CI-algebras and its Fuzzy Ideals

Pulak Sabhapandit¹, Biman Ch. Chetia²

¹Department of Mathematics, Biswanath college, Biswanath Charial, Assam, India

²Principal, North Lakhimpur College, North Lakhimpur, Assam, India

ABSTRACT

In this paper we develop the idea of fuzzy ideals in cartesian product of CI-algebras and obtain some new results. Finally we investigate how to extend a given fuzzy ideal of a CI-algebra to that of another CI-algebra.

Keywords: CI-algebra, Ideals, Fuzzy ideal

Mathematics Subject Classification: 06F35, 03G25, 08A30

1. INTRODUCTION

In 1966,Y.Imai and K.Iseki [2] introduced the notion of a BCK-algebra. There exist several generalizations of BCK-algebras, such as BCI-algebras [3],BCH-algebras [1],BH-algebras [4],d-algebras [8],etc. In [5],H.S.Kim and Y.H.kim introduced the notion of a BE-algebra as a dualization of a generalization of a BCK-algebra.As a generalization of Be-algebras,B.L.Meng [7] introduced the notion of CI-algebras and discussed its important properties. The concept of fuzzification of ideals in CI-algebra have introduced by Samy M. Mostafa, Mokthar A. Abdel Naby ,Osama R.Elgendy [10]. In this paper we develop the idea of fuzzy ideals in cartesian product of CI-algebras and obtain some new results. BY establishing that if X is a CI-algebra then F(X), the class of all functions f : $X \rightarrow X$ is also a CI-algebra, we extend a given fuzzy ideal of x to that of F(X).

2. PRELIMINARIES

Definition 2.1. ([7])- A system (X; *, 1) consisting of a non –empty set X, a binary operation * and a fixed element 1, is called a CI – algebra if the following conditions are satisfied :

1.	(CI 1) $x * x = 1$
2.	(CI 2) $1 * x = x$
3.	(CI 3) $x * (y *z) = y * (x * z)$

for all x, y , $z \in X$

Example 2.2. Let $X = R^+ = \{x \in R : x > o\}$

For x , $y \in X,$ we define

$$x * y = y \cdot \frac{1}{x}$$

Then (X; *, 1) is a CI – algebra

Definition 2.3.([7]) A non – empty subset I of a CI – algebra X is called an ideal of X if

 $\begin{array}{ll} (1) & x\in X \text{ and } a\in I \Rightarrow x \ * a\in I \ ; \\ (2) & x\in X \text{ and } a \ , b\in I \Rightarrow (a*(b*x)) \ * x\in I \ . \end{array}$

Lemma 2.4. ([7]) In a CI – algebra following results are true:

(1) x * ((x * y) * y) = 1

(2)
$$(x * y) * 1 = (x * 1) * (y * 1)$$

(3) $1 \le x$ imply $x = 1$

for all $x, y \in X$.

Lemma 2.5. ([6]) - (i) Every ideal I of X contains 1

(ii) If I is an ideal of X then $(a * x) * x \in I$ for all $a \in I$ and $x \in X$

(iii) If I_1 and I_2 are ideals of X then so is $I_1 \cap I_2$.

Theorem 2.6. ([9])- Let (X; *, 1) be a system consisting of a non-empty set X, a binary operation * and a fixed element 1. Let $Y = X \times X$. For $u = (x_1, x_2)$, $v = (y_1, y_2)$ a binary operation " \odot " is defined in Y as

$$\mathcal{U} \odot \mathcal{V} = (\mathbf{x}_1 * \mathbf{y}_1, \mathbf{x}_2 * \mathbf{y}_2)$$

Then $(Y; \bigcirc, (1, 1))$ is a CI-algebra iff (X; *, 1) is a CI-algebra.

Theorem 2.7.([9])- Let A and B be subsets of a CI – algebra X. Then A x B is an ideal of $Y = X \otimes X$ iff A and B are ideals of X.

3. FUZZY IDEALS .

Definition (3.1.) ([10]) - Let (X; *, 1) be a CI – algebra and let μ be a fuzzy set in X. Then μ is called a fuzzy ideal of X if it satisfies the following conditions:

(1) $(\forall x, y \in X) (\mu(x * y) \ge \mu(y)),$

(2) $(\forall x, y, z \in X) (\mu((x * (y * z)) * z) \ge \min \{\mu(x), \mu(y)\})$

Theorem (3.2.) ([10]) - Let μ be a fuzzy set in a CI – algebra (X; *, 1). and let

 $U(\mu; \alpha) = \{x \in X: \mu(x) \ge \alpha\}$ where $\alpha \in [0, 1]$.

Then μ is a fuzzy ideal of X iff $(\forall \alpha \in [0, 1]) (U(\mu; \alpha) \neq \phi \Rightarrow U(\mu; \alpha)$ is an ideal of X).

Proposition (3.3) ([10]) - Let μ be a fuzzy ideal of a CI – algebra (X; *, 1). Then

(a) $\mu(1) \ge \mu(x)$ for all $x \in X$;

(b) $\mu((x * y) * y) \ge \mu(x)$ for all $x, y \in X$;

(c) x, y \in X and
$$x \le y \Longrightarrow \mu(x) \le \mu(y)$$
,

i. e., a fuzzy ideal μ is order preserving.

Now we establish some results for fuzzy ideals on Cartesian product of CI- algebras.

Theorem (3.4) - Let μ be a fuzzy set on a CI – algebra X and let $Y = X \times X$. Let μ_1 , μ_2 , μ_3 be fuzzy sets on Y defined as

$$\mu_1(x, y) = \mu(x)$$

 $\mu_2(x, y) = \mu(y)$

 $\mu_3(x, y) = \min\{\mu(x), \mu(y)\}$

Then, (a) μ_1 is a fuzzy ideal of Y iff μ is a fuzzy ideal of X;

(b) μ_2 is a fuzzy ideal of Y iff μ is a fuzzy ideal of X;

(c) μ_3 is a fuzzy ideal of Y iff μ is a fuzzy ideal of X.

Proof :- For any real $\alpha \in [0, 1]$, let

$$\begin{split} U(\mu\,;\,\alpha) &= \{x \in X: \ \mu(x) \ge \alpha\}; \\ U_1(\mu_1\,;\,\alpha) &= \{(x,\,y) \in Y: \mu_1(x\,,\,y) = \ \mu(x) \ge \alpha\}; \\ U_2(\mu_2\,;\,\alpha) &= \{(x,\,y) \in Y: \mu_2(x\,,\,y) = \ \mu(y) \ge \alpha\}; \end{split}$$
 and $U_3(\mu_3\,;\,\alpha) &= \{(x,\,y) \in Y: \mu_3(x\,,\,y) \) \ge \alpha\}; \end{split}$

Then we see that $U_1(\mu_1; \alpha) = U(\mu; \alpha) \times X$

$$U_2(\mu_2; \alpha) = X \times U(\mu; \alpha)$$

$$U_3(\mu_3; \alpha) = U(\mu; \alpha) \times U(\mu; \alpha)$$

Now using theorem (2.7) we see that

(i)	$U_1(\mu_1; \alpha)$ is	s an ideal in	Y iff	$U(\mu; \alpha)$ is	an ideal in X
(ii)	$U_2(\mu_2; \alpha)$ is	s an ideal in	Y iff	$U(\mu \alpha)$ is	an ideal in X
(iii)	$U_3(\mu_3; \alpha)$ is	s an ideal in	Y iff	$U(\mu; \alpha)$ is	an ideal in X.

for all real $\alpha \in [0, 1]$.

Using theorem (3.2) we get the result.

Definition (3.5):- Let μ be a fuzzy set in $Y = X \times X$. Let μ_1 and μ_2 be fuzzy sets defined in X as

$$\mu_1(\mathbf{x}) = \mu(\mathbf{x}, 1)$$

and
$$\mu_2(x, y) = \mu(1, x)$$

Theorem (3.6): μ is a fuzzy ideal of Y iff μ_1 and μ_2 are fuzzy ideals of X.

Proof :- Let μ be a fuzzy ideal of Y. Then

$$U(\mu; \alpha) = \{(x, y) \in Y : \mu(x, y) \ge \alpha\} = A \times B \text{ (say)}$$

is an ideal in Y. This means that A and B are ideal in X [theorem (2.7)]. So $1 \in A \cap B$.

Now we prove that, $U_1(\mu_1; \alpha) = \{x \in X : \mu_1(x) \ge \alpha\} = A$

and $U_2(\mu_2; \alpha) = \{x \in X : \mu_2(x) \ge \alpha\} = B.$

We see that , $x \in A$, $1 \in B \Leftrightarrow (x, 1) \in U(\mu; \alpha) \Leftrightarrow \mu(x, 1) \ge \alpha \Leftrightarrow \mu_1(x) \ge \alpha \Leftrightarrow x \in U_1(\mu_1; \alpha)$ Hence $A = U_1(\mu_1; \alpha)$. Similarly we can prove that $B = U_2(\mu_2; \alpha)$.

Thus we see that $U_1(\mu_1; \alpha)$ and $U_2(\mu_2; \alpha)$ are ideals in X for every $\alpha \in [0, 1]$. Hence μ_1 and μ_2 are fuzzy ideals in X.

 $\begin{array}{ll} & \text{Conversely, suppose that } \mu_1 \text{ and } \mu_2 \text{ are fuzzy ideals } \text{ in } X \text{ . Then,} & U_1(\mu_1 \text{ ; } \alpha) = \{x \in X : \mu_1(x) \geq \alpha\} \text{ and } U_2(\mu_2 \text{ ; } \alpha) = \{x \in X : \mu_2(x) \geq \alpha\} \text{ are ideals in } X \text{ for every } \alpha \in [0, 1]. \end{array}$

So $1 \in U_1(\mu_1; \alpha) \cap U_2(\mu_2; \alpha)$ which means that $\mu(1, 1) \ge \alpha$ [def.(3.5)]

Now $U(\mu; \alpha) = \{(x, y) \in Y : \mu (x, y) \ge \alpha\} = A \times B$ (Say) contains (1, 1).

We see that, $x \in U_1(\mu_1; \alpha) \Leftrightarrow \mu_1(x) \ge \alpha \Leftrightarrow \mu(x, 1) \ge \alpha \Leftrightarrow (x, 1) \in U(\mu; \alpha) \Leftrightarrow x \in A, 1 \in B$ So we have $A = U_1(\mu_1; \alpha)$. Similarly we see that $B = U_2(\mu_2; \alpha)$.

Thus A x B = U(μ ; α) is an ideal in Y for every $\alpha \in [0, 1]$ [theorem (2.7)] Hence μ is a fuzzy ideal of Y.

Now we discuss fuzzy ideal for function algebra. For this we have to prove following results.

Theorem (3.7)- Let (X; *, 1) be a CI – algebra and let F(X) be the class of all functions $f: X \to X$. Let a binary operation "o" be defined in F(X) as follows:

For f, g \in F(X) and x \in X, (f o g)(x) = f(x) * g(x).

Then $(F(X); o, 1^{\sim})$ is a CI – algebra where 1^{\sim} is defined as $1^{\sim}(x) = 1$ for all $x \in X$.

Here two functions f, $g \in F(X)$ are equal iff f(x) = g(x) for all $x \in X$.

Proof : Let f, g, $h \in F(X)$. Then for $x \in X$, we have

- (i) $(f \circ f)(x) = f(x) * f(x) = 1 = 1^{(x)} \Rightarrow f \circ f = 1^{(x)},$
- (ii) $(1 \circ f)(x) = 1 \circ (x) \circ f(x) = f(x) \Rightarrow 1 \circ f = f,$
- (iii) $(f \circ (g \circ h))(x) = f(x) * (g \circ h)(x)$

= f(x) * (g(x) * h(x))= g(x) * (f(x) * h(x)) = g(x) * (f o h)(x) = (g o (f o h))(x).

$$\Rightarrow f \circ (g \circ h) = g \circ (f \circ h).$$

This proves that $(F(X); o, 1^{\sim})$ is a CI – algebra.

Theorem (3.8):- Let (X; *, 1) be a CI – algebra and let $(F(X); o, 1^{\sim})$ be CI – algebra considered in the above theorem. Then

I is an ideal of $X \Leftrightarrow F(I)$ is an ideal of F(X).

Proof : Let I be an ideal of X. For $f \in F(X)$ and $g \in F(I)$ we have $f(x) \in X$ and $g(x) \in I$ for all $x \in X$.

So $(f \circ g)(x) = f(x) * g(x) \in I$ for all $x \in X$.

This gives f o $g \in F(I)$.

Again for g, $h \in F(I)$, $f \in F(X)$ and $x \in X$, we have

 $((g \circ (h \circ f)) \circ f)(x) = (g \circ (h \circ f))(x) * f(x),$

$$= (g(x) * (h(x) * f(x))) * f(x) \in I.$$

So $(g \circ (h \circ f)) \circ f \in F(I)$.

Hence F(I) is an ideal in F(X).

Conversely, suppose that F(I) is an ideal of F(X). Then

 $f \in F(X)$ and $g \in F(I) \Rightarrow f \circ g \in F(I)$

 $\Rightarrow (f \circ g)(t) \in I \text{ for all } t \in X$ $\Rightarrow f(t) * g(t) \in I \text{ for all } t \in X. \tag{3.1}$

Also $f \in F(X)$ and $g, h \in F(I)$

$$\Rightarrow (g \circ (h \circ f)) \circ f \in F(I)$$

$$\Rightarrow ((g \circ (h \circ f)) \circ f) (t) \in I \text{ for all } t \in X,$$

$$\Rightarrow (g(t) * (h(t)) * f(t)) * f(t) \in I \text{ for all } t \in X.$$
(3.2)

 $\mbox{Let } x \in X \mbox{ and } a \in I \mbox{ , We consider function } f_x \mbox{ and } f_a \mbox{ defined as } f_x(t) = x \mbox{ and } f_a(t) = a \mbox{ for all } t \in X. \eqno(3.3)$

Now $f_x \in F(X)$ and $f_a \in F(I)$. So $f_x \circ f_a \in F(I)$.

This implies that $(f_x \circ f_a)(t) = f_x(t) * f_a(t) = x * a \in I$ for all $t \in X$ [from (3.1)].

Again let $a, b \in I$ and $x \in X$. We consider functions f_a , f_b and f_x as defined by (3.3).

Then f_a , $f_b \in F(I)$ and $f_x \in F(X)$.

So $(f_a \circ (f_b \circ f_x)) \circ f_x \in F(I)$.

This gives $((f_a \circ (f_b \circ f_x)) \circ f_x)(t) = (a * (b * x)) * x \in I$. for all $t \in X$, [from (3.2)].

Hence I is an ideal of X.

Definition (3.9):- Let μ be a fuzzy set defined on a finite CI – algebra (X; *, 1). Let $(F(X); o, 1^{\sim})$ be the CI – algebra considered in the theorem (3.7). We extend $\overline{\mu}$ on F (X) as

 $\overline{\mu}(f) = \min\{\mu(f(x)) : x \in X\}.$

We prove the following result.

Lemma(3.10) :- If $\mu(x) \le \mu(1)$ for all $x \in X$ then $\overline{\mu}(f) \le \overline{\mu}(1^{\sim})$ for all $f \in F(X)$.

Proof :- First of all we observe that $\overline{\mu}(1) = \mu(1)$

Since $\overline{\mu}(1^{\sim}) = \min\{\mu(1^{\sim}(x)) : x \in X\}$

 $= \mu(1).$

Now $\overline{\mu}(f) = \min\{\mu(f(x)) : x \in X\}$

 $\leq \mu(1)$, since $\mu(f(x)) \leq \mu(1)$ for all $x \in X$

$$=\overline{\mu}(1^{\sim}).$$

Lemma(3.11) :- $F(U(\mu; \alpha)) = U(\overline{\mu}; \alpha)$ for every $\alpha \in [0, 1]$.

Proof :- First of all we observe that for any $\alpha \in [0, 1]$,

$$U(\overline{\mu}; \alpha) \neq \phi \Leftrightarrow U(\mu; \alpha) \neq \phi$$

Let $U(\overline{\mu}; \alpha) \neq \phi$ and $f \in U(\overline{\mu}; \alpha)$

Then $\overline{\mu}(f) \ge \alpha$. So $\min\{\mu(f(x) : x \in X\} \ge \alpha$.

This implies that $\mu(f(x)) \ge \alpha$ for some $x \in X$,

i.e., $f(x) \in U(\mu : \alpha)$, and so $U(\mu ; \alpha) \neq \phi$.

Again let $U(\mu; \alpha) \neq \phi$ and $a \in U(\mu; \alpha)$.

Then $\mu(a) \ge \alpha$. If we choose $f_a \in F(X)$ such that $f_a(x) = a$ for all $x \in X$. Then $\overline{\mu}(f_a) = \min\{\mu(f_a(x)) : x \in X\} = \mu(a) \ge \alpha$, i. e, $f_a \in U(\overline{\mu}; \alpha)$ and so $U(\overline{\mu}; \alpha) \neq \phi$.

Now we see that , $f \in F(U(\mu; \alpha)) \Leftrightarrow f(x) \in U(\mu; \alpha)$ for all $x \in X$

 $\Leftrightarrow \ \mu(f(x)) \ge \alpha \ \text{ for all } x \in X$

$$\Leftrightarrow \min\{\mu(f(x)) : x \in X\} \ge \alpha \Leftrightarrow \overline{\mu}(f) \ge \alpha \Leftrightarrow f \in U(\overline{\mu} : \alpha)$$

This gives $U(\overline{\mu}; \alpha) = F(U(\mu; \alpha))$.

Corollary (3.12) :- If $U(\mu; \alpha)$ is an ideal in X then $U(\overline{\mu}; \alpha)$ is an ideal in F(X).

Proof :- This follows from above lemma and theorem (3.8).

Theorem (3.13):- If μ is a fuzzy ideal of X then so is $\overline{\mu}$ on F(X).

Proof :- Let μ be a fuzzy ideal of X. Then for every $\alpha \in [0, 1]$

 $U(\mu; \alpha) \neq \phi \implies U(\mu; \alpha)$ is an ideal.in X

So $F(U(\mu; \alpha))$ is an ideal in F(X) by theorem (3.8).

Now if $\alpha \in [0, 1]$ and $U(\overline{\mu}; \alpha) \neq \phi$ then from discussion given in lemma (3.11) we see that, $U(\overline{\mu}; \alpha) = F(U(\mu;$ α)) and so U($\overline{\mu}$; α) is an ideal in F(X).

This proves that $\overline{\mu}$ is a fuzzy ideal in F(X).

References

[1] Hu Q.P.,Li X, "On BCH-algebras", Math.Seminer Notes 11 (1983). p.313-320

[2] Imai Y.,Iseki k.,"On axiom systems of propositional calculi XIV", Proc. Japan. Academy 42 (1966), p.19-22

[3] Iseki k.,"An algebra related with a propositional calculus", Proc. Japan Acad. 42(1966), p. 26-29

[4] Jun Y.B., Roh E.H., Kim H.S., "On BH-algebras", Sci. Math. 1 (1998), p. 347-354

[4] Jun F.D., Kon E.H., Kin H.S., On BFrageoras , Schwadi, 1 (1998), p. 347-354
[5] Kim H.S., Kim Y.H., "On BE-algebras", Sci.Math. Japonicae 66 (2007), p. 113-116
[6] Kim H.K., "A Note On CI-algebras" Int. Mathematical Forum, Vol. 6.2011, no.1. p. 1-5
[7] Meng B.L., "CI-algebras", Sci.Math. japonicae, e-2009 p. 695-701

[8] Negger J., Kim H.S., "On d-algebras", Math. Slovaca 40 (1999) p.19-26

[9] Pathak, K., Sabhapandit, P. and Chetia, B. C.," Cartesian product of BE/CI-algebras with Essences and Atoms", Acta, Ciencia Indica, Vol XLM (3) (2014), p. 271-279.

[10] Samy M. Mostafa, Mokthar A. Abdel Naby Osama R.Elgendy,"Fuzzy Ideals in CI-algebras", Journal of American Science 7(8),(2011),p.485-488

[11] Sabhapandit, P., Chetia, B.C.," Anti fuzzy ideals in CI-algebras", Int. J. of Math. Trends and Tech., vol. 30, no-2 (2016) pp. 95 - 99