that they involve the multivariable Aleph-function, which are the sufficiently general in nature and are capable of yielding a large number of simpler and useful results merely by specializing the parameters in them. Further we establish some special cases.

KEYWORDS: Aleph-function of several variables, triple Euler type integrals, special function, general class of polynomials.

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

The object of this document is to study three triple Eulerian integral involving general class of polynomials, special functions and the multivariables aleph-function. These function generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [5], itself is an a generalisation of G and H-functions of multiple variables. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

$$\begin{split} & \text{We have}: \aleph(z_1, \cdots, z_r) = \aleph_{p_i, q_i, \tau_i; R: p_{i(1)}, q_{i(1)}, \tau_{i(1)}; R^{(1)}; \cdots; p_{i(r)}, q_{i(r)}; \tau_{i(r)}; R^{(r)}} \left(\begin{array}{c} z_1 \\ \vdots \\ \vdots \\ z_r \end{array} \right) \\ & \left[(a_j; \alpha_j^{(1)}, \cdots, \alpha_j^{(r)})_{1, \mathbf{n}} \right] \cdot \left[\tau_i(a_{ji}; \alpha_{ji}^{(1)}, \cdots, \alpha_{ji}^{(r)})_{\mathbf{n}+1, p_i} \right] : \\ & \dots \cdots \cdots \cdots \cdots \cdots \cdot \left[\tau_i(b_{ji}; \beta_{ji}^{(1)}, \cdots, \beta_{ji}^{(r)})_{m+1, q_i} \right] : \\ & \left[(c_j^{(1)}), \gamma_j^{(1)})_{1, n_1} \right], \left[\tau_{i^{(1)}}(c_{ji^{(1)}}^{(1)}, \gamma_{ji^{(1)}}^{(1)})_{n_1+1, p_i^{(1)}} \right]; \cdots; \\ & \left[(c_j^{(r)}), \gamma_j^{(r)})_{1, n_r} \right], \left[\tau_{i^{(r)}}(c_{ji^{(r)}}^{(r)}, \gamma_{ji^{(r)}}^{(r)})_{n_r+1, p_i^{(r)}} \right] \\ & \left[(d_j^{(1)}), \delta_j^{(1)})_{1, m_1} \right], \left[\tau_{i^{(1)}}(d_{ji^{(1)}}^{(1)}, \delta_{ji^{(1)}}^{(1)})_{m_1+1, q_i^{(1)}} \right]; \cdots; \\ & \left[(d_j^{(r)}), \delta_j^{(r)})_{1, m_r} \right], \left[\tau_{i^{(r)}}(d_{ji^{(r)}}^{(r)}, \delta_{ji^{(r)}}^{(r)})_{m_r+1, q_i^{(r)}} \right] \\ & \left[(d_j^{(1)}), \delta_j^{(1)})_{1, m_1} \right], \left[\tau_{i^{(1)}}(d_{ji^{(1)}}^{(1)}, \delta_{ji^{(1)}})_{m_1+1, q_i^{(1)}} \right]; \cdots; \\ & \left[(d_j^{(r)}), \delta_j^{(r)})_{1, m_r} \right], \left[\tau_{i^{(r)}}(d_{ji^{(r)}}, \delta_{ji^{(r)}})_{m_r+1, q_i^{(r)}} \right] \\ & \left[(d_j^{(r)}), \delta_j^{(r)})_{1, m_r} \right], \left[\tau_{i^{(r)}}(d_{ji^{(r)}}, \delta_{ji^{(r)}})_{m_r+1, q_i^{(r)}} \right] \\ & \left[(d_j^{(r)}), \delta_j^{(r)})_{1, m_r} \right], \left[\tau_{i^{(r)}}(d_{ji^{(r)}}, \delta_{ji^{(r)}})_{m_r+1, q_i^{(r)}} \right] \\ & \left[(d_j^{(r)}), \delta_j^{(r)})_{1, m_r} \right], \left[\tau_{i^{(r)}}(d_{ji^{(r)}}, \delta_{ji^{(r)}})_{m_r+1, q_i^{(r)}} \right] \\ & \left[(d_j^{(r)}), \delta_j^{(r)})_{1, m_r} \right], \left[\tau_{i^{(r)}}(d_{ji^{(r)}}, \delta_{ji^{(r)}})_{m_r+1, q_i^{(r)}} \right] \\ & \left[(d_j^{(r)}), \delta_j^{(r)})_{1, m_r} \right], \left[\tau_{i^{(r)}}(d_{ji^{(r)}}, \delta_{ji^{(r)}})_{m_r+1, q_i^{(r)}} \right] \\ & \left[(d_j^{(r)}), \delta_j^{(r)})_{1, m_r} \right], \left[\tau_{i^{(r)}}(d_{ji^{(r)}}, \delta_{ji^{(r)}})_{m_r+1, q_i^{(r)}} \right] \\ & \left[(d_j^{(r)}), \delta_j^{(r)})_{1, m_r} \right], \left[\tau_{i^{(r)}}(d_{ji^{(r)}}, \delta_{ji^{(r)}})_{m_r+1, q_i^{(r)}} \right] \\ & \left[(d_j^{(r)}), \delta_j^{(r)})_{1, m_r} \right], \left[(d_j^{(r)}), \delta_j^{(r)})_{1, m_r} \right] \\ & \left[(d_j^{(r)}), \delta_j^{(r)})_{1, m_r} \right] \\ & \left[(d_j^{(r)}), \delta_j^{(r)})_{1, m_r} \right] \\ & \left[(d_j^{(r)}), \delta_j^{(r)$$

$$= \frac{1}{(2\pi\omega)^r} \int_{L_1} \cdots \int_{L_r} \psi(s_1, \cdots, s_r) \prod_{k=1}^r \theta_k(s_k) z_k^{s_k} ds_1 \cdots ds_r$$

$$\tag{1.1}$$

with $\omega = \sqrt{-1}$

$$\psi(s_1, \dots, s_r) = \frac{\prod_{j=1}^n \Gamma(1 - a_j + \sum_{k=1}^r \alpha_j^{(k)} s_k)}{\sum_{i=1}^R [\tau_i \prod_{j=n+1}^{p_i} \Gamma(a_{ji} - \sum_{k=1}^r \alpha_{ji}^{(k)} s_k) \prod_{j=1}^{q_i} \Gamma(1 - b_{ji} + \sum_{k=1}^r \beta_{ji}^{(k)} s_k)]}$$
(1.2)

and
$$\theta_k(s_k) = \frac{\prod_{j=1}^{m_k} \Gamma(d_j^{(k)} - \delta_j^{(k)} s_k) \prod_{j=1}^{n_k} \Gamma(1 - c_j^{(k)} + \gamma_j^{(k)} s_k)}{\sum_{i^{(k)}=1}^{R^{(k)}} \left[\tau_{i^{(k)}} \prod_{j=m_k+1}^{q_{i^{(k)}}} \Gamma(1 - d_{ji^{(k)}}^{(k)} + \delta_{ji^{(k)}}^{(k)} s_k) \prod_{j=n_k+1}^{p_{i^{(k)}}} \Gamma(c_{ji^{(k)}}^{(k)} - \gamma_{ji^{(k)}}^{(k)} s_k) \right]}$$
 (1.3)

ISSN: 2231-5373 http://www.ijmttjournal.org Page 95

where j=1 to r and k=1 to r

Suppose, as usual, that the parameters

$$a_j, j = 1, \cdots, p; b_j, j = 1, \cdots, q;$$

$$c_{j}^{(k)}, j = 1, \cdots, n_{k}; c_{ji^{(k)}}^{(k)}, j = n_{k} + 1, \cdots, p_{i^{(k)}};$$

$$d_{j}^{(k)}, j=1,\cdots,m_{k}; d_{ji^{(k)}}^{(k)}, j=m_{k}+1,\cdots,q_{i^{(k)}};$$

with
$$k=1\cdots,r, i=1,\cdots,R$$
 , $i^{(k)}=1,\cdots,R^{(k)}$

are complex numbers , and the $\alpha's, \beta's, \gamma's$ and $\delta's$ are assumed to be positive real numbers for standardization purpose such that

$$U_{i}^{(k)} = \sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)} + \tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{ji}^{(k)} + \sum_{j=1}^{n_{k}} \gamma_{j}^{(k)} + \tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i(k)}} \gamma_{ji(k)}^{(k)} - \tau_{i} \sum_{j=1}^{q_{i}} \beta_{ji}^{(k)} - \sum_{j=1}^{m_{k}} \delta_{j}^{(k)}$$

$$-\tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i(k)}} \delta_{ji(k)}^{(k)} \leq 0$$

$$(1.4)$$

The reals numbers au_i are positives for i=1 to R , $au_{i^{(k)}}$ are positives for $i^{(k)}=1$ to $R^{(k)}$

The contour L_k is in the s_k -p lane and run from $\sigma-i\infty$ to $\sigma+i\infty$ where σ is a real number with loop , if necessary ,ensure that the poles of $\Gamma(d_j^{(k)}-\delta_j^{(k)}s_k)$ with j=1 to m_k are separated from those of $\Gamma(1-a_j+\sum_{i=1}^r\alpha_j^{(k)}s_k)$ with j=1 to n and $\Gamma(1-c_j^{(k)}+\gamma_j^{(k)}s_k)$ with j=1 to n_k to the left of the contour L_k . The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H-function given by as :

$$|argz_k|<rac{1}{2}A_i^{(k)}\pi$$
 , where

$$A_{i}^{(k)} = \sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)} - \tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{ji}^{(k)} - \tau_{i} \sum_{j=1}^{q_{i}} \beta_{ji}^{(k)} + \sum_{j=1}^{n_{k}} \gamma_{j}^{(k)} - \tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i(k)}} \gamma_{ji}^{(k)} + \sum_{j=1}^{m_{k}} \delta_{j}^{(k)} - \tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i(k)}} \gamma_{ji}^{(k)} + \sum_{j=1}^{m_{k}} \delta_{ji}^{(k)} - \tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i(k)}} \delta_{ji}^{(k)} > 0, \text{ with } k = 1, \dots, r, i = 1, \dots, R, i^{(k)} = 1, \dots, R^{(k)}$$

$$(1.5)$$

The complex numbers z_i are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form:

$$\aleph(z_1,\cdots,z_r)=0(\,|z_1|^{\alpha_1}\ldots|z_r|^{\alpha_r}\,)\,,\,\max(\,|z_1|\ldots|z_r|\,)\to0$$

$$\aleph(z_1,\cdots,z_r)=0(\,|z_1|^{eta_1}\ldots|z_r|^{eta_r})$$
 , $min(\,|z_1|\ldots|z_r|\,) o\infty$

where, with
$$k=1,\cdots,r$$
 : $\alpha_k=min[Re(d_i^{(k)}/\delta_i^{(k)})], j=1,\cdots,m_k$ and

ISSN: 2231-5373 http://www.ijmttjournal.org

$$\beta_k = max[Re((c_j^{(k)} - 1)/\gamma_j^{(k)})], j = 1, \dots, n_k$$

We will use these following notations in this paper

$$U = p_i, q_i, \tau_i; R ; V = m_1, n_1; \cdots; m_r, n_r$$
 (1.6)

$$W = p_{i(1)}, q_{i(1)}, \tau_{i(1)}; R^{(1)}, \cdots, p_{i(r)}, q_{i(r)}, \tau_{i(r)}; R^{(r)}$$

$$(1.7)$$

$$A = \{(a_j; \alpha_j^{(1)}, \cdots, \alpha_j^{(r)})_{1,n}\}, \{\tau_i(a_{ji}; \alpha_{ji}^{(1)}, \cdots, \alpha_{ji}^{(r)})_{n+1,p_i}\}$$
(1.8)

$$B = \{ \tau_i(b_{ji}; \beta_{ji}^{(1)}, \cdots, \beta_{ji}^{(r)})_{m+1, q_i} \}$$
(1.9)

$$C = \{(c_j^{(1)}; \gamma_j^{(1)})_{1,n_1}\}, \tau_{i^{(1)}}(c_{ji^{(1)}}^{(1)}; \gamma_{ji^{(1)}}^{(1)})_{n_1+1, p_{i^{(1)}}}\}, \cdots, \{(c_j^{(r)}; \gamma_j^{(r)})_{1,n_r}\}, \tau_{i^{(r)}}(c_{ji^{(r)}}^{(r)}; \gamma_{ji^{(r)}}^{(r)})_{n_r+1, p_{i^{(r)}}}\} \quad (1.10)$$

$$D = \{(d_j^{(1)}; \delta_j^{(1)})_{1,m_1}\}, \tau_{i^{(1)}}(d_{ji^{(1)}}^{(1)}; \delta_{ji^{(1)}}^{(1)})_{m_1+1,q_{i^{(1)}}}\}, \cdots, \{(d_j^{(r)}; \delta_j^{(r)})_{1,m_r}\}, \tau_{i^{(r)}}(d_{ji^{(r)}}^{(r)}; \delta_{ji^{(r)}}^{(r)})_{m_r+1,q_{i^{(r)}}}\}$$
(1.11)

The multivariable Aleph-function write:

$$\aleph(z_1, \dots, z_r) = \aleph_{U:W}^{0, \mathfrak{n}:V} \begin{pmatrix} z_1 \\ \cdot \\ \cdot \\ \cdot \\ z_r \end{pmatrix} A : C$$

$$(1.12)$$

The generalized polynomials defined by Srivastava [5], is given in the following manner:

$$S_{N_{1},\dots,N_{s}}^{M_{1},\dots,M_{s}}[y_{1},\dots,y_{s}] = \sum_{K_{1}=0}^{[N_{1}/M_{1}]} \dots \sum_{K_{s}=0}^{[N_{s}/M_{s}]} \frac{(-N_{1})_{M_{1}K_{1}}}{K_{1}!} \dots \frac{(-N_{s})_{M_{s}K_{s}}}{K_{s}!}$$

$$A[N_{1},K_{1};\dots;N_{s},K_{s}]y_{1}^{K_{1}}\dots y_{s}^{K_{s}}$$

$$(1.14)$$

Where M_1, \dots, M_s are arbitrary positive integers and the coefficients $A[N_1, K_1; \dots; N_s, K_s]$ are arbitrary constants, real or complex.

2. Results required:

a)
$$\int_{0}^{1} x^{c-1} (1-x)^{-1/2} {}_{2}F_{1}(a,b;a+b+1/2;x) \mathrm{d}x = \frac{\pi \Gamma(c) \Gamma(a+b+1/2) \Gamma(c-a-b+1/2)}{\Gamma(a+1/2) \Gamma(b+1/2) \Gamma(c-a+1/2) \Gamma(c-b+1/2)} (2.1)$$

Where Re(c) > 0, Re(2c-a-b) > -1, see Vyas and Rathie [7].

Erdélyi [1] [p.78, eq.(2.4) (1), vol 1]

b)
$$\int_{0}^{1} \int_{0}^{1} t^{b-1} r^{a-1} (1-t)^{c-b-1} (1-r)^{c-a-1} (1-trz)^{-c} dr dt$$

$$= \frac{\Gamma(a)\Gamma(b)\Gamma(c-a)\Gamma(c-b)}{[\Gamma(c)]^{2}} {}_{2}F_{1}(a,b;c;z)$$
(2.2)

$$Re(a) > 0, Re(b) > 0, Re(c-a) > 0, Re(c-b) > 0$$

ISSN: 2231-5373 http://www.ijmttjournal.org Page 97

Erdélyi [1] [p.230, eq.(5.8.1) (2), vol 1]

c)
$$\int_{0}^{1} \int_{0}^{1} u^{\beta-1} v^{\beta'-1} (1-u)^{\gamma-\beta-1} (1-v)^{\gamma'-\beta'-1} (1-ux-vy)^{-\alpha} du dv$$
$$= \frac{\Gamma(\beta)\Gamma(\beta')\Gamma(\gamma-\beta)\Gamma(\gamma'-\beta')}{\Gamma(\gamma)\Gamma(\gamma')} F_{2}(\alpha,\beta,\beta',\gamma,\gamma';x,y)$$
(2.3)

$$Re(\beta) > 0, Re(\beta') > 0, Re(\gamma - \beta) > 0, Re(\gamma' - \beta') > 0$$

Erdélyi [1] [p.230, eq.(5.8.1) (4), vol 1]

$$d) \int_{0}^{1} \int_{0}^{1} u^{\alpha-1} v^{\beta-1} (1-u)^{\gamma-\alpha-1} (1-v)^{\gamma'-\beta-1} (1-ux)^{\alpha-\gamma-\gamma'+1} (1-vy)^{\beta-\gamma-\gamma'+1}$$

$$(1-ux-vy)^{\gamma+\gamma'-\alpha-\beta-1} dudv$$

$$= \frac{\Gamma(\beta)\Gamma(\alpha)\Gamma(\gamma-\alpha)\Gamma(\gamma'-\beta)}{\Gamma(\gamma)\Gamma(\gamma')} F_{4}(\alpha,\beta,\gamma,\gamma';x(1-y),y(1-x))$$

$$Re(\beta) > 0, Re(\alpha) > 0, Re(\gamma-\alpha) > 0, Re(\gamma'-\beta) > 0$$

$$(2.4)$$

3. Main results

$$(1 + \beta - \lambda - (\mu_1 - \rho')K_1 - \dots - (\mu_s - \rho^{(s)})K_s; \eta_1 - \rho_1, \dots, \eta_r - \rho_r),$$

$$\vdots$$

$$(1 - \lambda - \mu_1 K_1 - \mu_s K_s; \eta_1, \dots, \eta_r),$$

Where
$$U_{64} = p_i + 6, q_i + 4, \tau_i; R$$

Provided that:

$$Re(c + c_1K_1 + \dots + c_sK_s + \sigma_1s_1 + \dots + \sigma_rs_r) > 0;$$

$$Re(2(c + c_1K_1 + \dots + c_sK_s + \sigma_1s_1 + \dots + \sigma_rs_r) - a - b) > -1$$

$$Re(\beta + \rho' K_1 + \dots + \rho^{(s)} K_s + \rho_1 s_1 + \dots + \rho_r s_r) > 0$$

$$Re(\alpha + \zeta' K_1 + \dots + \zeta^{(s)} K_s + \zeta_1 s_1 + \dots + \zeta_r s_r) > 0$$

$$Re(\lambda - \alpha + (\mu_1 - \zeta')K_1 + \dots + (\mu_s - \zeta^{(s)})K_s + (\eta_1 - \zeta_1)s_1 + \dots + (\eta_r - \zeta_r)s_r) > 0$$

$$Re(\lambda - \beta + (\mu_1 - \rho')K_1 + \dots + (\mu_s - \rho^{(s)})K_s + (\eta_1 - \rho_1)s_1 + \dots + (\eta_r - \rho_r)s_r) > 0$$

$$\mathbf{b}) \int_0^1 \int_0^1 \int_0^1 x^{c-1} (1-x)^{-1/2} {}_2F_1(a,b;a+b+1/2;x) y^{\beta-1} z^{\alpha-1} (1-y)^{\lambda-\beta-1} (1-z)^{\mu-\alpha-1}$$

$$(1 - uy - vz)^{-n} S_{N_1, \dots, N_s}^{M_1, \dots, M_s} (y_1 x^{c_1} y^{\rho'} z^{\zeta'} (1 - y)^{e' - \rho'} (1 - z)^{t' - \zeta'} (1 - uy - vz)^{-\omega'}, \dots,$$

$$y_s x^{c_s} y^{\rho^{(s)}} z^{\zeta^{(s)}} (1-y)^{e^{(s)} - \rho^{(s)}} (1-z)^{t^{(s)} - \zeta^{(s)}} (1-uy-vz)^{-\omega^{(s)}})$$

$$\aleph \begin{pmatrix} z_1 x^{\sigma_1} y^{\rho_1} z^{\zeta_1} (1-y)^{\eta_1 - \rho_1} (1-z)^{t_1 - \zeta_1} (1-uy - vz)^{-n_1} \\ \vdots \\ z_r x^{\sigma_r} y^{\rho_r} z^{\zeta_r} (1-y)^{\eta_r - \rho_r} (1-z)^{t_r - \zeta_r} (1-uy - vz)^{-n_r} \end{pmatrix} A : C B : D dx dy dz$$

$$=\frac{\pi\Gamma(a+b+1/2)}{\Gamma(a+1/2)\Gamma(b+1/2)}\sum_{K_1=0}^{[N_1/M_1]}\cdots\sum_{K_s=0}^{[N_s/M_s]}\sum_{k,m=0}^{\infty}\frac{u^kv^m}{k!m!}\frac{(-N_1)_{M_1K_1}}{K_1!}\cdots\frac{(-N_s)_{M_sK_s}}{K_s!}$$

$$A[N_1, K_1; \cdots; N_s, K_s] y_1^{K_1} \cdots y_s^{K_s} \aleph_{U_{75}:W}^{0, n+7:V} \begin{pmatrix} \mathbf{z}_1 \\ \dots \\ \mathbf{z}_r \end{pmatrix}$$

$$(1 - \alpha - \zeta' K_1 - \dots - \zeta^{(s)} K_s - m; \zeta_1, \dots, \zeta_r), (1/2 - c + a + b - c_1 K_1 - \dots - c_s K_s; \sigma_1, \dots, \sigma_r),$$

$$(1 - \alpha - \zeta' K_1 - \dots - \zeta^{(s)} K_s - m; \zeta_1, \dots, \zeta_r), (1/2 - c + a + b - c_1 K_1 - \dots - c_s K_s; \sigma_1, \dots, \sigma_r), \dots \\ (1 - \mu - t' K_1 - \dots - t^{(s)} K_s - m; t_1, \dots, t_r), \quad (1/2 - c + b - c_1 K_1 - \dots - c_s K_s; \sigma_1, \dots, \sigma_r),$$

Where $U_{75} = p_i + 7, q_i + 5, \tau_i; R$

Provided that:

$$\begin{split} Re(c+c_1K_1+\dots+C_sK_s+\sigma_1s_1+\dots+\sigma_rs_r) > 0; \\ Re(2(c+c_1K_1+\dots+c_sK_s+\sigma_1s_1+\dots+\sigma_rs_r)-a-b) > -1 \\ Re(\beta+\rho'K_1+\dots+\rho^{(s)}K_s+\rho_1s_1+\dots+\rho_rs_r) > 0 \\ Re(\alpha+\zeta'K_1+\dots+\zeta^{(s)}K_s+\zeta_1s_1+\dots+\zeta_rs_r) > 0 \\ Re(\alpha+\zeta'K_1+\dots+\zeta^{(s)}K_s+\zeta_1s_1+\dots+\zeta_rs_r) > 0 \\ Re(\lambda-\beta+(e'-\rho')K_1+\dots+(e^{(s)}-\rho^{(s)})K_s+(\eta_1-\rho_1)s_1+\dots+(\eta_r-\rho_r)s_r) > 0 \\ Re(\mu-\alpha+(t'-\zeta')K_1+\dots+(t^{(s)}-\zeta^{(s)})K_s+(t_1-\zeta_1)s_1+\dots+(t_r-\zeta_r)s_r) > 0 \\ |argz_k| < \frac{1}{2}A_i^{(k)}\pi \,, \ \, \text{where } A_i^{(k)} \, \text{is given in (1.5)} \end{split}$$

$$c) \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{c-1} (1-x)^{-1/2} {}_{2}F_{1}(a,b;a+b+1/2;x) y^{\alpha-1} z^{\beta-1} (1-y)^{\lambda-\alpha-1} (1-z)^{\mu-\beta-1}$$

$$(1-uy)^{\alpha-\lambda-\mu+1} (1-vz)^{\beta-\lambda-\mu+1} (1-ux-vy)^{\lambda+\mu-\alpha-\beta-1}$$

$$S_{N_{1},\cdots,N_{s}}^{M_{1},\cdots,M_{s}} (y_{1}x^{\sigma'}y^{\rho'}z^{\zeta'}(1-y)^{\eta'-\rho'}(1-z)^{t'-\zeta'}(1-uy-vz)^{\zeta'-\eta'-t'},\cdots,$$

$$y_{s}x^{\sigma^{(s)}}y^{\rho^{(s)}}z^{\zeta^{(n)}}(1-y)^{\eta^{(s)}-\rho^{(s)}}(1-z)^{t^{(s)}-\zeta^{(s)}}(1-uy-vz)^{\zeta^{(s)}-\eta^{(s)}-t^{(s)}})$$

$$\otimes \begin{pmatrix} z_{1}x^{\sigma_{1}}y^{\rho_{1}}z^{\zeta_{1}}(1-y)^{\eta_{1}-\rho_{1}}(1-z)^{t_{1}-\zeta_{1}}(1-uy)^{\rho_{1}-\eta_{1}-t_{1}}(1-vz)^{\zeta_{1}-\eta_{1}-t_{1}}(1-uy-vz)^{\eta_{1}+t_{1}-\zeta_{1}-\rho_{1}} \\ \vdots \\ z_{r}x^{\sigma_{r}}y^{\rho_{r}}z^{\zeta_{r}}(1-y)^{\eta_{r}-\rho_{r}}(1-z)^{t_{s}-\zeta_{s}}(1-uy)^{\rho_{r}-\eta_{r}-t_{r}}(1-vz)^{\zeta_{r}-\eta_{r}-t_{r}}(1-uy-vz)^{\eta_{r}+t_{r}-\zeta_{r}-\rho_{r}} \end{pmatrix}$$

$$dxdydz$$

ISSN: 2231-5373 http://www.ijmttjournal.org

$$= \frac{\pi\Gamma(a+b+1/2)}{\Gamma(a+1/2)\Gamma(b+1/2)} \sum_{K_1=0}^{[N_1/M_1]} \cdots \sum_{K_s=0}^{[N_s/M_s]} \sum_{k,m=0}^{\infty} \frac{u^k(1-v)^k v^m (1-u)^m}{k!m!}$$

$$\frac{(-N_1)_{M_1K_1}}{K_1!} \cdots \frac{(-N_s)_{M_sK_s}}{K_s!} A[N_1, K_1; \cdots; N_s, K_s] y_1^{K_1} \cdots y_s^{K_s} \aleph_{U_{64};W}^{0,n+6:V} \binom{z_1}{z_r}$$

$$(1 - \mathbf{c} - \sigma' K_1 - \cdots - \sigma^{(k)} K_s; \sigma_1, \cdots, \sigma_r), \quad (1/2 - \mathbf{c} - \sigma' K_1 - \cdots - \sigma^{(s)} K_s + a + b; \sigma_1, \cdots, \sigma_r),$$

$$(1/2 - \mathbf{c} - \sigma' K_1 - \cdots - \sigma^{(k)} K_s + a; \sigma_1, \cdots, \sigma_r), \quad (1/2 - \mathbf{c} - \sigma' K_1 - \cdots - \sigma^{(s)} K_s + b; \sigma_1, \cdots, \sigma_r),$$

$$(1 - \mu - (t' - \zeta') K_1 + \cdots + (t^{(s)} - \zeta^{(s)}) K_s + \beta; t_1 - \zeta_1, \cdots, t_r - \zeta_r),$$

$$(1 - \lambda - (\eta' - \rho') K_1 - \cdots - (\eta^{(s)} - \rho^{(s)}) K_s - k; \eta_1, \cdots \eta_r)$$

$$(1 - \lambda - (\eta' - \rho') K_1 - \cdots - (\eta^{(s)} - \rho^{(s)}) K_s; \eta_1 - \rho_1, \cdots, \eta_r - \rho_r),$$

$$(1 - \mu - (t' - \zeta') K_1 - \cdots - (t^{(s)} - \zeta^{(s)}) K_s - m; t_1, \cdots, t_r),$$

$$(1 - \alpha - k - \rho' K_1 - \cdots - \rho^{(s)} K_s - m; \rho_1, \cdots, \rho_r),$$

$$\cdots$$

$$\cdots$$

$$(1 - \beta - k - \zeta' K_1 - \dots - \zeta^{(s)} K_s; \zeta_1, \dots, \zeta_r), A : C$$

$$\vdots \\
, \dots, B : D$$
(3.3)

Where $U_{64} = p_i + 6, q_i + 4, \tau_i; R$

Provided that:

$$\begin{split} Re(c+\sigma'K_1+\cdots+\sigma_s^{(s)}K_s+\sigma_1s_1+\cdots+\sigma_rs_r) > 0; \\ Re(2(c+\sigma_1'K_1+\cdots+\sigma^{(s)}K_s+\sigma_1s_1+\cdots+\sigma_rs_r)-a-b) > -1 \\ Re(\alpha+\rho'K_1+\cdots+\rho^{(s)}K_s+\rho_1s_1+\cdots+\rho_rs_r) > 0 \\ Re(\beta+\zeta'K_1+\cdots+\zeta^{(s)}K_s+\zeta_1s_1+\cdots+\zeta_rs_r) > 0 \\ Re(\beta+\zeta'K_1+\cdots+\zeta^{(s)}K_s+\zeta_1s_1+\cdots+\zeta_rs_r) > 0 \\ Re(\lambda-\alpha+(\eta'-\rho')K_1+\cdots+(\eta^{(s)}-\rho^{(s)})K_s+(\eta_1-\rho_1)s_1+\cdots+(\eta_r-\rho_r)s_r) > 0 \\ Re(\mu-\beta+(t'-\zeta')K_1+\cdots+(t^{(s)}-\zeta^{(s)})K_s+(t_1-\zeta_1)s_1+\cdots+(t_r-\zeta_r)s_r) > 0 \\ 5) |argz_k| < \frac{1}{2}A_i^{(k)}\pi \,, \text{ where } A_i^{(k)} \text{ is given in (1.5)} \end{split}$$

Proof de (3.1): We first express the multivariable Aleph-function involving in the left hand side of (2.1) in terms of Mellin-Barnes contour integral with the help of (1.1) and then interchanching the order of integration. We get L.H.S.

$$= \frac{1}{(2\pi\omega)^r} \left(\int_{L_1} \cdots \int_{L_r} \psi(s_1, \cdots, s_r) \prod_{k=1}^r \theta_k(s_k) z_k^{s_k} \sum_{K_1=0}^{[N_1/M_1]} \cdots \sum_{K_s=0}^{[N_s/M_s]} \frac{(-N_1)_{M_1K_1}}{K_1!} \cdots \frac{(-N_s)_{M_sK_s}}{K_s!} A[N_1, K_1; \cdots; N_s, K_s] y_1^{K_1} \cdots y_s^{K_s} \right)$$

$$\left(\int_{0}^{1} x^{c+c_{1}K_{1}+\cdots+c_{s}K_{s}+\sigma_{1}s_{1}+\cdots+\sigma_{r}s_{r}-1} (1-x)^{-1/2} {}_{2}F_{1}(a,b;a+b+1/2;x) \mathrm{d}x\right) \times \left(\int_{0}^{1} \int_{0}^{1} y^{\beta+\rho'K_{1}+\cdots+\rho^{(s)}K_{s}+\rho_{1}s_{1}+\cdots+\rho_{r}s_{r}} z^{\alpha+\zeta'K_{1}+\cdots+\zeta^{(s)}K_{s}+\zeta_{1}s_{1}+\cdots+\zeta_{r}s_{r}-1} (1-yzt)^{-(\lambda+\mu_{1}K_{1}+\cdots+\mu_{s}K_{s}+\eta_{1}s_{1}+\cdots+\eta_{r}s_{r})}\right)$$

$$\times (1-y)^{(\lambda+\mu_1 K_1 + \dots + \mu_s K_s + \eta_1 s_1 + \dots + \eta_r s_r) - (\beta+\rho' K_1 + \dots + \rho^{(s)} K_s + \rho_1 s_1 + \dots + \rho_r s_r) - 1}$$

$$\times (1-z)^{(\lambda+\mu_1 K_1+\cdots+\mu_s K_s+\eta_1 s_1+\cdots+\eta_r s_r)-(\alpha+\zeta' K_1+\cdots+\zeta^{(s)} K_s+\zeta_1 s_1+\cdots+\zeta_r s_r)-1} \mathrm{d}y \mathrm{d}z \bigg) \mathrm{d}s_1 \cdots \mathrm{d}s_r$$

Now using the result (2.1), (2.2) and (1.1) we get right hand side of (3.1). Similarly we can prove (3.2) and (3.3) with help of the results (2.3) and (2.4).

4. Particular cases

Our main the results provided unification and extensions of various (known or new) results. For the sake illustration, we mention the following few special cases :

i) If take s = 1, we get the results obtained by Garg et al [3]

ii) If we take a=-n, b=n in ${}_2F_1(a,b;a+b+1/2;x)$ and using the relationship [2,p.18]

$$_2F_1(a,b;a+b+1/2;x) = _2F_1(-n,n;1/2;[1-(1-2x)]/2) = T_n(1-2x)$$
, we get the results involving

Tchebcheff polynomial.

(iii) If we take a=-n, b=k+n in ${}_2F_1(a,b;a+b+1/2;x)$ and using the relationship [2,p.18]

$$_2F_1(a,b;a+b+1/2;x) = _2F_1(-n,k+n;k+1/2;x) = P_n^{k,k+1/2}(x)$$
 , we get the results involving

Jacobi polynomial.

(iV) If we take M = 1 and
$$A_{N,K} = \binom{N+\alpha'}{N} \frac{1}{(\alpha'+1)_{K_1}}$$
, then general class of polynomial reduces to

Laguerre polynomial and we get the results involving Laguerre polynomial.

Remarks: If $\tau_i = \tau_{i^{(k)}} = 1$, then the Aleph-function of several variables degenere in the I-function of several variables defined by Sharma and Ahmad [4].

And if $R=R^{(1)}=,\cdots,R^{(r)}=1$, the multivariable I-function degenere in the multivariable H-function defined by srivastava et al [6].

5. Conclusion

The aleph-function of several variables presented in this paper, is quite basic in nature. Therefore, on specializing the parameters of this function, we may obtain various other special functions such as I-function of several variables defined by Sharma and Ahmad [4], multivariable H-function, see Srivastava et al [6], and the h-function of two variables, see Srivastava et al [6].

ISSN: 2231-5373 http://www.ijmttjournal.org Page 102

References:

- [1] Erdelyi, A., Higher Transcendental function, McGraw-Hill, New York, Vol 1 (1953).
- [2] Exton, H, Handbook of hypergeometric integrals, Ellis Horwood Ltd, Chichester (1978)
- [3] Garg O.P., Kumar V. and Shakeeluddin: Some Euler triple integrals involving general class of polynomials and multivariable H-function. Acta. Ciencia. Indica. Math. 34(2008), no 4, page 1697-1702.
- [4] C.K. Sharma and S.S.Ahmad : On the multivariable I-function. Acta ciencia Indica Math , 1992 vol 19, page 113-116
- [5] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
- [6] Srivastava H.M., Gupta K.C. and Goyal S.P., the H-function of one and two variables with applications, South Asian Publications, NewDelhi (1982).
- [7] Vyas V.M. and Rathie K., An integral involving hypergeometric function. The mathematics education 31(1997) page33

Personal adress: 411 Avenue Joseph Raynaud

ISSN: 2231-5373

Le parc Fleuri, Bat B

83140 , Six-Fours les plages

Tel: 06-83-12-49-68

Department: VAR

Country: FRANCE