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and study ag-closed sets in closure spaces. We
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1. INTRODUCTION

Cech closure spaces were introduced by
E.Cech [3] and then studied by many authors
[41[5]1[71I8]. The concept of generalized closed sets
and generalized continuous maps of topological
spaces were extended to closure spaces in [2]. A
generalization of Yag-closed sets and Yag-
continuous functions were introduced by the same
author [10].

In this paper, we introduce and study the
notion of Yag-closed sets in closure spaces. We
define a new class of space namely T, ,-space and
their properties are studied. Further, we introduce a
class of Yag-continuous maps, Yag-closed maps
and their characterizations are obtained.

2. PRELIMIERIES

A map K:P(X) - P(X) defined on the
power set P(X) of a set X is called a closure
operator on X and the pair (X, K) is called a closure
space if the following axioms are satisfied
1K) =¢
2.AC K(A) foreveryAc X
3.K(AUB) =K(A) UK(B) forall A,B < X.

A closure operator K on a set X is called
idempodent if K(4) = K[K(A)] forall A € X.

Definition: 2.1 A subset A of a Cech closure space
(X, K) is said to be

(i) Cech closed if K(A) = A

(ii) Cechopen if K(X —A) =X — A

(i) Cech semi-open if A € Kint(A)

(iv) Cech pre-open if A € int[K(A)]

Definition: 2.2 A Cech closure space (Y,) is said
to be a subspace of (X,K) if Y € X and K(4) =
K(A) nY for each subset, A € Y. IfY is closed in
(X, K) then the subspace (Y,I) of (X,K) is said to
be closed too.

Definition: 2.3 Let (X,K) and (Y,I) be Cech
closure spaces. Amap f: (X,K) — (Y,K) is said to
be continuous, if f(KA) € Kf(A) for every subset
ACF.

Definition: 2.4 Let (X,K) and (Y,I) be Cech
closure spaces. A map f: (X,K) — (Y,I) is said to
be closed (resp. open), if f(F) is closed (resp.
open) subset of (Y,I) whenever F is a closed
(resp. open) subset of (X, K).

Definition: 2.5 The product of a family
{(X,,K,); a €1} of closure spaces denoted by
[Taer(Xo, K,) is the closure space ([1pe;(Xq, Kz))
where [[,e; X, denotes the Cartesian product of
sets X,, a €1 and K is Cech closure operator
generated by the projections 7,: [14e;(Xa, K) =
X, K,);a €l . That is defined by K(A4)=
Hael Ka T[(X(A) foreach 4 < HaeIXa)-

Clearly, if {(X,,K,); « € I} is a family of
closure spaces, then the projection map
15 [loer(Xa Ko) = (X3, Kp) is closed and
continuous for every 8 € I.

Proposition: 2.6 Let {(X,,K,); a € I} be a family
of closure spaces, let p € I and F < Xz. Then F is
a closed subset of (Xg,Kp) if and only if F x
[Taxp X, is closed subset of [Te;(Xq, Ko)-

a€l

Proposition: 2.7 Let {(X,, K,); a € I} be a family
of closure spaces, let f € I and G < Xg. Then G is
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a open subset of (Xg, Kg) if and only if G x
[Taxp X, is an open subset of [],e;(Xq, Ky).

a€l

3. Cech Pag-Closed sets

Definition: 3.1 Let (X,K) be a Cech closure
spaces. A subset A € X is called a Yag-closed set
if K(A) € G whenever G is a ag-open subset of
(X,K) with A< G. A subset A of X is called a
Yag-open set if its complement is a Yag-closed
subset of (X, K).

Proposition: 3.2 Every closed set is Yag-closed.

Proof: Let G be a ag-open subset of (X,K) such
that A< G. Since A is a closed set, we have
K(A) = A € G. Therefore A is pag-closed.

The converse need not true as seen in the following
example.

Example: 3.3 Let X ={a,b,c} and define a
closure K on X by K(¢)=¢, K{a}={a};
K{b} ={b,c}; K{c} = K{a,c} ={a,c}; K{a, b} =
K{b,c} = KX = X, Then {a, b} is Yag-closed but
it is not closed.

Proposition: 3.4 Let (X,K) be a Cech closure
space. If A and B are yag-closed subset of (X, K),
then A U B is also pag-closed.

Proof: Let G be a ag-open subset of (X,K) such
that AUB € G, then A< G and B < G. Since A
and B are pag-closed, we have K(4) € G and
K(B) € G. Consequently, K(AUB)=K(A)U
K(B) € G. Therefore AU B is yYag-closed.

Remark: 3.5 The intersection of two ypag-closed
sets need not be Yag-closed as can be seen by the
following example.

Example: 3.6 Let X ={a,b,c} and define a
closure K on X by K(¢)=¢, K{a}={a,b};
K{b} = K{c} = K{b,c} = {b, c}; K{a,b} =
K{a,c}=KX=X if A={a,b} and B ={a,c},
then {a,b}n{a,c} = {a} which is not Yag-
closed.

Proposition: 3.7 Let (X,K) be a Cech closure
spaces. If A is Yag-closed and F is ag-closed in
(X,K), then AN F is pag-closed.

Proof: Let G be a ag-open subset of (X,K) such
that ANFCS G, then ACGU (X —F) and so,
since A is Yag-closed, K(A) € G U (X — F), then
K(A)NF <G, since F is ag-closed, K(ANF) <
G. Therefore A N F is Yag-closed.

Proposition: 3.8 Let (Y, I) be a closed subspace of
(X,K). If F is pag-closed subset of (Y,I), then F
is Yag-closed subset of (X, K).

Proof: Let G be a ag-open set of (X, K) such that
F € G. Since F is pag-closed and G N F is ag-
open K(F)nY < G, but Y is closed subset of
(X,K) and K(F) € G, where G is a ag-open set.
Therefore F is yag-closed set of (X, K).

The following statement is obvious.

Proposition: 3.9 Let (X,K) be a Cech closure
space and let A< X. If A is both ag-open and
Yag-closed then A is closed.

Proposition: 3.10 Let (X,K) be a Cech closure
space and let K be idempodent. If A is a Yag-
closed subset of (X,K) such that € B € K(4) ,
then B is a Yag-closed subset of (X, K).

Proof: Let G be a ag-open set of (X, K) such that
Bc G. Then A< G, since A is Yag-closed,
K(A)cG as G is idempodent, K(B) <
K(K(A)) = K(A) € G. Hence B is ag-closed.

Proposition: 3.11 Let (X,K) be a Cech closure
space and let Ac X. If A is Ypag-closed, then
K (A) — A has no non empty ag-closed subset.

Proof: Suppose that A is Yag-closed. Let F be a
ag-closed set of K(A) —A. Then FC K(A)Nn
(X —A),s0A € (X — F). Consequently, since A is
Yag-closed F € X — K(A). Since F € K(A),F <
(X —K(A)) N K(A) = ¢. Thus F = ¢. Therefore
K(A) — A contains no non empty ag-closed subset.

Proposition: 3.12 Let (X,K) be a Cech closure
space. A set A < X is Yag-open if and only if
FcX—K(X—A) whenever F is ag-closed
subset of (X,K) with F c A.

Proof: Suppose that A is ag-open and F be a
ag-closed subset of (X, K) such that F € A. Then
(X—A) < (X—F). But X — A is pag-closed and
X — F is ag-open. It follows that K(X — A) € X —
F.le,FS X —K(X — A).
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Conversely, Let G be a ag-open subset of (X,K)
such that X —A € G. Then X — G < A. Therefore
X —U < K(X — A). Consequently, K(X — A) € G.
Hence X — A isyag-closed and so A is pag-open.

Remark: 3.13 The union of two Yag-open sets
need not be Yag-open.

Proposition: 3.14 Let (X,K) be a Cech closure
space. If A is Yag-open and B is ag-open in
(X,K), then AU B is pag-open.

Proof: Let F be a ag-closed subset of (X, K) such
that FSAUB. Then X—(AUB) < X-—F.
Hence X-AnX-B)cX-F. By
proposition 3.7, we have, (X —A)N (X —B) is
Yag-closed. Therefore K[(X —A)Nn (X —B)] <
X—F. Consequently, FCSX-—-K[X-A4)N
(X-B)]=X—K[X—-n(AUB)].Since F € X —
K[(X — A)], then A is yag-open. Therefore AU B
is Yag-open.

Proposition: 3.15 Let (X,K) be a Cech closure
space. If A and B are Yag-open of (X,K) then
AN Bisyag-open.

Proof: Let F be a ag-closed subset of (X, K) such
that FSANB. Then X—(AnB)<SX-—F.
Hence X—-AUuUX-B)cX-F. By
proposition 3.4, we have, (X —A) U (X —B) is
Yag-closed. Therefore K[(X —A)U (X —B)] <
X—F. Consequently, FCX-—-K[X—-A)U
(X —B)] € X — [X — (A n B)]. By proposition ----
-, AN Bis pag-open.

Proposition: 3.16 Let (X,K) be a Cech closure
space. If A is Yag-open subsets of (X, K), then
X =G whenever G is ag-open and (X —
KX—-A)uX-4)<G.

Proof: Suppose that A is Yag-open. Let G be an
ag-open subset of (X,K) such that (X —
KX-A)UuX-A) <SG Then X-GeSX-—
[(X =KX —A))u (X —A)]. Therefore X —G <
KX—-A)NA orequivalently, X—-G¢c
KX —-A)n (X —A). ButX — G is ag-closed and
X — A is Yag-closed. Then by proposition 3.11,
X — G = ¢. Consequently, X = G.

Proposition: 3.17 Let (X,K) be a Cech closure
space and let A< X. If A is Yag-closed, then
K(A) — Ais pag-open.

Proof: Suppose that A is pag-closed. Let F be a
ag-closed set of (X,K) such that F € K(4) — A,
By proposition 3.11, K(4) — A= ¢, and hence
FcX—[(X—-K(X-A))]. By proposition 3.12
K(A) — Ais Yag-open.

Proposition: 3.18 Let {(X,,K,); a €I} be a
family of closure spaces. Let g € and G < Xp.
Then G is a Yag-open subset of (Xg, Kp) if and
only if G x[lazpX, is @ Pag-open subset of

a€l

HaEI(Xa' Ka)-

Proof: Let F be a pag-closed subset of (X,, K,)
such that F € G X [[azp Xy, then mp(F) SG.

a€l
Since mz(F) is ag-closed and G is Yag-open in

(Xﬁ!Kﬁ)l T[ﬁ(F) c XB - KB(Xﬁ - G) Therefore
F cmp'(Xg — Kg(Xg — 6)) = [Naer Xa —

Hael Komg (Hael Xog—GX Ha¢ﬂ XO,)- Hence

a€l

G X [lazpX, is a 1ag-closed subset of

a€l

HaeI(Xou Ka)-

Conversely, Let F be a ag-closed subset
of  (Xp,Kg) such that F <G. Then F X
[lazp Xy € G X [lazp Xy Since F X [azpX, is

a€l a€l a€l

ag-closed and G X[[qz=pX, is ag-open in

a€l
HaeI(Xou Ka)- F X Ha#i’ Xa c Hael Xa -

a€l

Hael Kana (Hael Xa —GX Ha:tﬂ Xa)- By

a€l

proposition 3.12 Therefore [[q=p Koy (Xg — G) X

a€l

Ha#:BXa c HaeIXa —FX Haiﬁ Xa = (X[; -

a€l a€l

F) Hael Xa-

Consequently, Kg(Xpg —G) S Xg— F
implies F < Xz — Kg(Xg — G). Hence G is a Yag-
open subset of (Xg, Kg).

Proposition: 3.19 Let {(X,,K,); a €I} be a
family of closure spaces. Let g € and F < Xp.
Then F is ypag-closed subset of (Xz,Kp) if and
only if F X [lazpX, is a pag-closed subset of

a€l

HaeI(Xou Ka)-

Proof: Let F be a pag-closed subset of (Xg, Kp).
Then Xz — F is an pag-open subset of (X, Kp).
By proposition 3.18, Xg — F X [lazp Xy =

a€l
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[Taer Xo — F X [azp X, 1S @ Yag-open subset of

a€l

[Tae:(Xa Ky). Hence F X [le2pX, is a Yag-

a€l

closed subset of [],e;(Xq Kq)-

Conversely, let G be a Yag-open subset of
(Xg,Kp) such that F € G. Then F X [[azpXq S

a€l
G X [[azp Xy Since F X [Jazp X, is pag-closed
a€l a€l
and G X [[axp X, is ag-open in [[ze;(Xq, Ky).

a€l

Hmtﬁ' K,m,(F % H,I;gxﬁ) C G XJlper Xa

a€l a€l

Consequently, Kz (F) € G. Therefore, F is a Yag-
closed subset of (Xg, Kp).

Proposition: 3.20 Let {(X,, K,); a €I} be a
family of closure spaces, for each g €1 and let
g [lwer Xo = Xp be @ projection map. Then (i) If
F is a Yag-closed subset of [],e; (X, Ky), then
ng(F) is a pag-closed subset of (Xg, Kp).

(i) If F is a yag-closed subset of
(Xp,Kg), then mz ' (F) is a Yag-closed subset of

HaEI(Xa: Ka)-

Proof: Let F be a vag-closed subset of
[lze/(Xo, K,) and let G be a ag-open subset of
(Xg,Kg) such that mg(F)<S G. Then Fc
15 (G) = G X [Iger X, Since F is a ypag-closed

and G X [[azpXp is ag-open. [lazpKym, (G X

a€l a€l

Ha#;Xa) . Consequently, Kzmg(F) € G. Hence

a€l

ng(F) is a pag-closed subset of (Xg, Kp).

(i) Let F be a pag-closed subset of (Xg, Kg). Then
ng'(F) = F X [lazp X,. Therefore we have,

a€l

F X lazgX, is a wag-closed subset of

a€l

[Taer(Xq, Ko). Therefore mz ' (F) is a pag-closed
subset of [],e/(Xq Kg)-

Definition: 3.21A closure space (X, K) is said to be
a Tyqg-space if every pag-closed subset of (X, K)
is closed.

Proposition: 3.22 Let (X,K) be closure space.
Then

()If (X,K) is a Ty4-space then every singleton
subset of X is either ag-closed or open.

(iD)If every singleton subset of X is a ag-closed
subset of (X, K), then (X, K) is a Ty, 4-space.

Proof: (i) Suppose that (X, K) is a Ty,,4-space. Let
x € X and assume that {x} is not ag-closed. Then
X — {x} is not ag-open. This implies X — {x} is
Yag-closed. Since X is the only ag-open set which
contains —{x} . Since (X,K) is a Ty,4-Space,
X — {x} is closed or equivalently {x} is open.

(i) Let A be a yYag-closed subset of (X,K).
Suppose that x ¢ A. Then {x} € X — {x}. Since A
is Yag-closed and X — {x} is ag-open, K(A4) <
X —{x}. Thatis {x} € X — K(4).

Hence x ¢ K(A) and thus K(A) < A. Therefore A
is closed subset of (X, K). Hence (X, K) is a Tyqg-
space.

4. Cech pag-Continuous maps

Definition: 4.1 Let (X,K) and (Y,I) be a Cech
closure space. A mapping f: (X,K) - (Y,I) is said
to be Yag-continuous, if f~1(F) is Yag-closed
closed set of (X,K) for every closed set F in
(Y, D).

Proposition: 4.2 Every continuous map is Yag-
continuous.

Proof: Let f: (X,K) - (Y,I) be continuous. Let F
be a closed set of (Y,I). Since f is continuous,
then f~1(F) is closed set of (X,K). Since every
closed set is Yag-closed of (X,K), we have
f1(F) is closed set of (X, K). Therefore f is Yag-
continuous.

Proposition: 4.3 Let (X,K) be a Ty,,4-space and
(Y,I) be a Cech closure space. If f: (X,K) - (Y,])
is said to be ag-continuous, then f is Ypag-
continuous.

Proof: Let F be a closed set of (Y,I). Since f is
ag-continuous, then f~1(F) is ag-closed set of
(X,K). Since (X,K) is a Tyqq-space, f~'(F) is a
Yag-closed set of (X,K). Hence f is yYag-
continuous.

The following statement is obvious.

Proposition: 4.4 Let (X,K), (Y,I) and (Z,m) be
closure spaces. If f:(X,K) - (Y,I) is Yag-
continuous and g:(Y,I) » (Z,m) is continuous,
then g o f: (X, K) — (Z,m) is Yag-continuous.
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Proposition: 4.5 Let (Z,m) be closure spaces and
let (Y,I) be a Ty,4-space. If f:(X,K) - (V,1)
and g:(Y,I) -» (Z,m) are yag-continuous, then
gof:(X,K) - (Z,m) is Yag-continuous.

Proof: Let F be a closed set of (Z,m). Since g is
Pag-continuous, then g~1(F) is Yag-closed set of
(Y,1). Since (Y,I) is a Tyg4-space, g~ '(F) is a
closed set of (Y, 1) which implies that (g o f)~1(F)
is a Yag-closed subset of (X,K). Hence gof is
Yag-continuous.

Proposition: 4.6 Let {(X,,K,); «a €I} and
{(Y,,1,); a € I} be families of closure spaces. For
each a€l, let f,:X,—-Y, be a map and
fillger Xe 2 laes Y, be a map defined by
f((XDae) = faXdaen): 1 fillae/(Xe Ke)
Maer(Ye, 1) is Yag-continuous, then
fu: Xy, Ky) = (Yy, 1) is Yag-continuous for each
a €l

Proof: Let B €I and F be a closed subset of
(Yp,Ig). Then F X [lazpY, is a closed subset of

a€l
[lge/(Yy, 1), Since f is  ag-continuous,

f! (F X [Tazp Ya> = fr '(F) x [azp Xy is a

a€l a€l

Yag-closed subset of [Mger(X,, Ky). By
proposition...... fz'(F) is a pag-closed subset of
(Xg, Kg). Hence Fp is pag-continuous.

Definition: 4.7 Let (X,K) and (Y,I) be a closure
spaces. A map f:(X,K) - (Y,I) is called Yag-
irresolute if f~1(F) is a Yag-closed set of (X,K)
for every pag-closed set F in (Y, ).

Definition: 4.8 Let (X,K) and (Y,I) be a closure
spaces. A map f:(X,K) - (Y,I) is called pag-
closed if f(F) is a Yag-closed subset of (Y,I) for
every closed set F of (X, K).

Proposition: 4.9 Let (X,K), (Y,I) and (Z,m) be
closure spaces. If f:(X,K) - (Y,) and
g:(Y,I) > (Z,m) be a map, then

()If f is closed and g is Yag-closed, then g o f is
Yag-closed.

(i) If gof is Yag-closed and f is Yag-
continuous and surjective, then g is Yag-closed.

(iii) If g o f is closed and g is Yag-continuous and
injective, then f is Yag-closed.

Proposition: 4.10 A map f:(X,K) - (Y,I) is
Yag-closed if and only if, for each subset B of Y
and each open subset G with f~1(B) < G, there is
a Yag-open subset V of (Y,I) such that BSV
and f~1(V) € 6.

Proof: Suppose f is Yag-closed. Let B be a subset
of (Y,I) and G be an open subset of (X, K) such
that f~1(B) € G. Then f(X — G) is a pag-closed
subset of (Y,I). LetV =Y — f(X — G). Since V is
Yag-openand f1(V) = f1(Y - fF(X - G)) =
X—fY(fXx-6)csXx-X-6)=0.
Therefore, V is Yag-open, B € V and f~1(V) €
G.

Conversely, suppose F is a closed subset of (X, K),
then f~3(Y — f(F)) € X — F and X — F is open.
By hypothesis, there is a Yag-open subset V of
(Y,DsuchthatY — f(F) cVand f7'(V) € X —
F.Therefore F€ X — f~1(V). Hence Y — V <

fAYSFX—fW)eY-V=fF)=Y -
V. Thus f(F) is Yag-closed. Therefore f is Yag-
closed.
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