\check{C} ech $\psi \alpha g$ -Closed sets in Closure Spaces

¹V. Kokilavani, ²P.R. Kavitha

 1.Assistant professor, Dept. of Mathematics, Kongunadu Arts and Science College, Coimbatore, Tamilnadu, India
 2.Assistant professor, Dept. of Mathematics, Kongunadu Arts and Science College, Coimbatore, Tamilnadu, India

ABSTRACT-The purpose of this paper is to define and study $\psi \alpha g$ -closed sets in closure spaces. We also introduce the concept of $\psi \alpha g$ -continuous functions and investigate their properties.

Keywords: $\psi \alpha g$ -closed sets, $\psi \alpha g$ -continuous maps, $\psi \alpha g$ -closed maps, $T_{\psi \alpha g}$ -spaces.

1. INTRODUCTION

Čech closure spaces were introduced by E. Čech [3] and then studied by many authors [4][5][7][8]. The concept of generalized closed sets and generalized continuous maps of topological spaces were extended to closure spaces in [2]. A generalization of $\psi \alpha g$ -closed sets and $\psi \alpha g$ -continuous functions were introduced by the same author [10].

In this paper, we introduce and study the notion of $\psi \alpha g$ -closed sets in closure spaces. We define a new class of space namely $T_{\psi \alpha g}$ -space and their properties are studied. Further, we introduce a class of $\psi \alpha g$ -continuous maps, $\psi \alpha g$ -closed maps and their characterizations are obtained.

2. PRELIMIERIES

A map $K: P(X) \to P(X)$ defined on the power set P(X) of a set X is called a closure operator on X and the pair (X, K) is called a closure space if the following axioms are satisfied $1.K(\phi) = \phi$ $2.A \subseteq K(A)$ for every $A \subseteq X$

3. $K(A \cup B) = K(A) \cup K(B)$ for all $A, B \subseteq X$. A closure operator K on a set X is called idempodent if K(A) = K[K(A)] for all $A \subseteq X$.

Definition: 2.1 A subset A of a Čech closure space (X, K) is said to be
(i) Čech closed if K(A) = A
(ii) Čech open if K(X - A) = X - A

(ii) Čech semi-open if $A \subseteq Kint(A)$

(iii) Lech semi-open ii $A \subseteq Kint(A)$

(iv) \check{C} ech pre-open if $A \subseteq int[K(A)]$

Definition: 2.2 A Čech closure space (Y, I) is said to be a subspace of (X, K) if $Y \subseteq X$ and $K(A) = K(A) \cap Y$ for each subset, $A \subseteq Y$. If Y is closed in (X, K) then the subspace (Y, I) of (X, K) is said to be closed too.

Definition: 2.3 Let (X, K) and (Y, I) be Čech closure spaces. A map $f: (X, K) \to (Y, K)$ is said to be continuous, if $f(KA) \subseteq Kf(A)$ for every subset $A \subseteq F$.

Definition: 2.4 Let (X, K) and (Y, I) be Čech closure spaces. A map $f: (X, K) \to (Y, I)$ is said to be closed (resp. open), if f(F) is closed (resp. open) subset of (Y, I) whenever F is a closed (resp. open) subset of (X, K).

Definition: 2.5 The product of a family $\{(X_{\alpha}, K_{\alpha}); \alpha \in I\}$ of closure spaces denoted by $\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha})$ is the closure space $(\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha}))$ where $\prod_{\alpha \in I} X_{\alpha}$ denotes the Cartesian product of sets $X_{\alpha}, \alpha \in I$ and K is Čech closure operator generated by the projections $\pi_{\alpha}: \prod_{\alpha \in I} (X_{\alpha}, K_{\alpha}) \rightarrow (X_{\alpha}, K_{\alpha}); \alpha \in I$. That is defined by $K(A) = \prod_{\alpha \in I} K_{\alpha} \pi_{\alpha}(A)$ for each $A \subseteq \prod_{\alpha \in I} X_{\alpha}$.

Clearly, if $\{(X_{\alpha}, K_{\alpha}); \alpha \in I\}$ is a family of closure spaces, then the projection map $\pi_{\beta}: \prod_{\alpha \in I} (X_{\alpha}, K_{\alpha}) \to (X_{\beta}, K_{\beta})$ is closed and continuous for every $\beta \in I$.

Proposition: 2.6 Let $\{(X_{\alpha}, K_{\alpha}); \alpha \in I\}$ be a family of closure spaces, let $\beta \in I$ and $F \subseteq X_{\beta}$. Then *F* is a closed subset of (X_{β}, K_{β}) if and only if $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is closed subset of $\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha})$.

Proposition: 2.7 Let $\{(X_{\alpha}, K_{\alpha}); \alpha \in I\}$ be a family of closure spaces, let $\beta \in I$ and $G \subseteq X_{\beta}$. Then *G* is

a open subset of (X_{β}, K_{β}) if and only if $G \times \prod_{\alpha \neq \beta} X_{\alpha}$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha})$.

3. Čech $\psi \alpha g$ -Closed sets

Definition: 3.1 Let (X, K) be a Čech closure spaces. A subset $A \subseteq X$ is called a $\psi \alpha g$ -closed set if $K(A) \subseteq G$ whenever G is a αg -open subset of (X, K) with $A \subseteq G$. A subset A of X is called a $\psi \alpha g$ -open set if its complement is a $\psi \alpha g$ -closed subset of (X, K).

Proposition: 3.2 Every closed set is $\psi \alpha g$ -closed.

Proof: Let *G* be a αg -open subset of (X, K) such that $A \subseteq G$. Since *A* is a closed set, we have $K(A) = A \subseteq G$. Therefore *A* is $\psi \alpha g$ -closed.

The converse need not true as seen in the following example.

Example: 3.3 Let $X = \{a, b, c\}$ and define a closure K on X by $K(\phi) = \phi$, $K\{a\} = \{a\}$; $K\{b\} = \{b, c\}$; $K\{c\} = K\{a, c\} = \{a, c\}$; $K\{a, b\} = K\{b, c\} = KX = X$, Then $\{a, b\}$ is $\psi \alpha g$ -closed but it is not closed.

Proposition: 3.4 Let (X, K) be a Čech closure space. If *A* and *B* are $\psi \alpha g$ -closed subset of (X, K), then $A \cup B$ is also $\psi \alpha g$ -closed.

Proof: Let *G* be a αg -open subset of (X, K) such that $A \cup B \subseteq G$, then $A \subseteq G$ and $B \subseteq G$. Since *A* and *B* are $\psi \alpha g$ -closed, we have $K(A) \subseteq G$ and $K(B) \subseteq G$. Consequently, $K(A \cup B) = K(A) \cup K(B) \subseteq G$. Therefore $A \cup B$ is $\psi \alpha g$ -closed.

Remark: 3.5 The intersection of two $\psi \alpha g$ -closed sets need not be $\psi \alpha g$ -closed as can be seen by the following example.

Example: 3.6 Let $X = \{a, b, c\}$ and define a closure *K* on *X* by $K(\phi) = \phi$, $K\{a\} = \{a, b\}$; $K\{b\} = K\{c\} = K\{b, c\} = \{b, c\}$; $K\{a, b\} = K\{a, c\} = KX = X$ if $A = \{a, b\}$ and $B = \{a, c\}$, then $\{a, b\} \cap \{a, c\} = \{a\}$ which is not $\psi \alpha g$ -closed.

Proposition: 3.7 Let (X, K) be a Čech closure spaces. If *A* is $\psi \alpha g$ -closed and *F* is αg -closed in (X, K), then $A \cap F$ is $\psi \alpha g$ -closed.

Proof: Let *G* be a αg -open subset of (X, K) such that $A \cap F \subseteq G$, then $A \subseteq G \cup (X - F)$ and so, since *A* is $\psi \alpha g$ -closed, $K(A) \subseteq G \cup (X - F)$, then $K(A) \cap F \subseteq G$, since *F* is αg -closed, $K(A \cap F) \subseteq G$. Therefore $A \cap F$ is $\psi \alpha g$ -closed.

Proposition: 3.8 Let (Y, I) be a closed subspace of (X, K). If *F* is $\psi \alpha g$ -closed subset of (Y, I), then *F* is $\psi \alpha g$ -closed subset of (X, K).

Proof: Let *G* be a αg -open set of (X, K) such that $F \subseteq G$. Since *F* is $\psi \alpha g$ -closed and $G \cap F$ is αg -open $K(F) \cap Y \subseteq G$, but *Y* is closed subset of (X, K) and $K(F) \subseteq G$, where *G* is a αg -open set. Therefore *F* is $\psi \alpha g$ -closed set of (X, K). The following statement is obvious.

Proposition: 3.9 Let (X, K) be a Čech closure space and let $A \subseteq X$. If A is both αg -open and $\psi \alpha g$ -closed then A is closed.

Proposition: 3.10 Let (X, K) be a Čech closure space and let K be idempodent. If A is a $\psi \alpha g$ closed subset of (X, K) such that $\subseteq B \subseteq K(A)$, then B is a $\psi \alpha g$ -closed subset of (X, K).

Proof: Let G be a αg -open set of (X, K) such that $B \subseteq G$. Then $A \subseteq G$, since A is $\psi \alpha g$ -closed, $K(A) \subseteq G$ as G is idempodent, $K(B) \subseteq K(K(A)) = K(A) \subseteq G$. Hence B is $\psi \alpha g$ -closed.

Proposition: 3.11 Let (X, K) be a Čech closure space and let $A \subseteq X$. If *A* is $\psi \alpha g$ -closed, then K(A) - A has no non empty αg -closed subset.

Proof: Suppose that *A* is $\psi \alpha g$ -closed. Let *F* be a αg -closed set of K(A) - A. Then $F \subseteq K(A) \cap (X - A)$, so $A \subseteq (X - F)$. Consequently, since *A* is $\psi \alpha g$ -closed $F \subseteq X - K(A)$. Since $F \subseteq K(A), F \subseteq (X - K(A)) \cap K(A) = \phi$. Thus $F = \phi$. Therefore K(A) - A contains no non empty αg -closed subset.

Proposition: 3.12 Let (X, K) be a Čech closure space. A set $A \subseteq X$ is $\psi \alpha g$ -open if and only if $F \subseteq X - K(X - A)$ whenever F is αg -closed subset of (X, K) with $F \subseteq A$.

Proof: Suppose that *A* is $\psi \alpha g$ -open and *F* be a αg -closed subset of (X, K) such that $F \subseteq A$. Then $(X - A) \subseteq (X - F)$. But X - A is $\psi \alpha g$ -closed and X - F is αg -open. It follows that $K(X - A) \subseteq X - F$. I.e., $F \subseteq X - K(X - A)$.

Conversely, Let *G* be a αg -open subset of (X, K)such that $X - A \subseteq G$. Then $X - G \subseteq A$. Therefore $X - U \subseteq K(X - A)$. Consequently, $K(X - A) \subseteq G$. Hence X - A is $\psi \alpha g$ -closed and so *A* is $\psi \alpha g$ -open.

Remark: 3.13 The union of two $\psi \alpha g$ -open sets need not be $\psi \alpha g$ -open.

Proposition: 3.14 Let (X, K) be a Čech closure space. If *A* is $\psi \alpha g$ -open and *B* is αg -open in (X, K), then $A \cup B$ is $\psi \alpha g$ -open.

Proof: Let *F* be a αg -closed subset of (X, K) such that $F \subseteq A \cup B$. Then $X - (A \cup B) \subseteq X - F$. Hence $(X - A) \cap (X - B) \subseteq X - F$. By proposition 3.7, we have, $(X - A) \cap (X - B)$ is $\psi \alpha g$ -closed. Therefore $K[(X - A) \cap (X - B)] \subseteq X - F$. Consequently, $F \subseteq X - K[(X - A) \cap (X - B)] = X - K[X - \cap (A \cup B)]$. Since $F \subseteq X - K[(X - A)]$, then *A* is $\psi \alpha g$ -open. Therefore $A \cup B$ is $\psi \alpha g$ -open.

Proposition: 3.15 Let (X, K) be a Čech closure space. If *A* and *B* are $\psi \alpha g$ -open of (X, K) then $A \cap B$ is $\psi \alpha g$ -open.

Proof: Let *F* be a αg -closed subset of (X, K) such that $F \subseteq A \cap B$. Then $X - (A \cap B) \subseteq X - F$. Hence $(X - A) \cup (X - B) \subseteq X - F$. By proposition 3.4, we have, $(X - A) \cup (X - B)$ is $\psi \alpha g$ -closed. Therefore $K[(X - A) \cup (X - B)] \subseteq X - F$. Consequently, $F \subseteq X - K[(X - A) \cup (X - B)] \subseteq (X - B)] \subseteq X - [X - (A \cap B)]$. By proposition -------------------, $A \cap B$ is $\psi \alpha g$ -open.

Proposition: 3.16 Let (X, K) be a Čech closure space. If A is $\psi \alpha g$ -open subsets of (X, K), then X = G whenever G is αg -open and $(X - K(X - A)) \cup (X - A) \subseteq G$.

Proof: Suppose that *A* is $\psi \alpha g$ -open. Let *G* be an αg -open subset of (X, K) such that $(X - K(X - A)) \cup (X - A) \subseteq G$. Then $X - G \subseteq X - [(X - K(X - A)) \cup (X - A)]$. Therefore $X - G \subseteq K(X - A) \cap A$ orequivalently, $X - G \subseteq K(X - A) \cap (X - A)$. But X - G is αg -closed and X - A is $\psi \alpha g$ -closed. Then by proposition 3.11, $X - G = \phi$. Consequently, X = G.

Proposition: 3.17 Let (X, K) be a Čech closure space and let $A \subseteq X$. If A is $\psi \alpha g$ -closed, then K(A) - A is $\psi \alpha g$ -open.

Proof: Suppose that *A* is $\psi \alpha g$ -closed. Let *F* be a αg -closed set of (X, K) such that $F \subseteq K(A) - A$, By proposition 3.11, $K(A) - A = \phi$, and hence $F \subseteq X - [(X - K(X - A))]$. By proposition 3.12 K(A) - A is $\psi \alpha g$ -open.

Proposition: 3.18 Let $\{(X_{\alpha}, K_{\alpha}); \alpha \in I\}$ be a family of closure spaces. Let $\beta \in I$ and $G \subseteq X_{\beta}$. Then *G* is a $\psi \alpha g$ -open subset of (X_{β}, K_{β}) if and only if $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a $\psi \alpha g$ -open subset of $\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha})$.

Proof: Let *F* be a $\psi \alpha g$ -closed subset of (X_{α}, K_{α}) such that $F \subseteq G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$, then $\pi_{\beta}(F) \subseteq G$. Since $\pi_{\beta}(F)$ is αg -closed and *G* is $\psi \alpha g$ -open in $(X_{\beta}, K_{\beta}), \quad \pi_{\beta}(F) \subseteq X_{\beta} - K_{\beta}(X_{\beta} - G)$. Therefore $F \subseteq \pi_{\beta}^{-1}(X_{\beta} - K_{\beta}(X_{\beta} - G)) = \prod_{\substack{\alpha \in I}} X_{\alpha} \prod_{\alpha \in I} K_{\alpha} \pi_{\alpha} \left(\prod_{\alpha \in I} X_{\alpha} - G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \right)$. Hence $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a $\psi \alpha g$ -closed subset of $\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha})$.

Conversely, Let *F* be a αg -closed subset of (X_{β}, K_{β}) such that $F \subseteq G$. Then $F \times$ $\prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \subseteq G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$. Since $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is αg -closed and $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is $\psi \alpha g$ -open in $\prod_{\substack{\alpha \in I \\ \alpha \in I}} (X_{\alpha}, K_{\alpha})$. $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \subseteq \prod_{\substack{\alpha \in I \\ \alpha \in I}} X_{\alpha} - G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \int$. By proposition 3.12 Therefore $\prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} = (X_{\beta} - G) \times \prod_{\substack{\alpha \in I \\ \alpha \in I}} X_{\alpha}$.

Consequently, $K_{\beta}(X_{\beta} - G) \subseteq X_{\beta} - F$ implies $F \subseteq X_{\beta} - K_{\beta}(X_{\beta} - G)$. Hence *G* is a $\psi \alpha g$ -open subset of (X_{β}, K_{β}) .

Proposition: 3.19 Let $\{(X_{\alpha}, K_{\alpha}); \alpha \in I\}$ be a family of closure spaces. Let $\beta \in I$ and $F \subseteq X_{\beta}$. Then *F* is $\psi \alpha g$ -closed subset of (X_{β}, K_{β}) if and only if $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a $\psi \alpha g$ -closed subset of $\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha})$.

Proof: Let *F* be a $\psi \alpha g$ -closed subset of (X_{β}, K_{β}) . Then $X_{\beta} - F$ is an $\psi \alpha g$ -open subset of (X_{β}, K_{β}) . By proposition 3.18, $X_{\beta} - F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} =$ $\prod_{\alpha \in I} X_{\alpha} - F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \text{ is a } \psi \alpha g \text{-open subset of}$ $\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha}). \text{ Hence } F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \text{ is a } \psi \alpha g \text{-}$ closed subset of $\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha}).$

Conversely, let *G* be a $\psi \alpha g$ -open subset of (X_{β}, K_{β}) such that $F \subseteq G$. Then $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \subseteq G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$. Since $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is $\psi \alpha g$ -closed and $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is αg -open in $\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha})$. $\prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} K_{\alpha} \pi_{\alpha} (F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\beta}) \subseteq G \times \prod_{\alpha \in I} X_{\alpha}.$ Consequently, $K_{\beta}(F) \subseteq G$. Therefore, *F* is a $\psi \alpha g$ -closed subset of (X_{β}, K_{β}) .

Proposition: 3.20 Let $\{(X_{\alpha}, K_{\alpha}); \alpha \in I\}$ be a family of closure spaces, for each $\beta \in I$ and let $\pi_{\beta}: \prod_{\alpha \in I} X_{\alpha} \to X_{\beta}$ be a projection map. Then (i) If *F* is a $\psi \alpha g$ -closed subset of $\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha})$, then $\pi_{\beta}(F)$ is a $\psi \alpha g$ -closed subset of (X_{β}, K_{β}) .

(ii) If F is a $\psi \alpha g$ -closed subset of (X_{β}, K_{β}) , then $\pi_{\beta}^{-1}(F)$ is a $\psi \alpha g$ -closed subset of $\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha})$.

Proof: Let *F* be a $\psi \alpha g$ -closed subset of $\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha})$ and let *G* be a αg -open subset of (X_{β}, K_{β}) such that $\pi_{\beta}(F) \subseteq G$. Then $F \subseteq \pi_{\beta}^{-1}(G) = G \times \prod_{\alpha \in I} X_{\alpha}$. Since *F* is a $\psi \alpha g$ -closed and $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\beta}$ is αg -open. $\prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} K_{\alpha} \pi_{\alpha} \left(G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \right)$. Consequently, $K_{\beta} \pi_{\beta}(F) \subseteq G$. Hence $\pi_{\beta}(F)$ is a $\psi \alpha g$ -closed subset of (X_{β}, K_{β}) .

(ii) Let *F* be a $\psi \alpha g$ -closed subset of (X_{β}, K_{β}) . Then $\pi_{\beta}^{-1}(F) = F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$. Therefore we have, $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a $\psi \alpha g$ -closed subset of $\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha})$. Therefore $\pi_{\beta}^{-1}(F)$ is a $\psi \alpha g$ -closed subset of $\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha})$.

Definition: 3.21A closure space (X, K) is said to be a $T_{\psi\alpha g}$ -space if every $\psi\alpha g$ -closed subset of (X, K)is closed.

Proposition: 3.22 Let (X, K) be closure space. Then

(i) If (X, K) is a $T_{\psi \alpha g}$ -space then every singleton subset of X is either αg -closed or open.

(ii) If every singleton subset of X is a αg -closed subset of (X, K), then (X, K) is a $T_{\psi\alpha g}$ -space.

Proof: (i) Suppose that (X, K) is a $T_{\psi\alpha g}$ -space. Let $x \in X$ and assume that $\{x\}$ is not αg -closed. Then $X - \{x\}$ is not αg -open. This implies $X - \{x\}$ is $\psi\alpha g$ -closed. Since X is the only αg -open set which contains $-\{x\}$. Since (X, K) is a $T_{\psi\alpha g}$ -space, $X - \{x\}$ is closed or equivalently $\{x\}$ is open.

(ii) Let A be a $\psi \alpha g$ -closed subset of (X, K). Suppose that $x \notin A$. Then $\{x\} \subseteq X - \{x\}$. Since A is $\psi \alpha g$ -closed and $X - \{x\}$ is αg -open, $K(A) \subseteq X - \{x\}$. That is $\{x\} \subseteq X - K(A)$.

Hence $x \notin K(A)$ and thus $K(A) \subseteq A$. Therefore A is closed subset of (X, K). Hence (X, K) is a $T_{\psi\alpha g}$ -space.

4. Čech $\psi \alpha g$ -Continuous maps

Definition: 4.1 Let (X, K) and (Y, I) be a Čech closure space. A mapping $f: (X, K) \to (Y, I)$ is said to be $\psi \alpha g$ -continuous, if $f^{-1}(F)$ is $\psi \alpha g$ -closed closed set of (X, K) for every closed set F in (Y, I).

Proposition: 4.2 Every continuous map is $\psi \alpha g$ -continuous.

Proof: Let $f:(X,K) \to (Y,I)$ be continuous. Let F be a closed set of (Y,I). Since f is continuous, then $f^{-1}(F)$ is closed set of (X,K). Since every closed set is $\psi \alpha g$ -closed of (X,K), we have $f^{-1}(F)$ is closed set of (X,K). Therefore f is $\psi \alpha g$ -continuous.

Proposition: 4.3 Let (X, K) be a $T_{\psi\alpha g}$ -space and (Y, I) be a Čech closure space. If $f: (X, K) \to (Y, I)$ is said to be αg -continuous, then f is $\psi\alpha g$ -continuous.

Proof: Let *F* be a closed set of (Y, I). Since *f* is αg -continuous, then $f^{-1}(F)$ is αg -closed set of (X, K). Since (X, K) is a $T_{\psi\alpha g}$ -space, $f^{-1}(F)$ is a $\psi\alpha g$ -closed set of (X, K). Hence *f* is $\psi\alpha g$ -continuous.

The following statement is obvious.

Proposition: 4.4 Let (X, K), (Y, I) and (Z, m) be closure spaces. If $f: (X, K) \to (Y, I)$ is $\psi \alpha g$ -continuous and $g: (Y, I) \to (Z, m)$ is continuous, then $g \circ f: (X, K) \to (Z, m)$ is $\psi \alpha g$ -continuous.

Proposition: 4.5 Let (Z,m) be closure spaces and let (Y,I) be a $T_{\psi\alpha g}$ -space. If $f:(X,K) \to (Y,I)$ and $g:(Y,I) \to (Z,m)$ are $\psi\alpha g$ -continuous, then $g \circ f:(X,K) \to (Z,m)$ is $\psi\alpha g$ -continuous.

Proof: Let *F* be a closed set of (Z, m). Since *g* is $\psi \alpha g$ -continuous, then $g^{-1}(F)$ is $\psi \alpha g$ -closed set of (Y, I). Since (Y, I) is a $T_{\psi \alpha g}$ -space, $g^{-1}(F)$ is a closed set of (Y, I) which implies that $(g \circ f)^{-1}(F)$ is a $\psi \alpha g$ -closed subset of (X, K). Hence $g \circ f$ is $\psi \alpha g$ -continuous.

Proposition: 4.6 Let $\{(X_{\alpha}, K_{\alpha}); \alpha \in I\}$ and $\{(Y_{\alpha}, I_{\alpha}); \alpha \in I\}$ be families of closure spaces. For each $\alpha \in I$, let $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ be a map and $f: \prod_{\alpha \in I} X_{\alpha} \to \prod_{\alpha \in I} Y_{\alpha}$ be a map defined by $f((X_{\alpha})_{\alpha \in I}) = (f_{\alpha}(X_{\alpha})_{\alpha \in I})$. If $f: \prod_{\alpha \in I} (X_{\alpha}, K_{\alpha}) \to$ $\prod_{\alpha \in I} (Y_{\alpha}, I_{\alpha})$ is $\psi \alpha g$ -continuous, then $f_{\alpha}: (X_{\alpha}, K_{\alpha}) \to (Y_{\alpha}, I_{\alpha})$ is $\psi \alpha g$ -continuous for each $\alpha \in I$.

Proof: Let $\beta \in I$ and F be a closed subset of (Y_{β}, I_{β}) . Then $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} Y_{\alpha}$ is a closed subset of $\prod_{\alpha \in I} (Y_{\alpha}, I_{\alpha})$. Since f is $\psi \alpha g$ -continuous, $f^{-1}\left(F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} Y_{\alpha}\right) = f_{\beta}^{-1}(F) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a $\psi \alpha g$ -closed subset of $\prod_{\alpha \in I} (X_{\alpha}, K_{\alpha})$. By proposition..... $f_{\beta}^{-1}(F)$ is a $\psi \alpha g$ -closed subset of (X_{β}, K_{β}) . Hence F_{β} is $\psi \alpha g$ -continuous.

Definition: 4.7 Let (X, K) and (Y, I) be a closure spaces. A map $f:(X, K) \to (Y, I)$ is called $\psi \alpha g$ -irresolute if $f^{-1}(F)$ is a $\psi \alpha g$ -closed set of (X, K) for every $\psi \alpha g$ -closed set F in (Y, I).

Definition: 4.8 Let (X, K) and (Y, I) be a closure spaces. A map $f: (X, K) \to (Y, I)$ is called $\psi \alpha g$ -closed if f(F) is a $\psi \alpha g$ -closed subset of (Y, I) for every closed set F of (X, K).

Proposition: 4.9 Let (X, K), (Y, I) and (Z, m) be closure spaces. If $f: (X, K) \to (Y, I)$ and $g: (Y, I) \to (Z, m)$ be a map, then

(i) If f is closed and g is $\psi \alpha g$ -closed, then $g \circ f$ is $\psi \alpha g$ -closed.

(ii) If $g \circ f$ is $\psi \alpha g$ -closed and f is $\psi \alpha g$ -continuous and surjective, then g is $\psi \alpha g$ -closed.

(iii) If $g \circ f$ is closed and g is $\psi \alpha g$ -continuous and injective, then f is $\psi \alpha g$ -closed.

Proposition: 4.10 A map $f:(X,K) \to (Y,I)$ is $\psi \alpha g$ -closed if and only if, for each subset *B* of *Y* and each open subset *G* with $f^{-1}(B) \subseteq G$, there is a $\psi \alpha g$ -open subset *V* of (Y,I) such that $B \subseteq V$ and $f^{-1}(V) \subseteq G$.

Proof: Suppose *f* is $\psi \alpha g$ -closed. Let *B* be a subset of (Y, I) and *G* be an open subset of (X, K) such that $f^{-1}(B) \subseteq G$. Then f(X - G) is a $\psi \alpha g$ -closed subset of (Y, I). Let V = Y - f(X - G). Since *V* is $\psi \alpha g$ -open and $f^{-1}(V) = f^{-1}(Y - f(X - G)) =$ $X - f^{-1}(f(X - G)) \subseteq X - (X - G) = G$. Therefore, *V* is $\psi \alpha g$ -open, $B \subseteq V$ and $f^{-1}(V) \subseteq$ *G*.

Conversely, suppose *F* is a closed subset of (X, K), then $f^{-1}(Y - f(F)) \subseteq X - F$ and X - F is open. By hypothesis, there is a $\psi \alpha g$ -open subset *V* of (Y, I) such that $Y - f(F) \subseteq V$ and $f^{-1}(V) \subseteq X - F$. Therefore $F \subseteq X - f^{-1}(V)$. Hence $Y - V \subseteq$ $f(F) \subseteq f(X - f^{-1}(V)) \subseteq Y - V \Rightarrow f(F) = Y - V$. Thus f(F) is $\psi \alpha g$ -closed. Therefore *f* is $\psi \alpha g$ closed.

References:

[1] C. Boonpok, Between closed sets and Generalized closed in closure Spaces, Acta Math Univ, Ostra 16(2008), 3-14

[2] C. Boonpok, Generalized closed sets in Čech closure space, Acta Math Univ, Apulensis, No-22(2010),133-140.

[3] E. Čech, Topological Spaces, Topological spaces of Eduard Čech, Academia Prague (1968), 436-472.

[4] J. Chvalina, On homeomorphic topologies and equivalent systems, Arch Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, XII, (1976), 107-116.

[5] J. Chvalina, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch Math.2, Scripta Fac.Sci.Nat. UJEP Brunensis, XVII, (1981), 81-86.

[6] N. Levine: Generalized closed sets in topology, Rend, Circ. Mat.Palermo, 19(1970), 89-96

[7] L. Skula: Systeme von stetigen abbildungen. Caech. Math. J. 17. 92. (1967), 45-52.

[8] J. Slapal, Closure operations for digital topology, Theoret. Comput. Sci., 305, (2003), 457-471.

[9] P. Sundaram and Sheik John, Weakly closed sets and weak continuous maps in topological spaces, In Proc. 82nd, Volume 49, Indian Sci. Cong Calcutta, 1995.

[10] V.Kokilavani and P.R. Kavitha, On $\psi \alpha g$ -closed sets in topological spaces, IJMA-7(1), 2016, 1-7