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ABSTRACT

In this paper we develop the idea of fuzzy ideals in cartesian product of Cl-algebras and obtain some new results.
Finally we investigate how to extend a given fuzzy ideal of a Cl-algebra to that of another Cl-algebra.
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1. INTRODUCTION

In 1966,Y.Imai and K.Iseki [2] introduced the notion of a BCK-algebra. There exist several generalizations of
BCK-algebras,such as BCl-algebras [3],BCH-algebras [1],BH-algebras [4],d-algebras [8],etc. In [5],H.S.Kim and
Y.H.kim introduced the notion of a BE-algebra as a dualization of a generalization of a BCK-algebra.As a
generalization of Be-algebras,B.L.Meng [7] introduced the notion of Cl-algebras and discussed its important
properties.The concept of fuzzification of ideals in Cl-algebra have introduced by Samy M. Mostafa, Mokthar A.
Abdel Naby ,Osama R.Elgendy [10]. In this paper we develop the idea of fuzzy ideals in cartesian product of Cl-

algebras and obtain some new results. BY establishing that if X is a Cl-algebra then F(X), the class of all functions f
: X = X .is also a Cl-algebra, we extend a given fuzzy ideal of x to that of F(X).

2. PRELIMINARIES

Definition 2.1. ([7])- A system (X; %, 1) consisting of a non —empty set X, a binary operation = and a fixed
element 1, is called a Cl —algebra if the following conditions are satisfied :

1. (CI1) x*x=1
2. (Cl12) 1xx=x
3. (CI13) xx(y*z) = y*(X*2)
forallx,y,ze X
Example 2.2. Let X=R"={x e R: x>0}
For x,y € X, we define
1
X*y=y.-
Then (X; *, 1) is a Cl —algebra
Definition 2.3.([7])A non — empty subset | of a Cl —algebra X is called an ideal of X if

(1) xeXand ael=x *xael;
(2) xeXand a,bel=@x*x(bx*xx) *xxel.

Lemma 2.4. ([7]) Ina Cl —algebra following results are true:

(1) xx((x*xy)*y)=1

ISSN: 2231-5373 http://www.ijmttjournal.org Page 135



http://www.ijmttjournal.org/

International Journal of Mathematics Trends and Technology (IJMTT) — Volume 33 Number 2 - May 2016
(2 (x*y)*x1=(x*1)=*(y=*1)
(3) l<ximply x=1
forall x,y € X.
Lemma 2.5. ([6]) - (i) Every ideal I of X contains 1
(ii) If 1'is an ideal of X then (a * x) *x € | forall a € | and xeX
(iii) If 1y and I, are ideals of X thenso isl, N I,.

Theorem 2.6. ([9])- Let (X; =, 1) be a system consisting of a non-empty set X, a binary operation = and a fixed
element 1. LetY =X x X. For « = (Xy, Xo) , 7 = (Y1, o) abinary operation ‘@ ’is defined in Y as

U Qv = (X% Y1 X * o)
Then (Y; O, (1, 1)) is a Cl-algebra iff (X; *, 1) is a Cl -algebra .

Theorem 2.7.([9])- Let A and B be subsets of a Cl —algebra X . Then Ax B is anideal of Y =X ® X iff A
and B are ideals of X.

3. FUZZY IDEALS .

Definition (3.1.) ([10]) - Let (X; *, 1) be a Cl —algebraand let p be afuzzy set in X. Then p is called a fuzzy
ideal of X if it satisfies the following conditions:

D) (vx,yeX) (ux*y)=uy)),
@) (vx,y,zeX)((x*(y*2)*2) = min {u(x), n(y)})
Theorem (3.2.) ([10]) - Let p be a fuzzy set in a Cl —algebra (X; *, 1). and let
U(p; o) ={x € X: w(x) > a} where o < [0, 1].
Then p is afuzzy ideal of X iff (Vo e[0,1]) (U(k; o) #¢ = U(n; o) is anideal of X).
Proposition (3.3) ([10]) - Let p be a fuzzy ideal of a Cl —algebra (X; *, 1) . Then
(@ w(1)=>wux) forallx e X;
(b) n((x*y)*y)=n(x) for all x,y € X;
(€) x,yeXandx< y= u(x) < py),
i.e., afuzzy ideal pis order preserving .

Now we establish some results for fuzzy ideals on Cartesian product of CI- algebras.

Theorem (3.4) - Let p be afuzzy set ona Cl —algebra X and let Y = X x X. Let i, W, ps be fuzzy sets on'Y
defined as

(X, y) =nrKx)

(X, y) = uy)
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pa(x,y) = min{u(x) , u(y)}
Then, (@) pqis afuzzyideal of Y iff pis afuzzy ideal of X;
(b) po is afuzzyideal of Y iff p is afuzzy ideal of X;
() ps is afuzzyideal of Y iff pis afuzzy ideal of X.
Proof ;- Forany real o € [0, 1], let
U(p;a) ={xeX: wx)= a};
Ui(ia; o) ={(x,y) € Y tu(x, y) = px) = a};
Ua(pz s o) ={(x, y) € Y (X, y) = w(y) = o}
and  Us(ug; a) ={(x,y) € Y i ba(x,y) ) = ao};
Then we see that Uq(py ;o) = U(p; a) X X
Us(pz s o) = XX U(u; )
Us(ps ; o) = U o) x U(p 5 o)
Now using theorem (2.7) we see that
(i) Us(py ; o) is anidealin Y iff U(p; o) is anideal in X
(i) U,(1, ; o) is anidealin Y iff U(p o) is anideal in X
(iii) Us(ps; o) is anidealin Y iff U(p; o) is anideal in X.
for all real o € [0, 1].
Using theorem (3.2) we get the result.
Definition (3.5):- Let pnbeafuzzy set inY =X x X. Let p; and p, be fuzzy sets defined in X as
Ha(X) = p(x, 1)
and po(X, y) = u(1, X)
Theorem (3.6):- pisafuzzy ideal of Y iff u; and p, are fuzzy ideals of X.
Proof :- Let p be afuzzy ideal of Y . Then
Up:o)={(xy) e Y1 p(x,y) > a} =AxB (say)
is anideal inY . This meansthat A and B are ideal in X [theorem (2.7)].So 1 € An B.
Now we prove that, U;(p; o) ={Xe X:mx) > a}=A

and Us(o ;o) ={x € X: wo(x) > a} =B.
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Weseethat, x e A, leBe (x,1)) eU(p;a)e ux D>a e p(X)>ae x e Uy(y ;) o) Hence A=
Uy(y ; o). Similarly we can prove that B = Uy( 1y ; o).

Thus we see that Uy(py ; o) and Ux(u, ; o) are ideals in X for every o € [0, 1]. Hence p; and p, are
fuzzy ideals in X.

Conversely, suppose that p; and p, are fuzzy ideals in X . Then, Ui(u ;o) ={x e
X:(x) = o} and Up(p,; o) ={x € X: wp(x) > o} are ideals in X forevery a € [0, 1].

S0 1 e Uy(pg ;o) NUy(ps; o) which means that u(l, 1) > o [def.(3.5)]

Now U(p; o) ={(X,y) e Y:pn (x,y) > a}=AxB (Say) contains (1, 1) .

We see that, x e Ui(1; o) © w(x) 2a o px ) >ae (x,1) e U(u; o) © x e A 1B
Sowe have A=U; (L ; «). Similarly we see that B = U, (1, ; @).

Thus AxB =U(p; o) is anideal inY forevery o € [0, 1] [theorem (2.7)] Hence p is a
fuzzy ideal of Y.

Now we discuss fuzzy ideal for function algebra. For this we have to prove following results.

Theorem (3.7)- Let (X; *, 1) be a Cl —algebra and let F(X) be the class of all functions f: X — X. Let a binary
operation ‘“ o *’ be defined in F(X) as follows:

For f,g e F(X)and x e X,
(Fog)(x) = f(x) * 9(x).
Then (F(X);0,17) is aCl—algebrawhere 1" is defined as1”(x)=1 for all x € X.
Here two functions f, g e F(X) are equal iff f(x)=g(x) for all xe X.
Proof : Let f, g, h e F(X). Then for x e X, we have
(i) (fof) () =f(x)*f(x) =1=1"(x)=>fof =17,
(ii) (I"of)(x)=1"(x) o f(x) =f(x) > 170 f =1,
(i) (fo(goh) (x) = f(x) *(goh)(x)
=1(x) * (9(x) * h(x))
=9(x) * (F(x) * h(x))
=9g(x) * (Fo h)(x)
=(go (foh)(x).
—fo(goh)=go(foh).
This proves that (F(X); 0,17 is a Cl — algebra,

Theorem (3.8):- Let (X; *, 1) be a Cl—algebra and let (F(X) ;0,1") be CI —algebra considered in the above
theorem. Then
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I is anideal of X < F(I) is anideal of F(X).
Proof : Let | beanideal of X. For f e F(X)and g e F(I) we have f(x) € X and g(x) < | for all x € X.
So (Fog)(x) =f(x) *g(x) € | for all x e X.
This givesfog e F(I).
Again for g, h e F(l), f € F(X)and x € X, we have
(@o(hof)of)x) = (go(hof(x) *f(x),
= (909 * (h(x) * (x))) * f(x) € I.
So(g o(hof))ofeF(l).
Hence F(I) is an ideal in F(X).
Conversely, suppose that F(I) is an ideal of F(X). Then
feF(X) and ge F(l) = f og e F()
= (fog)t) e forallt eX
= f()*g(t) el forallteX. (CRY)
Also f e F(X) and g, h € F(1)
=(go(hof)) of e F(l)
= ((go(hof) of)(t) el forallteX,
= (g(t) * (h(t)) * f(t)) * f(t) | for all t eX. (3.2)

Let x € Xand a € |, We consider function f, and f, defined as f,(t) = x and fy(t) =afor allt € X.
(3.3)

Now fye F(X) and f, € F(l). So o0 f, € F(l).

This implies that (f,o f)(t) = fi(t) *f(t) =x*a e | for all te X [from (3.1)].
Again leta,b €| and x € X.We consider functions f,, f, and f, as defined by (3.3).
Then f,, f, € F(l)and f, € F(X).

So (f, 0 (f, 0 fy)) o fy € F(I).

This gives ((f,o (fbof))of)({t)= (a*(b*x))*x e l.for all te X, [from (3.2)].
Hence | is anideal of X.

Definition (3.9):- Let p be a fuzzy set defined on a finite Cl —algebra (X; *, 1). Let (F(X);o0,1") be the CI -
algebra considered in the theorem (3.7). We extend z on F (X) as
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Zz (f) = min{u(f () : x € X}.
We prove the following result.
Lemma(3.10) :- If w(x) <w(l) for all x e X then z (f) <z (17) for all fe F(X).
Proof :- First of all we observe that 7z (1) = u(1)
Since zz (1) = min{p(17 (X)) : x € X}
= u(2).
Now z (f) = min{u(f(x)) : x € X}
< (1), since u(f(x)) < p(1) for all xe X
=n().
Lemma(3.11) :- F(U(p; ) =U(z; o) forevery o € [o, 1].
Proof :- First of all we observe that for any « € [o, 1],
U@, o) #o = U o) #¢
LetU(;a)=dand fe U(u; o)
Then z (f) > o . So min{p(f(x) : x € X} > a.
This implies that pu(f(x))>a forsome x e X,
i.e, f(X) e U(p:a),andso U(p; o) # .
Again let U(p; o) =dand ae U(p;a).

Then p(a)>a . If we choose f, € F(X) suchthat f,(x) =a for all x e X. Then z (f)) = min{u(f,(x)) : x € X}
= p@>a,ie fe Ulm;o)andso U(u; o) = ¢.

Now we see that , f e F(U(u; a))e f(X)e U(u; o) for all x e X
o wfx)> a for allx e X

o mnf{pf(X): xeX}>ae a(>ae felU(r: o)
This gives U(z; a) = F(U(u; o).
Corollary (3.12) :- If U(y; o) is an ideal in X then U(z; ) is an ideal in F(X).
Proof :- This follows from above lemma and theorem (3.8).
Theorem (3.13):- If pisafuzzy ideal of X thensois z on F(X).

Proof :- Let ube afuzzy ideal of X.Then for every a € [0, 1]
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U(y; o) #d = U(y; ) is an ideal.in X
So F(U(w; &) is an ideal inF (X) by theorem (3.8).

Now if o € [0, 1] and U(z; o) # ¢ then from discussion given in lemma (3.11) we see that, U(z; ) = F(U(u;
o)) and so U(zz; o) is anideal in F(X).

This proves that z is afuzzy ideal in F(X).
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