CI-algebras and its Fuzzy Ideals

Pulak Sabhapandit ${ }^{1}$, Biman Ch. Chetia ${ }^{2}$
${ }^{l}$ Department of Mathematics, Biswanath college, Biswanath Charial, Assam, India
${ }^{2}$ Principal, North Lakhimpur College, North Lakhimpur, Assam, India

Abstract

In this paper we develop the idea of fuzzy ideals in cartesian product of CI-algebras and obtain some new results. Finally we investigate how to extend a given fuzzy ideal of a CI-algebra to that of another CI-algebra.

Keywords: CI-algebra, Ideals, Fuzzy ideal
Mathematics Subject Classification: 06F35, 03G25, 08A30

1. INTRODUCTION

In 1966, Y.Imai and K.Iseki [2] introduced the notion of a BCK-algebra. There exist several generalizations of BCK-algebras,such as BCI-algebras [3],BCH-algebras [1],BH-algebras [4],d-algebras [8],etc. In [5],H.S.Kim and Y.H.kim introduced the notion of a BE-algebra as a dualization of a generalization of a BCK-algebra.As a generalization of Be -algebras,B.L.Meng [7] introduced the notion of CI -algebras and discussed its important properties.The concept of fuzzification of ideals in CI-algebra have introduced by Samy M. Mostafa, Mokthar A. Abdel Naby ,Osama R.Elgendy [10]. In this paper we develop the idea of fuzzy ideals in cartesian product of CIalgebras and obtain some new results. BY establishing that if X is a CI-algebra then $F(X)$, the class of all functions f $: X \rightarrow X$ is also a CI-algebra, we extend a given fuzzy ideal of x to that of $F(X)$.

2. PRELIMINARIES

Definition 2.1. ([7])- A system ($\mathrm{X} ; *, 1$) consisting of a non -empty set X , a binary operation $*$ and a fixed element 1 , is called a CI - algebra if the following conditions are satisfied :

1. (CI 1) $\mathrm{x} * \mathrm{x}=1$
2. (CI 2) $1 * x=x$
3. (CI 3) $\mathrm{x} *(\mathrm{y} * \mathrm{z})=\mathrm{y} *(\mathrm{x} * \mathrm{z})$
for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$
Example 2.2. Let $X=R^{+}=\{x \in R: x>0\}$
For $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, we define

$$
\mathrm{x} * \mathrm{y}=\mathrm{y} \cdot \frac{1}{x}
$$

Then ($\mathrm{X} ; *, 1$) is a CI - algebra
Definition 2.3.([7])A non - empty subset I of a CI - algebra X is called an ideal of X if
(1) $x \in X$ and $a \in I \Rightarrow x * a \in I$;
(2) $x \in X$ and $a, b \in I \Rightarrow(a *(b * x)) * x \in I$.

Lemma 2.4. ([7]) In a CI - algebra following results are true:

$$
\text { (1) } x *((x * y) * y)=1
$$

(2) $(x * y) * 1=(x * 1) *(y * 1)$
(3) $1 \leq x$ imply $x=1$
for all $x, y \in X$.
Lemma 2.5. ([6]) - (i) Every ideal I of X contains 1
(ii) If I is an ideal of X then $(\mathrm{a} * \mathrm{x}) * \mathrm{x} \in \mathrm{I}$ for all $\mathrm{a} \in \mathrm{I}$ and $\mathrm{x} \in \mathrm{X}$
(iii) If I_{1} and I_{2} are ideals of X then so is $I_{1} \cap I_{2}$.

Theorem 2.6. ([9])- Let $(X ; *, 1)$ be a system consisting of a non-empty set X, a binary operation $*$ and a fixed element 1. Let $\mathrm{Y}=\mathrm{X} \times \mathrm{X}$. For $u=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), v=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ a binary operation ' \odot ' 'is defined in Y as

$$
u \odot v=\left(\mathrm{x}_{1} * \mathrm{y}_{1}, \mathrm{x}_{2} * \mathrm{y}_{2}\right)
$$

Then $(\mathrm{Y} ; \odot,(1,1))$ is a CI- algebra iff $(\mathrm{X} ; *, 1)$ is a CI-algebra.
Theorem 2.7.([9])- Let A and B be subsets of a $C I-$ algebra X. Then $A \times B$ is an ideal of $Y=X \otimes X$ iff A and B are ideals of X .

3. FUZZY IDEALS .

Definition (3.1.) ([10]) - Let $\left(X ;{ }^{*}, 1\right)$ be a CI - algebra and let μ be a fuzzy set in X. Then μ is called a fuzzy ideal of X if it satisfies the following conditions:
(1) $(\forall \mathrm{x}, \mathrm{y} \in \mathrm{X})(\mu(\mathrm{x} * \mathrm{y}) \geq \mu(\mathrm{y}))$,
(2) $(\forall x, y, z \in X)(\mu((x *(y * z)) * z) \geq \min \{\mu(x), \mu(y)\})$

Theorem (3.2.) ([10]) - Let μ be a fuzzy set in a CI - algebra ($\mathrm{X} ; *, 1$). and let
$\mathrm{U}(\mu ; \alpha)=\{\mathrm{x} \in \mathrm{X}: \mu(\mathrm{x}) \geq \alpha\}$ where $\alpha \in[0,1]$.
Then μ is a fuzzy ideal of X iff $(\forall \alpha \in[0,1])(U(\mu ; \alpha) \neq \phi \Rightarrow U(\mu ; \alpha)$ is an ideal of $X)$.
Proposition (3.3) ([10]) - Let μ be a fuzzy ideal of a CI $-\operatorname{algebra}\left(X ;{ }^{*}, 1\right)$. Then
(a) $\mu(1) \geq \mu(x)$ for all $x \in X$;
(b) $\mu((x * y) * y) \geq \mu(x)$ for all $x, y \in X$;
(c) $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{x} \leq \mathrm{y} \Rightarrow \mu(\mathrm{x}) \leq \mu(\mathrm{y})$,
i. e., a fuzzy ideal μ is order preserving .

Now we establish some results for fuzzy ideals on Cartesian product of CI- algebras.
Theorem (3.4) - Let μ be a fuzzy set on a CI - algebra X and let $Y=X \times X$. Let $\mu_{1}, \mu_{2}, \mu_{3}$ be fuzzy sets on Y defined as

$$
\begin{aligned}
\mu_{1}(\mathrm{x}, \mathrm{y}) & =\mu(\mathrm{x}) \\
\mu_{2}(\mathrm{x}, \mathrm{y}) & =\mu(\mathrm{y})
\end{aligned}
$$

$$
\mu_{3}(\mathrm{x}, \mathrm{y})=\min \{\mu(\mathrm{x}), \mu(\mathrm{y})\}
$$

Then, (a) μ_{1} is a fuzzy ideal of Y iff μ is a fuzzy ideal of X;
(b) μ_{2} is a fuzzy ideal of Y iff μ is a fuzzy ideal of X;
(c) μ_{3} is a fuzzy ideal of Y iff μ is a fuzzy ideal of X .

Proof :- For any real $\alpha \in[0,1]$, let

$$
\begin{aligned}
& \left.\left.\quad \begin{array}{rl}
\mathrm{U}(\mu ; \alpha) & =\{\mathrm{x} \in \mathrm{X}: \mu(\mathrm{x}) \geq \alpha\} \\
\mathrm{U}_{1}\left(\mu_{1} ; \alpha\right) & =\left\{(\mathrm{x}, \mathrm{y}) \in \mathrm{Y}: \mu_{1}(\mathrm{x}, \mathrm{y})=\mu(\mathrm{x}) \geq \alpha\right\} \\
\mathrm{U}_{2}\left(\mu_{2} ; \alpha\right) & =\left\{(\mathrm{x}, \mathrm{y}) \in \mathrm{Y}: \mu_{2}(\mathrm{x}, \mathrm{y})=\mu(\mathrm{y}) \geq \alpha\right\} \\
\text { and } \quad & \mathrm{U}_{3}\left(\mu_{3} ; \alpha\right)
\end{array}\right)=\left\{(\mathrm{x}, \mathrm{y}) \in \mathrm{Y}: \mu_{3}(\mathrm{x}, \mathrm{y})\right) \geq \alpha\right\}
\end{aligned}
$$

Then we see that $\mathrm{U}_{1}\left(\mu_{1} ; \alpha\right)=\mathrm{U}(\mu ; \alpha) \times \mathrm{X}$

$$
\begin{aligned}
\mathrm{U}_{2}\left(\mu_{2} ; \alpha\right) & =\mathrm{X} \times \mathrm{U}(\mu ; \alpha) \\
\mathrm{U}_{3}\left(\mu_{3} ; \alpha\right) & =\mathrm{U}(\mu ; \alpha) \times \mathrm{U}(\mu ; \alpha)
\end{aligned}
$$

Now using theorem (2.7) we see that
(i) $\quad \mathrm{U}_{1}\left(\mu_{1} ; \alpha\right)$ is an ideal in Y iff $\mathrm{U}(\mu ; \alpha)$ is an ideal in X
(ii) $\quad \mathrm{U}_{2}\left(\mu_{2} ; \alpha\right)$ is an ideal in Y iff $\mathrm{U}(\mu \alpha)$ is an ideal in X
(iii) $\mathrm{U}_{3}\left(\mu_{3} ; \alpha\right)$ is an ideal in Y iff $\mathrm{U}(\mu ; \alpha)$ is an ideal in X .
for all real $\alpha \in[0,1]$.
Using theorem (3.2) we get the result.
Definition (3.5):- Let μ be a fuzzy set in $Y=X \times X$. Let μ_{1} and μ_{2} be fuzzy sets defined in X as

$$
\begin{aligned}
& \mu_{1}(x)=\mu(x, 1) \\
& \text { and } \mu_{2}(x, y)=\mu(1, x)
\end{aligned}
$$

Theorem (3.6):- μ is a fuzzy ideal of Y iff μ_{1} and μ_{2} are fuzzy ideals of X .
Proof :- Let μ be a fuzzy ideal of Y. Then

$$
\mathrm{U}(\mu ; \alpha)=\{(\mathrm{x}, \mathrm{y}) \in \mathrm{Y}: \mu(\mathrm{x}, \mathrm{y}) \geq \alpha\}=\mathrm{A} \times \mathrm{B} \text { (say) }
$$

is an ideal in Y . This means that A and B are ideal in $\mathrm{X} \quad[$ theorem (2.7)]. So $1 \in \mathrm{~A} \cap \mathrm{~B}$.
Now we prove that, $\quad \mathrm{U}_{1}\left(\mu_{1} ; \alpha\right)=\left\{\mathrm{x} \in \mathrm{X}: \mu_{1}(\mathrm{x}) \geq \alpha\right\}=\mathrm{A}$

$$
\text { and } \quad U_{2}\left(\mu_{2} ; \alpha\right)=\left\{x \in X: \mu_{2}(x) \geq \alpha\right\}=B
$$

We see that, $\mathrm{x} \in \mathrm{A}, 1 \in \mathrm{~B} \Leftrightarrow(\mathrm{x}, 1) \in \mathrm{U}(\mu ; \alpha) \Leftrightarrow \mu(\mathrm{x}, 1) \geq \alpha \Leftrightarrow \mu_{1}(\mathrm{x}) \geq \alpha \Leftrightarrow \mathrm{x} \in \mathrm{U}_{1}\left(\mu_{1} ; \alpha\right) \quad$ Hence $\mathrm{A}=$ $\mathrm{U}_{1}\left(\mu_{1} ; \alpha\right)$. Similarly we can prove that $B=\mathrm{U}_{2}\left(\mu_{2} ; \alpha\right)$.

Thus we see that $U_{1}\left(\mu_{1} ; \alpha\right)$ and $U_{2}\left(\mu_{2} ; \alpha\right)$ are ideals in X for every $\alpha \in[0,1]$. Hence μ_{1} and μ_{2} are fuzzy ideals in X .

Conversely, suppose that μ_{1} and μ_{2} are fuzzy ideals in X. Then,
$\mathrm{U}_{1}\left(\mu_{1} ; \alpha\right)=\{\mathrm{x} \in$ $\left.\mathrm{X}: \mu_{1}(\mathrm{x}) \geq \alpha\right\}$ and $\mathrm{U}_{2}\left(\mu_{2} ; \alpha\right)=\left\{\mathrm{x} \in \mathrm{X}: \mu_{2}(\mathrm{x}) \geq \alpha\right\}$ are ideals in X for every $\alpha \in[0,1]$.

So $1 \in \mathrm{U}_{1}\left(\mu_{1} ; \alpha\right) \cap \mathrm{U}_{2}\left(\mu_{2} ; \alpha\right)$ which means that $\mu(1,1) \geq \alpha$ [def.(3.5)]

$$
\text { Now } U(\mu ; \alpha)=\{(x, y) \in Y: \mu(x, y) \geq \alpha\}=A \times B(\text { Say }) \text { contains }(1,1) .
$$

We see that, $\mathrm{x} \in \mathrm{U}_{1}\left(\mu_{1} ; \alpha\right) \Leftrightarrow \mu_{1}(\mathrm{x}) \geq \alpha \Leftrightarrow \mu(\mathrm{x}, 1) \geq \alpha \Leftrightarrow(\mathrm{x}, 1) \in \mathrm{U}(\mu ; \alpha) \Leftrightarrow \mathrm{x} \in \mathrm{A}, 1 \in \mathrm{~B}$ So we have $A=U_{1}\left(\mu_{1} ; \alpha\right)$. Similarly we see that $B=U_{2}\left(\mu_{2} ; \alpha\right)$.

Thus $\mathrm{A} \times \mathrm{B}=\mathrm{U}(\mu ; \alpha)$ is an ideal in Y for every $\alpha \in[0,1]$ [theorem (2.7)] Hence μ is a fuzzy ideal of Y.

Now we discuss fuzzy ideal for function algebra. For this we have to prove following results.
Theorem (3.7)- Let $(X ; *, 1)$ be a CI-algebra and let $F(X)$ be the class of all functions $f: X \rightarrow X$. Let a binary operation " o " be defined in $\mathrm{F}(\mathrm{X})$ as follows:

For $\mathrm{f}, \mathrm{g} \in \mathrm{F}(\mathrm{X})$ and $\mathrm{x} \in \mathrm{X}$,

$$
(\mathrm{fog})(\mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{~g}(\mathrm{x}) .
$$

Then $\left(\mathrm{F}(\mathrm{X}) ; \mathrm{o}, 1^{\sim}\right)$ is a $\mathrm{CI}-$ algebra where 1^{\sim} is defined as $1^{\sim}(\mathrm{x})=1$ for all $\mathrm{x} \in \mathrm{X}$.
Here two functions $f, g \in F(X)$ are equal iff $f(x)=g(x)$ for all $x \in X$.
Proof : Let $f, g, h \in F(X)$. Then for $x \in X$, we have

$$
\begin{aligned}
& \text { (i) (fof) }(\mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{x})=1=1^{\sim}(\mathrm{x}) \Rightarrow \mathrm{f} \text { of }=1^{\sim} \text {, } \\
& \text { (ii) } \quad\left(1^{\sim} \circ \mathrm{f}\right)(\mathrm{x})=1^{\sim}(\mathrm{x}) \circ \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \Rightarrow 1^{\sim} \circ \mathrm{f}=\mathrm{f} \text {, } \\
& \text { (iii) } \quad(\mathrm{fo}(\mathrm{~g} \circ \mathrm{~h}))(\mathrm{x})=\mathrm{f}(\mathrm{x}) *(\mathrm{goh})(\mathrm{x}) \\
& =\mathrm{f}(\mathrm{x}) *(\mathrm{~g}(\mathrm{x}) * \mathrm{~h}(\mathrm{x})) \\
& =\mathrm{g}(\mathrm{x}) *(\mathrm{f}(\mathrm{x}) * \mathrm{~h}(\mathrm{x})) \\
& =\mathrm{g}(\mathrm{x}) *(\mathrm{foh})(\mathrm{x}) \\
& =(\mathrm{g} o(\mathrm{f} \circ \mathrm{~h}))(\mathrm{x}) \text {. } \\
& \Rightarrow \mathrm{fo}(\mathrm{goh})=\mathrm{go} \text { (foh). }
\end{aligned}
$$

This proves that $\left(\mathrm{F}(\mathrm{X}) ; \mathrm{o}, 1^{\sim}\right)$ is a CI-algebra.
Theorem (3.8):- Let $\left(\mathrm{X} ;{ }^{*}, 1\right)$ be a $\mathrm{CI}-$ algebra and let $\left(\mathrm{F}(\mathrm{X}) ; 0,1^{\sim}\right)$ be $\mathrm{CI}-$ algebra considered in the above theorem. Then

I is an ideal of $X \Leftrightarrow F(I)$ is an ideal of $F(X)$.
Proof : Let I be an ideal of X. For $f \in F(X)$ and $g \in F(I)$ we have $f(x) \in X$ and $g(x) \in I$ for all $x \in X$.
So $(\mathrm{f}$ o g$)(\mathrm{x})=\mathrm{f}(\mathrm{x}) * \mathrm{~g}(\mathrm{x}) \in \mathrm{I}$ for all $\mathrm{x} \in \mathrm{X}$.
This gives fog $g \in(I)$.
Again for $\mathrm{g}, \mathrm{h} \in \mathrm{F}(\mathrm{I}), \mathrm{f} \in \mathrm{F}(\mathrm{X})$ and $\mathrm{x} \in \mathrm{X}$, we have
$((\mathrm{g} \circ(\mathrm{h} \circ \mathrm{f})) \circ \mathrm{f})(\mathrm{x})=(\mathrm{g} \circ(\mathrm{h} \circ \mathrm{f}))(\mathrm{x}) * \mathrm{f}(\mathrm{x})$,

$$
=(\mathrm{g}(\mathrm{x}) *(\mathrm{~h}(\mathrm{x}) * \mathrm{f}(\mathrm{x}))) * \mathrm{f}(\mathrm{x}) \in \mathrm{I}
$$

So (g o (hof)) of $\in \mathcal{F}(I)$.
Hence $F(I)$ is an ideal in $F(X)$.
Conversely, suppose that $F(I)$ is an ideal of $F(X)$. Then
$\mathrm{f} \in \mathrm{F}(\mathrm{X})$ and $\mathrm{g} \in \mathrm{F}(\mathrm{I}) \Rightarrow \mathrm{f}$ og $\mathrm{g} \in \mathrm{F}(\mathrm{I})$

$$
\begin{gather*}
\Rightarrow(\mathrm{f} \circ \mathrm{~g})(\mathrm{t}) \in \mathrm{I} \text { for all } \mathrm{t} \in \mathrm{X} \\
\Rightarrow \mathrm{f}(\mathrm{t})^{*} \mathrm{~g}(\mathrm{t}) \in \mathrm{I} \text { for all } \mathrm{t} \in \mathrm{X} . \tag{3.1}
\end{gather*}
$$

Also $\mathrm{f} \in \mathrm{F}(\mathrm{X})$ and $\mathrm{g}, \mathrm{h} \in \mathrm{F}(\mathrm{I})$

$$
\begin{align*}
& \Rightarrow(\mathrm{g} \circ(\mathrm{hof})) \circ \mathrm{f} \in \mathrm{~F}(\mathrm{I}) \\
& \Rightarrow((\mathrm{g} \circ(\mathrm{hof})) \text { of })(\mathrm{t}) \in \mathrm{I} \text { for all } \mathrm{t} \in \mathrm{X} \\
& \Rightarrow(\mathrm{~g}(\mathrm{t}) *(\mathrm{~h}(\mathrm{t})) * \mathrm{f}(\mathrm{t})) * \mathrm{f}(\mathrm{t}) \in \mathrm{I} \text { for all } \mathrm{t} \in \mathrm{X} \tag{3.2}
\end{align*}
$$

Let $x \in X$ and $a \in I$, We consider function f_{x} and f_{a} defined as $f_{x}(t)=x$ and $f_{a}(t)=a$ for all $t \in X$.

Now $f_{x} \in F(X)$ and $f_{a} \in F(I)$. So f_{x} o $f_{a} \in F(I)$.
This implies that $\left(f_{x} o f_{a}\right)(t)=f_{x}(t) * f_{a}(t)=x * a \in I$ for all $t \in X \quad[$ from (3.1)].
Again let $a, b \in I$ and $x \in X$. We consider functions f_{a}, f_{b} and f_{x} as defined by (3.3).
Then $f_{a}, f_{b} \in F(I)$ and $f_{x} \in F(X)$.
$\operatorname{So}\left(f_{a} o\left(f_{b} \circ f_{x}\right)\right)$ of $f_{x} \in F(I)$.
This gives $\left(\left(\mathrm{f}_{\mathrm{a}} \mathrm{o}\left(\mathrm{f}_{\mathrm{b}} \circ \mathrm{f}_{\mathrm{x}}\right)\right)\right.$ of $\left.\mathrm{f}_{\mathrm{x}}\right)(\mathrm{t})=(\mathrm{a} *(\mathrm{~b} * \mathrm{x})) * \mathrm{x} \in \mathrm{I}$. for all $\mathrm{t} \in \mathrm{X}, \quad[$ from (3.2)].
Hence I is an ideal of X .
Definition (3.9):- Let μ be a fuzzy set defined on a finite $\mathrm{CI}-\operatorname{algebra}(\mathrm{X} ; *, 1)$. Let ($\mathrm{F}(\mathrm{X})$; o , 1^{\sim}) be the $\mathrm{CI}-$ algebra considered in the theorem (3.7). We extend $\bar{\mu}$ on $\mathrm{F}(\mathrm{X})$ as

$$
\bar{\mu}(\mathrm{f})=\min \{\mu(\mathrm{f}(\mathrm{x})): \mathrm{x} \in \mathrm{X}\} .
$$

We prove the following result.
Lemma(3.10):- If $\mu(\mathrm{x}) \leq \mu(1)$ for all $\mathrm{x} \in \mathrm{X}$ then $\bar{\mu}(\mathrm{f}) \leq \bar{\mu}\left(1^{\sim}\right)$ for all $\mathrm{f} \in \mathrm{F}(\mathrm{X})$.

Proof :- First of all we observe that $\bar{\mu}\left(1^{\sim}\right)=\mu(1)$
Since $\bar{\mu}\left(1^{\sim}\right)=\min \left\{\mu\left(1^{\sim}(x)\right): x \in X\right\}$

$$
=\mu(1)
$$

$\operatorname{Now} \bar{\mu}(\mathrm{f})=\min \{\mu(\mathrm{f}(\mathrm{x})): \mathrm{x} \in \mathrm{X}\}$

$$
\begin{aligned}
& \leq \mu(1), \text { since } \mu(\mathrm{f}(\mathrm{x})) \leq \mu(1) \text { for all } \mathrm{x} \in \mathrm{X} \\
& =\bar{\mu}\left(1^{\sim}\right) .
\end{aligned}
$$

$\operatorname{Lemma}(3.11)$:- $\mathrm{F}(\mathrm{U}(\mu ; \alpha))=\mathrm{U}(\bar{\mu} ; \alpha)$ for every $\alpha \in[0,1]$.
Proof :- First of all we observe that for any $\alpha \in[0,1]$,
$\mathrm{U}(\bar{\mu} ; \alpha) \neq \phi \Leftrightarrow \mathrm{U}(\mu ; \alpha) \neq \phi$
Let $\mathrm{U}(\bar{\mu} ; \alpha) \neq \phi$ and $\mathrm{f} \in \mathrm{U}(\bar{\mu} ; \alpha)$
Then $\bar{\mu}(\mathrm{f}) \geq \alpha$. So $\min \{\mu(\mathrm{f}(\mathrm{x}): \mathrm{x} \in \mathrm{X}\} \geq \alpha$.
This implies that $\mu(\mathrm{f}(\mathrm{x})) \geq \alpha$ for some $\mathrm{x} \in \mathrm{X}$,
i.e., $f(x) \in U(\mu: \alpha)$, and so $U(\mu ; \alpha) \neq \phi$.

Again let $\mathrm{U}(\mu ; \alpha) \neq \phi$ and $\mathrm{a} \in \mathrm{U}(\mu ; \alpha)$.
Then $\mu(a) \geq \alpha$. If we choose $f_{a} \in F(X)$ such that $f_{a}(x)=a$ for all $x \in X$. Then $\bar{\mu}\left(f_{a}\right)=\min \left\{\mu\left(f_{a}(x)\right): x \in X\right\}$ $=\mu(\mathrm{a}) \geq \alpha$, i. e, $\quad \mathrm{f}_{\mathrm{a}} \in \mathrm{U}(\bar{\mu} ; \alpha)$ and so $\mathrm{U}(\bar{\mu} ; \alpha) \neq \phi$.

Now we see that , $\mathrm{f} \in \mathrm{F}(\mathrm{U}(\mu ; \alpha)) \Leftrightarrow \mathrm{f}(\mathrm{x}) \in \mathrm{U}(\mu ; \alpha)$ for all $\mathrm{x} \in \mathrm{X}$

$$
\begin{aligned}
& \Leftrightarrow \mu(\mathrm{f}(\mathrm{x})) \geq \alpha \text { for all } \mathrm{x} \in \mathrm{X} \\
& \Leftrightarrow \min \{\mu(\mathrm{f}(\mathrm{x})): \mathrm{x} \in \mathrm{X}\} \geq \alpha \Leftrightarrow \bar{\mu}(\mathrm{f}) \geq \alpha \Leftrightarrow \mathrm{f} \in \mathrm{U}(\bar{\mu}: \alpha)
\end{aligned}
$$

This gives $\mathrm{U}(\bar{\mu} ; \alpha)=\mathrm{F}(\mathrm{U}(\mu ; \alpha))$.
Corollary (3.12) :- If $\mathrm{U}(\mu ; \alpha)$ is an ideal in X then $\mathrm{U}(\bar{\mu} ; \alpha)$ is an ideal in $\mathrm{F}(\mathrm{X})$.
Proof :- This follows from above lemma and theorem (3.8).
Theorem (3.13):- If μ is a fuzzy ideal of X then so is $\bar{\mu}$ on $F(X)$.

Proof :- Let μ be a fuzzy ideal of X . Then for every $\alpha \in[0,1]$
$\mathrm{U}(\mu ; \alpha) \neq \phi \Rightarrow \mathrm{U}(\mu ; \alpha)$ is an ideal.in X
So $\mathrm{F}(\mathrm{U}(\mu ; \alpha))$ is an ideal in $\mathrm{F}(\mathrm{X})$ by theorem (3.8).
Now if $\alpha \in[0,1]$ and $\mathrm{U}(\bar{\mu} ; \alpha) \neq \phi$ then from discussion given in lemma (3.11) we see that, $\mathrm{U}(\bar{\mu} ; \alpha)=\mathrm{F}(\mathrm{U}(\mu$; $\alpha)$) and so $\mathrm{U}(\bar{\mu} ; \alpha)$ is an ideal in $\mathrm{F}(\mathrm{X})$.

This proves that $\bar{\mu}$ is a fuzzy ideal in $\mathrm{F}(\mathrm{X})$.

References

[1] Hu Q.P.,Li X, "On BCH-algebras",Math.Seminer Notes 11 (1983). p.313-320
[2] Imai Y.,Iseki k.,"On axiom systems of propositional calculi XIV",Proc.Japan.Academy 42 (1966),p.19-22
[3] Iseki k.,"An algebra related with a propositional calculus",Proc.Japan Acad.42(1966),p. 26-29
[4] Jun Y.B.,Roh E.H.,Kim H.S.,"'On BH-algebras",Sci.Math. 1 (1998),p.347-354
[5] Kim H.S.,Kim Y.H.,"On BE-algebras",Sci.Math.Japonicae 66 (2007),p.113-116
[6] Kim H.K.,"A Note On CI-algebras" Int. Mathematical Forum,Vol. 6.2011,no.1.p.1-5
[7] Meng B.L.,"CI-algebras",Sci.Math.japonicae,e-2009 p. 695-701
[8] Negger J.,Kim H.S., "On d-algebras",Math.Slovaca 40 (1999) p.19-26
[9] Pathak, K., Sabhapandit, P. and Chetia, B. C.," Cartesian product of BE/CI - algebras with Essences and Atoms", Acta, Ciencia Indica, Vol XLM (3) (2014), p. 271-279.
[10] Samy M. Mostafa, Mokthar A. Abdel Naby ,Osama R.Elgendy,"Fuzzy Ideals in CI-algebras", Journal of American Science
7(8),(2011),p.485-488
[11] Sabhapandit, P.,Chetia, B.C.," Anti fuzzy ideals in CI-algebras", Int. J. of Math. Trends and Tech., vol. 30, no-2 (2016) pp. 95-99

