e-Supplement Submodules and e-Supplemented Modules

Inaam, M.A.Hadi

Department of Mathematics, College of Education for Pure Science, University of Baghdad Hassan K. Marhoon

Habibullah Middle School , Directorate- General for Education Rusafa,\1 Ministry of Education

Abstract

In this paper , we introduce the concepts e-supplement submodules and e-supplemented modules .We study these concepts and give some basic properties about them.

Key words:

Essential submodule , small submodule , e-small submodule, closed submodule, supplement submodule , supplemented module , e-supplement submodule .

1. Introduction

Let R be a commutative ring with $1 \neq 0$ and M is a unitary R-module . A submodule N of M is called essential (denoted by $N \leq_e M$), if for any nonzero submodule K of M, $K \cap N \neq (0)$, [2]. And a proper submodule N of M is called small submodule (denoted by $N \ll M$), if $N+K \neq M$, for any proper submodule K of M ,[2]. Recall that a submodule N of an R-module M is called e-small (denoted by $N \ll_e M$), if whenever N+K=M with $K \leq_e M$, then K=M,[5]. A submodule N is called closed submodule if for each nonzero submodule N of M (denoted by $N \leq_c M$), if N has no proper essential extension submodule in M, that is if $N \leq_e K \leq M$, then N=K [2]. The concept of supplement submodule appeared in [4], where a submodule N of an R-module M is called a supplement submodule in M if M=N+K for some submodule K of M and N is a minimal submodule with this property M=N+K. Equivalently, N is a supplement submodule if M=N+K for some K $\leq M$ and $N \cap K \ll N$.

We introduce and study in section two the concept of e-supplement submodule ,where an essential submodule N of R-module M is called an e-supplement submodule in M, if N+K=M and N is a minimal essential in M with this property. In section 3 we introduce e-supplemented module, if every submodule of M has an e-supplement submodule.

2. e-Supplemented Submodules.

In this section we present a new concept namely e-supplement submodule. We study this concept and give some of its basic properties.

Definition 2.1:

Let $U \le M$. An essential submodule V of M is called e-supplement of U if U+V=M and V is a minimal essential in M with this property.

The following is a characterization of e-supplement submodule.

Theorem 2.2 :

Let $V \leq_e M$, V is e-supplement of U if and only if M=U+V and $U \cap V \ll_e V$.

<u>**Proof:**</u> (\Rightarrow)

Let $V \leq_{e} M$. If V is e-supplement of U, so U+V=M. To prove U $\cap V \ll_{e} V$.

Assume $(U \cap V)+K=V$, for some $K \leq_e V$. Then $M=U+(U \cap V)+K$, hence M=U+K.But $K \leq_e V$ and $V \leq_e M$, so $K \leq_e M$. On the other hand, $K \leq V$ and V is a minimal essential in M with the property U+V=M. Thus K=V and hence $U \cap V \ll_e V$

(⇐) suppose M=U+V and U ∩ V \ll_e V. To prove V is e-supplement of U. let K \leq_e M and K \leq V such that M=U+K, we must prove K=V. Since K \leq_e M and K \leq V, then K \leq_e V.

But $V=M\cap V=(U+K)\cap V=K+(U\cap V)$ by modular law. As $(U\cap V) \ll_e V$ and $K \leq_e V$, imply that K=V and hence V is e-supplement of U.

Remarks and Examples 2.3 :

1- A supplement submodule need not be e-supplement, for example : $<\overline{3} >$ is a supplement of $<\overline{2} >$ in the Z-module Z_6 but $<\overline{3} >$ is not e-supplement, since $<\overline{3} > \leq_e Z_6$.

- 2- e- supplement submodule need not be supplement, for example: $<\overline{2}>\leq_e Z_4$, $<\overline{2}>$ is an e-supplement Z_4 , but $<\overline{2}>$ is not supplement submodule of Z_4 .
- 3- $Z_{P^{\infty}}$ is a supplement of N (for each N $\leq Z_{P^{\infty}}$). Also it is e-supplement
- 4- Z_4 is a supplement of any N<Z₄. Also it is e-supplement

Proposition 2.4 :

Let A,N,K be submodules of an R-module M such that N is e-supplement of M and A is e-supplement of K in M, then A is e-supplement of N in M.

Proof :

Since N is e-supplement of A, then $N \leq_e M$ and A+N=M, $A \cap N \ll_e N$ and since A is e-supplement of K in M, then $A \leq_e M$, and A+K=M, A is minimal essential with the property A+K=M.

To prove A is e-supplement of N. Since $A \leq_e M$, A+N=M, so it is enough to show that A is minimal essential in M with the property A+N=M. Let $L \leq_e M$ and $L \leq A$ such that L+N=M. To prove L=A. Since $A=M\cap A=(L+N)\cap A=L+(N\cap A)$ by modular law, then $M=L+(N\cap A+K=(N\cap A)+(L+K)$. But $(N\cap A)\ll_e N$, then $N\cap A\ll_e M$, also $L\leq_e M$, implies $L+K\leq_e M$. Hence M=L+K. But A is e-supplement of K and $L\leq_e M$, $L\leq A$, so that L=A. Thus A is e-supplement of N

Proposition 2.5 :

Let A , N be submodules of an R-module M such that N $\leq\!\!A$. If N is e-supplement in M , then N is e-supplement of A

Proof:

Since N is e-supplement in M, then $N \leq_e M$ and there exists $K \leq M$ such that N+K=M, $N \cap K \ll_e N$(1). Now $A=M \cap A=(K+N) \cap A=N+(K \cap A)$ by modular law. Since $N \cap K \cap A \leq N \cap K \ll_e N$, so $N \cap K \cap A \ll_e N$. Also $N \leq_e A$. Thus N is e-supplement of $K \cap A$ in A.

Proposition 2.6 :

Let M be an R-module , let $A \le N \le M$ with N is an e-supplement in M, then A is an e-supplement in N if and only if A is an supplement in M.

<u>**Proof**</u>: (\Rightarrow)

Since N is an e-supplement in M, then $N \leq_e M$ and there exists $K \leq M$ such that N+K=M and N is minimal essential with this property. To prove that A is an e-supplement in M. As A is an e-supplement in N, so $A \leq_e N$ and there exists $L \leq N$ such that A+L=N and A is minimal essential submodule of N with this property. It follows that M=N+K=A+(L+K).

Since $A \leq_e N$ and $N \leq_e M$, we get $A \leq_e M$. Let $B \leq_e M$, $B \leq A$ such that B+L=N, so B+L+K=M. But $B \leq_e M$, then $B+L \leq_e M$. Also $B+L \leq N$ and since N is minimal essential such that N+K=M, so that B+L=N, but $B \leq A$ and A is a minimal essential submodule such that A+L=N, so B=A and A is minimal essential with property A+(L+K)=M; i.e. A is an e-supplement of L+K.

 (\Leftarrow) It follows by Proposition 2.5.

Proposition 2.7 :

Let M_1 , M_2 be R-module, $M=M_1 \oplus M_2$. If A is an e-supplement of K_1 in M_1 , B is an e-supplement of K_2 in M_2 . Then $A \oplus B$ is an e-supplement of $K_1 \oplus K_2$ in $M_1 \oplus M_2$.

Proof :

A is an e-supplement of K_1 in M_1 , then $A \leq_e M$ with $A + K_1 = M_1$ and $A \cap K_1 \ll_e A$. B is an e-supplement of K_2 in M_2 , then $B \leq_e M_2$ with $B + K_2 = M_2$ and $B \cap K_2 \ll_e B$.

Now, $M_1 \oplus M_2 = (A + K_1) \oplus (B + K_2) = (A + B) \oplus (K_1 + K_2)$.

Also $(A+B)\cap (K_1+K_2) = (A\cap K_1)\oplus (B\cap K_2) \ll_e A \oplus B$ [5, Proposition 2.5 (3)].

But $A \leq_e M_1$ and $B \leq_e M_2$, imply $A \oplus B \leq_e M_1 \oplus M_2$ [2, Proposition 1.3]. Thus $A \oplus B$ is an e-supplement of $K_1 \oplus K_2$.

Proposition 2.8 :

Let M be an R-module , if A is an e-supplement of K \leq M , let N \leq A and N is closed in M , then $\frac{A}{N}$ is an e-supplement in $\frac{M}{N}$

Proof :

A is an e-supplement of K in M, so $A \leq_e M$ and A + K = M, $A \cap K \ll_e A$. To prove that $\frac{A}{N}$ is an e-supplement in $\frac{M}{N}$. First since N<M and N $\leq A \leq_e M$, then $\frac{A}{N} \leq_e \frac{M}{N}$ by [2, Proposition 1.4, P.18]. Now, A + K = M implies $\frac{A+K}{N} = \frac{M}{N}$, hence $\frac{A}{N} + \frac{K+N}{N} = \frac{M}{N}$.

We claim that $\frac{A}{N} \cap \frac{K+N}{N} \ll_e \frac{A}{N}$. Since $\frac{A}{N} \cap \frac{K+N}{N} = \frac{A \cap (K+N)}{N} = \frac{N + (A \cap K)}{N}$ by modules law . Thus $\frac{A}{N} \cap \frac{K+N}{N} = \frac{N + (A \cap K)}{N}$. Let $\frac{L}{N} \leq_e \frac{A}{N}$ such that $\frac{N + (A \cap K)}{N} + \frac{L}{N} = \frac{A}{N}$, then $N + (A \cap K) + L = A$ and hence $(A \cap K) + L = A$. But $\frac{L}{N} \leq_e \frac{A}{N}$, implies $L \leq_e A$ and since $A \cap K \ll_e A$, then L = A; that is $\frac{L}{N} = \frac{A}{N}$. It follows that $\frac{A}{N} \cap \frac{K+N}{N} \ll_e \frac{A}{N}$, so $\frac{A}{N}$ is e-supplement of $\frac{K+N}{N}$.

Remark 2.9 :

If A is an e-supplement of B and B is an e-supplement of C, then it is not necessarily that A is an e-supplement of C. For example, let $V = \langle \overline{2} \rangle \leq Z_4$. V is an e-supplement of Z_4 and Z_4 is an e-supplement of $\langle \overline{0} \rangle$. But V is not e-supplement of $\langle \overline{0} \rangle$.

Recall that an R-module is called a multiplication module if for every submodule N of M, there exists an ideal I of R such that IM=N. Equivalently, M is a multiplication module if for every submodule N of M, $N=(N:_RM)M$. [1]

To prove the next result, we prove first the following lemma:

Lemma 2.10 :

Let M be a finitely generated faithful multiplication R-module and let $I \le J \le R$. If $I \ll_e J$, then $IM \ll_e JM$

Proof:

Let $K \leq_e JM$. As $K \leq M$, K=LM for some $L \leq R$, since M is a multiplication R-module . Assume that IM+K=JM, so IM+LM=JM. But M is a finitely faithful multiplication R-module, so I+L=J. But we can show that $L \leq_e J$ as follows , suppose $T \leq J$ and $T \cap L=(0)$. Then $(T \cap L)M=(0)$ and hence $TM \cap LM=(0)$. But $K=LM\leq_e JM$ and $TM \leq JM$, so that TM=(0) and hence T=(0) which implies $L \leq_e J$. But $I\ll_e J$, so L=J. Thus K=LM=JM and $IM\ll_e JM$.

Proposition 2.11:

Let M be a finitely generated faithful multiplication R-module and let $N \le M$. Then N is an supplement in M if and only if [N:M] is e-supplement in R.

$\underline{\mathbf{Proof:}} (\Rightarrow)$

If N is an e-supplement in M, so $N \leq_e M$ and there exists $K \leq M$ such that N+K=M and $N \cap K \ll_e N$. Since $N \leq_e M$ and M is finitely generated faithful multiplication R-module, then $[N:M] \leq_e R$, also N+K=M, implies [N:M] + [K:M]=R. To prove $[N:M] \cap [K:M] \ll_e [N:M]$. First $[N:M] \cap [K:M]=[N \cap K:M]$. Let $I \leq_e [N:M]$.If $[N \cap K:M]+I=[N:M]$, then $[N \cap K:M]M+IM=[N:M]M$, $[N \cap K]+IM=N$. But $I \leq_e [N:M]$, then $IM \leq_e N$ {by Lemma 2.10} and since $N \cap K \ll_e N$, so IM=N=[N:M]M. As M is a finitely generated faithful multiplication, we get I=[N:M].

Thus $[N \cap K:M] \ll_e [N:M]$.

(⇐) If [N:M] is an e-supplement in R, then [N:M] $\leq_e R$ and there exists $J \leq R$ such that [N:M]+J=R, [N:M] $\cap J \ll_e [N:M]$. Then N+JM=M. But [N:M] $\leq_e R$ implies N $\leq_e M[1, Th. 2.13]$

$$\label{eq:N-JM} \begin{split} &N \cap JM = [N:M]M \cap JM = ([N:M] \cap J)M \ . \ Also \ [N:M] \cap J \ll_e [N:M] \ implies \ ([N:M] \cap J)M \ll_e [N:M]M \ (by \ Lemma 2.10) \ , \ so \ that \ (N \cap JM) \ll_e N \ . \end{split}$$

Thus N is an e-supplement in M.

3. e-Supplemented Modules:

In this section, we introduce a new class of module namely e-supplemented module , by using the concept e-supplement submodule. This class of modules is a generalization of the class of supplemented modules.

Definition 3.1:

M is called e-supplement R-module if every submodule of M has an e-supplement submodule .

Example 3.2:

- 1- Consider Z_4 as Z-module , $<\overline{0}>$ has an e-supplement in Z_4 which is Z_4 , $<\overline{2}>$ has an e-supplement in Z_4 which is Z_4 , Z_4 has an e-supplement $<\overline{2}>$. Thus Z_4 is an e-supplemented module
- 2- Consider Z_6 as Z-module , since each sumodule of Z_6 has an e-supplement submodule which is Z_6 . Thus Z_6 is an e-supplemented module.

e-

3- Consider the Z-module Z , $\langle \overline{0} \rangle$ has an e-supplement Z. Let N< Z , then N=nZ for some n \in Z, n>1. Suppose mZ is an e-supplement of nZ , then mZ+nZ=Z. Thus g.c.d (m,n)=1 , so nZ + m'Z=Z and m'Z \leqq mZ=Z. If m $\neq \pm 1$, then g.c.d (n,m²)=1 , so nZ + m²Z=Z and m²Z \leqq mZ, so every proper submodule of Z has no e-supplement. Thus Z as Z-module is not e-supplemented Z-module .

Remark 3.3:

Let M be a semisimple R-module . Then M is e-supplement

Proof:

Since M is semisimple , then M is the only essential submodule of M and for each N \leq M , N+M=M and N \cap M=N \ll_e M ; that is M is an e-supplement submodule of each submodule N of M

Definition 3.4:

- 1- Let N be a submodule of a module M. N is called e-weakly supplement of A in M if $N \leq_e M$, N+A=M and N \cap A \ll_e M. M is called an e-weakly supplemented if every submodule of M has an e-weakly supplement.
- 2- M is called an e-amply supplement module if for any two submodule X and Y of M with M=X+Y, Y contains an e-supplement of X in M.

Remark 3.5:

For an R- module M. It is clear that

1- M is an amply e-supplemented module implies M is e-supplemented .

Proposition 3.6:

For an R-module M such that $Rad_e M=(0)$. The following statements are equivalent :

- 1- M is a semisimple module .
- 2- M is an e-supplement module .
- 3- M is an e-weakly supplement module.

Proof :

(1) \rightarrow (2) Since M is semisimple, then M the only essential in M and M+N=M, M \cap N=N for any N \leq M. But we can show that N \ll_e N as follows. Let N+U=N U \leq N. But N is semisimple, then the only essential in N is N it is self, so U=N and hence N \ll_e N.

 $(2) \rightarrow (3)$ It is clear ...

 $(3) \rightarrow (1)$ Let $N \leq M$, so there exists $K \leq M$, K is e-weakly supplement, then N+K=M and $N \cap K \ll_e M$. But $Rad_eM=(0)$, then $N \cap K=(0)$. Thus $N \leq {}^{\oplus}K$.

Proposition 3.7 :

Let M , $M \square$ be R-modules and $f: M \to M \square$ be an R-epimophism . If M is an e-amply supplemented module (e-supplemented or e-weakly supplemented) module then so is in $M \square$.

Proof :

If M is an e-amply supplemented module . Let $X, Y \leq M \square$, such that $M \square = X+Y$. Then f¹(X)+f¹(Y)=M (sice f is onto). But M is an e-amply supplemented module , then f¹(Y) contains C of f¹(X) in M, if f¹(X)+C=M and f¹(X)\cap C \ll_e C. Now it is clear that $X + f^1(C) = M \square$. We claim that $X \cap f^1(C) \ll_e f(C)$, where $f(C) \leq Y$. Since $f^1(X) \cap C \ll_e C$, then $f(f^1(X) \cap C) \ll_e f(C)$. Hence $X \cap f(C) \ll_e f(C)$. Let $y \in X \cap f(C)$, then y=f(C), for some $c \in C$, $y=f(c) \in X$, then $X \cap f(c) \leq f(f^1(X) \cap C) \ll_e f(C)$, then $X \cap f(c) \ll_e f(c)$. Thus f(c) is an e-supplement of X in $M \square$.

The proof in similarly for M is e-supplemented module and M is an e-weakly supplementes module.

References

- [2] K. R. goodear, "Ring Theory, Non singular Rings and Modules" Marcel Dekker, Inc. New York and Basel (1976).
- [3] F-kash "Modules and Rings", Academic press, Inc. London (1982).
- [4] D. Keskin " On Lifting Modules ", comm.. in Algebra, 28(7)(2000)

[5] D. X. Zhou and X. R. Zhang, "Small-Essential Submodule and Morita Duality", Southeast Asian of Math., 35(2011), PP. 1051-1062.

^[1] El- Bast, Z.A. and Smith, P.F.(1988), Multiplication modules, Comm. in Algebra, 16(4), 755-779.