Difference Speed sequence graph

S. Uma Maheswari ${ }^{1}$, Dr. K. Indirani ${ }^{2}$
1. Department of Mathematics, CMS College of Science \& Commerce, Coimbatore, India
2. Head \& Asso.Professor, Dept. of Maths, Nirmala College for Women, Coimbatore, India

Abstract

A (p.q) graph $G(V, E)$ is said to be a difference speed sequence graceful graph if there exists a bijection $f: V(G) \rightarrow\left\{0,1,2, \ldots q^{2}\right\}$ such that the induced mapping $f: E(G) \rightarrow\left\{\Delta_{i}(x)\right\} / i=1,2,3$, $\ldots n\}$ defined by $f(u v)=|f(u)-f(v)|$ is a bijection. Here $\Delta_{m}(x)=\left(\Delta_{m} x_{k}\right)=\left|\left(x_{k}-x_{k+m}\right)\right|$ and (x) is the Fibonacci sequence . The function f is called a difference speed sequence graceful graph. In this paper we prove that the star $K_{1, n}$, the path graph, the comb graph, bistar B_{m}, crown graph $C_{3} \odot k_{1,2}$, and various types of graph are difference speed sequence graph.

Keywords: graceful labeling, speed sequence labeling, speed sequence graphs

AMS Subject Classification: 05C78, 94C15

1. Introduction

Throughout this paper, by a graph we mean a finite, undirected graph $G(V, E)$ with 'p 'vertices and ' q ' edges. A detailed survey of graph labeling can be found in the dynamic survey of labeling by J.A. Gallian. In this paper we introduce a new labeling called speed sequence labeling. We use the following definitions in the following sections.

Definition: 1.1.A (p.q) graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is said to be a difference speed sequence graceful graph if there exists a bijection $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{0,1,2, \ldots \mathrm{q}^{2}\right\}$ such that the induced mapping $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\left\{\Delta_{\mathrm{i}}(\mathrm{x})\right\} / \mathrm{i}=1,2,3$, $\ldots \mathrm{n}\}$ defined by $\mathrm{f}(\mathrm{uv})=|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})|$ is a bijection. Here $\Delta_{\mathrm{m}}(\mathrm{x})=\left(\Delta_{\mathrm{m}} \mathrm{x}_{\mathrm{k}}\right)=\left|\left(\mathrm{x}_{\mathrm{k}}-\mathrm{x}_{\mathrm{k}+\mathrm{m}}\right)\right| \quad$ and (x) is the Fibonacci sequence. The function f is called a difference speed sequence graceful graph.

Definition: 1.2. A complete bipartite graph $\mathrm{K}_{1, \mathrm{n}}$ is called a star and it has $\mathrm{n}+1$ vertices and n edges.

Definition: 1.3.The bistar graph $\mathrm{B}_{\mathrm{m}, \mathrm{n}}$ is the graph obtained from a copy of star $\mathrm{K}_{1, \mathrm{~m}}$ and a copy of start
$\mathrm{K}_{1, \mathrm{n}}$ by joining the vertices of maximum degree by an edge.

Definition:1.4. A star S_{n} is the complete bipartite graph $\mathrm{K}_{1, \mathrm{n}}$ is a tree with one internal node and n leaves.

Definition: 1.5.The graph obtained by joining a pendent edge at each vertex of a path P_{n} is called a comb and is denoted by $\mathrm{Pn} \odot \mathrm{k}_{1}$ or $\mathrm{P}_{\mathrm{n}}{ }^{+}$

Definition: 1.6.The corona $G_{1} \odot G_{2}$ is defined as the graph obtained by taking one copy of G_{1} to every point in the $i^{\text {th }}$ copy of G_{2}.

Definition: 1.7.The graph $\left(\mathrm{P}_{\mathrm{m}}, \mathrm{S}_{\mathrm{n}}\right)$ is obtained from m copies of the star graph S_{n} and the path Pm: $\left\{u_{1}\right.$, $\left.u_{2}, \ldots u_{m}\right\}$ by joining u_{i} with the centre of the $j^{\text {th }}$ copy of S_{n} by means of an edge $1 \leq j \leq m$.

Definition: 1.8. A subdivision of a graph G is a graph that can be obtained from G by a sequence of edge subdivisions.

Definition: 1.9.An (n, t) kite graph consists of a cycle of length n with a t edge path attached to one vertex.

2. Main Results:

In this paper, we prove that path $\mathrm{Pn}, \mathrm{K}_{1, \mathrm{n}}$, bistar $\mathrm{B}_{\mathrm{m}, \mathrm{n}}$, the graph by subdividing the edges of the star $K_{1, n}$, the generalized crown $C_{3} \odot K_{1, n}$, the comb $\operatorname{Pn} \odot \mathrm{k}_{1}$, the graph $\left(\mathrm{P}_{\mathrm{m},} \mathrm{S}_{\mathrm{n}}\right)$, $(3, \mathrm{t})$ kite graph are the difference speed sequence graphs.

Theorem:2.1

The Path P_{n} is a difference speed sequence graceful for all $n \geq 2$.

Proof:

Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path P_{n}.

Define $\mathrm{f}: V(\mathrm{G}) \rightarrow\left\{0,1,2, \ldots \mathrm{q}^{2}\right\}$ and $\mathrm{E}(\mathrm{G})$ $\rightarrow\left\{\Delta_{i}(x) / \mathrm{i}=1,2,3, \ldots \mathrm{n}\right\}$ and (x) is the fibonacci sequence. Then f induces a bijection $f: E(G)$ $\rightarrow\left\{\Delta_{\mathrm{i}}(\mathrm{x}) / \mathrm{i}=1,2,3, \ldots \mathrm{n}\right\}$

Example:

$$
\Delta_{2}(\mathrm{x})
$$

Figure 1

$$
\Delta_{3}(\mathrm{x})
$$

Figure 2

Theorem: 2.2

Every comb graph $\operatorname{Pn} \odot k_{1}$ is a difference speed sequence graceful graph.

Proof:

Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path P_{n}.
Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ be the vertices adjacent to each vertex of P_{n}.

Define $\mathrm{f}: \mathrm{V}\left(\operatorname{Pn} \odot \mathrm{k}_{1}\right) \rightarrow\left\{\Delta_{\mathrm{i}}(\mathrm{x}) / \mathrm{i}=1,2,3, \ldots \mathrm{n}\right\}$
Then f induces a bijection $\mathrm{f}: \mathrm{E}\left(\operatorname{Pn} \odot \mathrm{k}_{1}\right) \rightarrow\left\{\Delta_{\mathrm{i}}(\mathrm{x}) /\right.$ $\mathrm{i}=1,2,3, \ldots \mathrm{n}\}$

Example:

$$
\Delta_{2}(\mathrm{x})
$$

Figure 3

 $\Delta_{3}(\mathrm{x})$

Figure 4

Theorem :2.3

The star $\mathrm{K}_{1},{ }_{\mathrm{n}}$ is a difference speed sequence graph.

Proof:

Let $\mathrm{V}\left(\mathrm{K}_{1},{ }_{\mathrm{n}}\right)=\left\{\mathrm{u}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}+1\right\}$
$\operatorname{Let} \mathrm{E}\left(\mathrm{K}_{1},{ }_{\mathrm{n}}\right)=\left\{\Delta_{\mathrm{i}}(\mathrm{x}) / \mathrm{i}=1,2,3, \ldots \mathrm{n}\right\}$
Define an injection $\mathrm{f}: \mathrm{V}\left(\mathrm{K}_{1},{ }_{\mathrm{n}}\right) \rightarrow\left\{0,1,2, \ldots .2 \mathrm{q}^{2}\right\}$ by $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\Delta_{\mathrm{i}}(\mathrm{x})$ if $/ 1 \leq \mathrm{i} \leq \mathrm{n}$

Then f induces a bijection $\mathrm{f}: \mathrm{E}\left(\mathrm{K}_{1},{ }_{\mathrm{n}}\right) \rightarrow\left\{\Delta_{\mathrm{i}}(\mathrm{x}) /\right.$ $\mathrm{i}=1,2,3, \ldots \mathrm{n}\}$

Example:

$\Delta_{2}(\mathrm{x})$
Figure 5

$$
\Delta_{3}(\mathrm{x})
$$

Theorem: 2.4

The graph obtained by the subdivision of the edges of the star $K_{1, n}$ is a difference speed sequence graph.

Proof:

Let G be the graph obtained by the subdivision of the edges of the star $K_{1, n}$.

Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}, \mathrm{u}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{vu}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right.$ $/ 1 \leq \mathrm{i} \leq \mathrm{n}\}$

Define an injection $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{0,1,2, \ldots .3 \mathrm{q}^{2}\right\}$ and $\mathrm{E}(\mathrm{G}) \rightarrow\left\{\Delta_{\mathrm{i}}(\mathrm{x}) / \mathrm{i}=1,2,3, \ldots \mathrm{n}\right\}$
and $f(v)=0$.

Then f induces a bijection $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\left\{\Delta_{\mathrm{i}}(\mathrm{x}) / \mathrm{i}=1,2,3\right.$, ...n\}

Therefore the subdivision of the edges of the star $\mathrm{K}_{1, \mathrm{n}}$ is a difference speed sequence graph.

Example:

$\Delta_{2}(\mathrm{x})$

Figure 7

Figure 8

Theorem:2.5

Every bistar $B_{m},{ }_{n}$ is a difference speed sequence graceful.

Proof:

Let $V\left(B_{m},{ }_{n}\right)=\left\{0,1,2, \ldots 2(m+n+1)^{2}\right\}$ and $E\left(B_{m},{ }_{n}\right)$ $\rightarrow\left\{\Delta_{\mathrm{i}}(\mathrm{x}) / \mathrm{i}=1,2,3, \ldots \mathrm{n}\right\}$

Then f induces a bijection $\mathrm{f}: \mathrm{E}\left(\mathrm{B}_{\mathrm{m}},{ }_{\mathrm{n}}\right) \rightarrow\left\{\Delta_{\mathrm{i}}(\mathrm{x}) / \mathrm{i}=1\right.$, $2,3, \ldots n\}$

Case(i) : m > n

Define an injection f: V $\left(\mathrm{B}_{\mathrm{m}}, \quad{ }_{\mathrm{n}}\right) \rightarrow \quad\{$ $\left.0,1,2, \ldots 2(m+n+1)^{2}\right\}$ by
$f\left(u_{i}\right)=|m+n-6 i|$ for $i=1$
$f\left(u_{i}\right)=|m+n-(2 i+1)|$ for $i=2$
$f\left(u_{i}\right)=|m+n-5 i|$ for $i=3$
$f\left(u_{i}\right)=|m+n-4 i|$ for $i=4$
and $f(u)=0 ; f(v)=m+n+1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=|\mathrm{m}+\mathrm{n}-4 \mathrm{i}(\mathrm{m}+\mathrm{n})|$ for $\mathrm{i}=1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=|\mathrm{m}+\mathrm{n}-(5 \mathrm{i} / 2)(\mathrm{m}+\mathrm{n})+1|$ for $\mathrm{i}=2$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=|\mathrm{m}+\mathrm{n}-\mathrm{mn}|$ for $\mathrm{i}=3$

Case(ii) : m < n

Define an injection f: V $\left(\mathrm{B}_{\mathrm{m}},{ }_{\mathrm{n}}\right) \rightarrow\{$ $\left.0,1,2, \ldots 2(\mathrm{~m}+\mathrm{n}+1)^{2}\right\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=|\mathrm{m}+\mathrm{n}-4 \mathrm{i}(\mathrm{m}+\mathrm{n})|$ for $\mathrm{i}=1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=|\mathrm{m}+\mathrm{n}-(5 \mathrm{i} / 2)(\mathrm{m}+\mathrm{n})+1|$ for $\mathrm{i}=2$
$f\left(u_{i}\right)=|m+n-m n|$ for $i=3$
and $f(u)=m+n+1 ; f(v)=0$
$f\left(v_{i}\right)=|m+n-6 i|$ for $i=1$
$f\left(v_{i}\right)=|m+n-(2 i+1)|$ for $i=2$
$f\left(v_{i}\right)=|m+n-5 i|$ for $i=3$
$f\left(v_{i}\right)=|m+n-4 i|$ for $i=4$
Then f induces a bijection $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\left\{\Delta_{\mathrm{i}}(\mathrm{x}) / \mathrm{i}=1,2,3\right.$, ...n\}

Therefore the bistar $B_{m},{ }_{n}$ is a difference speed sequence graph.

Example:

$\Delta_{2}(\mathrm{x})$

Let $\left\{v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ be the vertices of $\mathrm{C}_{3} \odot \mathrm{k}_{1}, 2$

Here $\left\{v_{1}, v_{2}, v_{3}\right\}$ are the vertices of the cycle C_{3} and $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ are the vertices of the copies of $\mathrm{k}_{1,2}$ adjacent to v_{i} for $\mathrm{i}=1,2,3$

The size of the graph is $q=3 n+3$
Define an injection f: V $\left(\mathrm{C}_{3} \odot \mathrm{k}_{1},{ }_{2}\right) \rightarrow\{$ $\left.0,1,2, \ldots(3 n+3)^{2}\right\}$ by $f\left(v_{1}\right)=0, f\left(v_{2}\right)=1, f\left(v_{3}\right)=3$,
and $\mathrm{E}(\mathrm{G}) \rightarrow\left\{\Delta_{\mathrm{i}}(\mathrm{x}) / \mathrm{i}=1,2,3, \ldots \mathrm{n}\right\}$
Then f induces a bijection $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\left\{\Delta_{\mathrm{i}}(\mathrm{x}) / \mathrm{i}=1,2,3\right.$, ...n\}

Therefore the crown graph $\mathrm{C}_{3} \odot \mathrm{k}_{1}, 2$ is a difference speed sequence graph.

Example:

Figure 10

Figure 9

Theorem:2.6

The crown graph $C_{3} \odot k_{1}, 2$ is a difference speed sequence graceful

Proof:

$\Delta_{3}(\mathrm{x})$
Figure 11

Theorem:2.7

The kite graph $(3, t)$ is difference speed graceful for t ≥ 1

Proof:
Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be the vertices of a cycle C_{3} and $\left\{u_{1}\right.$, $\left.u_{2}, \ldots, u_{t}\right\}$ be the t vertices of the tail with v_{1} adjacent to u_{1}.

The size of G is $q=3+t$
Define a bijection $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{0,1,2, \ldots(3+2 \mathrm{t})^{2}\right\}$ for all $t=1 \ldots n$ and
$\mathrm{E}(\mathrm{G}) \rightarrow\left\{\Delta_{\mathrm{i}}(\mathrm{x}) / \mathrm{i}=1,2,3, \ldots \mathrm{n}\right\}$
Therefore f induces a bijection.
Hence $(3, t)$ is a kite difference speed sequence graceful graph.

Example:

$\Delta_{2}(\mathrm{x})$
Figure 12

$\Delta_{3}(\mathrm{x})$
Figure 13

Theorem: 2.8

The graph $P_{m} \odot \mathrm{nk}_{1}(\mathrm{n} \geq 2)$ is a difference speed sequence graceful graph.

Proof:

Let $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be the vertices of the path P_{m} and $\left\{v_{1 j}, v_{2 j}, \ldots, v_{n j}\right\}$ be the $i^{\text {th }}$ copy of the null graph $n K_{1}$.

Then $\left\{\mathrm{v}_{1 \mathrm{j}}, \mathrm{v}_{2 \mathrm{j}}, \ldots, \mathrm{v}_{\mathrm{nj}}\right\}$ are the n pendent vertices adjacent to the vertex u_{j} of P_{m} for $1 \leq j \leq m$.

Define an injection f: $\mathrm{V}\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{nk}_{1}\right) \rightarrow\{$ $\left.0,1,2, \ldots 3(m n+m-1)^{2}\right\}$ and
$\mathrm{E}(\mathrm{G}) \rightarrow\left\{\Delta_{\mathrm{i}}(\mathrm{x}) / \mathrm{i}=1,2,3, \ldots \mathrm{n}\right\}$
Then f induces a bijection $\mathrm{f}: \mathrm{E}\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{nk}_{1}\right) \rightarrow\left\{\Delta_{\mathrm{i}}(\mathrm{x}) /\right.$ $\mathrm{i}=1,2,3, \ldots \mathrm{n}\}$

Therefore $\mathrm{P}_{\mathrm{m}} \odot \mathrm{nk}_{1}$ is a difference speed sequence graceful graph.

Example:

$$
\Delta_{2}(\mathrm{x})
$$

Figure 14

$\Delta_{3}(\mathrm{x})$
Figure 15

Conclusion:

Here we have introduced a new labeling called difference speed sequence labeling. We have also proved it for various types of graphs.

References

[1]. J. A.Bondy and U.S.R. Murty, 1976, Graph Theory with applications, London: Macmillan
[2]. J.A. Gallian, A dynamic survey of graph labeling, Electronic journal of combinatorics, 17(2014), \# DS6(2014).
[3]. R.B.Gnanajothi, Topics in Graph Theory
[4]. S.W.Golomb , How to number a graph in graph theory and computing
[5]. F. Harary, Graph theory (Addison-Wesley, Reading, MA 1969)
[6]. K. Indirani, On "Rate sequence spaces", thesis submitted to Mother Teresa Women's University.
[7]. A. Rosa, " On certain values of the vertices of the graph", Theory of graphs (Intl. Symp., Rome, 1966) Gordon and Breach, Dunod, Paris, 1967.
[8]. Solairaju. A. Chithra, K. Edge odd graceful
labeling of some graphs, Proceedings of the ICMCS 2008; 1: 101 - 107

