Difference Speed sequence graph

S. Uma Maheswari¹, Dr. K. Indirani²

1. Department of Mathematics, CMS College of Science & Commerce, Coimbatore, India 2. Head & Asso.Professor, Dept. of Maths, Nirmala College for Women, Coimbatore, India

Abstract: A (p,q) graph G(V,E) is said to be a difference speed sequence graceful graph if there exists a bijection $f: V(G) \rightarrow \{0, 1, 2, ...,q^2\}$ such that the induced mapping $f: E(G) \rightarrow \{\Delta_i(x)\}/i=1, 2, 3,$...n}defined by f(uv) = |f(u) - f(v)| is a bijection. Here $\Delta_m(x) = (\Delta_m x_k) = |(x_k - x_{k+m})|$ and (x) is the Fibonacci sequence . The function f is called a difference speed sequence graceful graph. In this paper we prove that the star $K_{1,n}$, the path graph, the comb graph, bistar $B_{mv,n}$, crown graph $C_3 \odot k_{1,2}$, and various types of graph are difference speed sequence graph.

Keywords: graceful labeling, speed sequence labeling, speed sequence graphs

AMS Subject Classification: 05C78, 94C15

1. Introduction

Throughout this paper, by a graph we mean a finite, undirected graph G(V, E) with 'p 'vertices and 'q' edges. A detailed survey of graph labeling can be found in the dynamic survey of labeling by J.A. Gallian. In this paper we introduce a new labeling called speed sequence labeling. We use the following definitions in the following sections.

Definition: 1.1.A (p.q) graph G(V,E) is said to be a difference speed sequence graceful graph if there exists a bijection f: V(G) \rightarrow { 0, 1, 2, ...q² } such that the induced mapping f: E(G) \rightarrow { $\Delta_i(x)$ }/ i=1, 2, 3, ...n} defined by f(uv) = |f(u) - f(v)| is a bijection. Here $\Delta_m(x) = (\Delta_m x_k) = |(x_k - x_{k+m})|$ and (x) is the Fibonacci sequence. The function f is called a difference speed sequence graceful graph.

Definition: 1.2. A complete bipartite graph $K_{1,n}$ is called a star and it has n + 1 vertices and n edges.

Definition: 1.3. The bistar graph $B_{m,n}$ is the graph obtained from a copy of start $K_{1,m}$ and a copy of start

 $K_{1,n}$ by joining the vertices of maximum degree by an edge.

Definition:1.4. A star S_n is the complete bipartite graph $K_{1,n}$ is a tree with one internal node and n leaves.

Definition: 1.5. The graph obtained by joining a pendent edge at each vertex of a path P_n is called a comb and is denoted by $Pn \odot k_1$ or P_n^+

Definition: 1.6. The corona $G_1 \circ G_2$ is defined as the graph obtained by taking one copy of G_1 to every point in the ith copy of G_2 .

Definition: 1.7. The graph (P_m, S_n) is obtained from m copies of the star graph S_n and the path Pm: $\{u_1, u_2, \ldots u_m\}$ by joining u_i with the centre of the jth copy of S_n by means of an edge $1 \le j \le m$.

Definition: 1.8. A subdivision of a graph G is a graph that can be obtained from G by a sequence of edge subdivisions.

Definition: 1.9. An (n,t) kite graph consists of a cycle of length n with a t edge path attached to one vertex.

2. Main Results:

In this paper, we prove that path Pn, $K_{1,n}$, bistar $B_{m,n}$, the graph by subdividing the edges of the star $K_{1,n}$, the generalized crown $C_3 \odot K_{1,n}$, the comb Pn $\circ k_1$, the graph (P_m S_n), (3,t) kite graph are the difference speed sequence graphs.

Theorem:2.1

The Path P_n is a difference speed sequence graceful for all $n \ge 2$.

Proof:

Let $u_1, u_2, ..., u_n$ be the vertices of the path P_n .

Define $f : V(G) \rightarrow \{0, 1, 2, ...,q^2\}$ and $E(G) \rightarrow \{\Delta_i(x)/i=1, 2, 3, ...,n\}$ and (x) is the fibonacci sequence. Then f induces a bijection $f : E(G) \rightarrow \{\Delta_i(x)/i=1, 2, 3, ...,n\}$

Example:

 $\Delta_3(\mathbf{x})$

Figure 2

Theorem: 2.2

Every comb graph $Pn \circ k_1$ is a difference speed sequence graceful graph.

Proof:

Let $u_1, u_2, ..., u_n$ be the vertices of the path P_n .

Let $v_1, v_2, ..., v_n$ be the vertices adjacent to each vertex of P_n .

Define f : V(Pn \circ k₁) \rightarrow { $\Delta_i(x)/i=1, 2, 3, ...n$ }

Then f induces a bijection $f : E(Pn \odot k_1) \rightarrow \{\Delta_i(x) / i=1, 2, 3, ...n\}$

Example:

 $\Delta_2(\mathbf{x})$

Figure 3

Figure 4

Theorem :2.3

The star K_{1} , $_{n}$ is $% M_{1}$ a difference speed sequence graph.

Proof:

Let V (K₁, $_n$) = { $u_i / 1 \le i \le n + 1$ }

Let E (K₁, $_{n}$) = { $\Delta_{i}(x)/i=1, 2, 3, ...n$ }

Define an injection $f : V (K_1, _n) \rightarrow \{0, 1, 2, ..., 2q^2\}$ by $f(u_i) = \Delta_i(x)$ if $/ 1 \le i \le n$

Then f induces a bijection f: E (K $_1$, $_n$) $\rightarrow ~\{\Delta_i(x)/$ i=1, 2, 3, ...n}

Example:

Figure 6

Theorem: 2.4

The graph obtained by the subdivision of the edges of the star $K_{1,n}$ is a difference speed sequence graph.

Proof:

Let G be the graph obtained by the subdivision of the edges of the star $K_{1,n}$.

Let $V(G) = \{v, u_i, w_i / 1 \le i \le n\}$ and $E(G) = \{vu_i, u_iw_i / 1 \le i \le n\}$

Define an injection $f: V(G) \rightarrow \{0, 1, 2, \dots 3q^2\}$ and $E(G) \rightarrow \{\Delta_i(x) / i=1, 2, 3, \dots n\}$

and f(v) = 0.

Then f induces a bijection f: $E(G) \rightarrow \{\Delta_i(x)/i=1, 2, 3, ...n\}$

Therefore the subdivision of the edges of the star $K_{1,n}$ is a difference speed sequence graph.

Example:

$$\Delta_2(\mathbf{x})$$

Figure 7

 $\Delta_3(\mathbf{x})$

Figure 8

Theorem:2.5

Every bistar $B_{m, n}$ is a difference speed sequence graceful.

Proof:

Let V (B_m, _n) = { 0,1,2,...2(m+n+1)²} and E(B_m, _n) $\rightarrow \{\Delta_i(x)/i=1, 2, 3, ...n\}$

Then f induces a bijection f: E($B_m,\,_n) \to \{\Delta_i(x)/\ i=1,\,2,\,3,\,\ldots n\}$

Case(i) : m > n

Define an injection f: V $(B_m, _n) \rightarrow \{0,1,2,\ldots 2(m+n+1)^2\}$ by

 $f(u_i) = | m+n-6i |$ for i=1

 $f(u_i) = |m+n-(2i+1)|$ for i=2

 $f(u_i) = |m+n-5i|$ for i=3

 $f(u_i) = |m+n-4i|$ for i=4

and f(u) = 0; f(v) = m+n+1

 $f(v_i) = |m+n-4i(m+n)|$ for i=1

 $f(v_i) = |m+n-(5i/2)(m+n) + 1|$ for i=2

 $f(v_i) = |m+n-mn|$ for i=3

Case(ii) : m < n

Then f induces a bijection f: E(G) $\rightarrow \{\Delta_i(x)/i=1, 2, 3,$

 $f(v_i) = |m+n-4i|$ for i=4

Therefore the bistar B_m , $_n$ is a difference speed sequence graph.

Example:

...n}

 $\Delta_2(\mathbf{x})$ Figure 9

Theorem:2.6

The crown graph $C_3 \odot k_1, \ _2$ is a difference speed sequence graceful

Proof:

Let $\{v_1, v_2, v_3, u_1, u_2, u_3, u_4, u_5, u_6\}$ be the vertices of $C_3 \circ k_{1, 2}$

Here $\{v_1, v_2, v_3\}$ are the vertices of the cycle C_3 and $\{u_1, u_2, u_3, u_4, u_5, u_6\}$ are the vertices of the copies of $k_{1,2}$ adjacent to v_i for i=1,2,3

The size of the graph is q = 3n+3

Define an injection f: V (C₃ \odot k₁, ₂) \rightarrow { 0,1,2,...(3n+3)²} by f(v₁) = 0, f(v₂) = 1, f(v₃) = 3,

and $E(G) \rightarrow \{\Delta_i(x) \mid i=1, 2, 3, \dots n\}$

Then f induces a bijection f: E(G) $\rightarrow \{\Delta_i(x)/i=1, 2, 3, ...n\}$

Therefore the crown graph $C_3 \odot k_1$, $_2$ is a difference speed sequence graph.

Example:

Figure 10

Theorem:2.7

The kite graph (3,t) is difference speed graceful for t ≥ 1

Proof:

Let $\{v_1, v_2, v_3\}$ be the vertices of a cycle C_3 and $\{u_1, u_2, ..., u_t\}$ be the t vertices of the tail with v_1 adjacent to u_1 .

The size of G is q = 3 + t

Define a bijection f: V(G) $\rightarrow \{ 0,1,2,...(3+2t)^2 \}$ for all t = 1...n and

 $E(G) \rightarrow \{\Delta_i(x)/i=1, 2, 3, \dots n\}$

Therefore f induces a bijection.

Hence (3,t) is a kite difference speed sequence graceful graph.

Example:

 $\Delta_3(\mathbf{x})$

Figure 13

Theorem: 2.8

The graph $P_m \odot nk_1$ $(n \ge 2)$ is a difference speed sequence graceful graph.

Proof:

Let $\{u_1, u_2, ..., u_m\}$ be the vertices of the path P_m and $\{v_{1j}, v_{2j}, ..., v_{nj}\}$ be the ith copy of the null graph nK₁.

Then $\{v_{1j}, v_{2j}, ..., v_{nj}\}$ are the n pendent vertices adjacent to the vertex u_j of P_m for $1 \le j \le m$.

Define an injection f: $V(P_m \odot nk_1) \rightarrow \{ 0,1,2,\ldots 3(mn+m-1)^2 \}$ and

 $E(G) \rightarrow \{\Delta_i(x) / i=1, 2, 3, \ldots n\}$

Then f induces a bijection f: E $(P_m \circ nk_1) \rightarrow \{\Delta_i(x)/i=1, 2, 3, ...n\}$

Therefore $P_m \odot nk_1$ is a difference speed sequence graceful graph.

Example:

 $\Delta_2(\mathbf{x})$

[8]. Solairaju. A. Chithra, K. Edge odd graceful labeling of some graphs, Proceedings of the ICMCS 2008; 1: 101 – 107

Figure 15

Conclusion:

Here we have introduced a new labeling called difference speed sequence labeling. We have also proved it for various types of graphs.

References

[1]. J. A.Bondy and U.S.R. Murty, 1976, Graph Theory with applications, London: Macmillan

[2]. J.A. Gallian, A dynamic survey of graph labeling, Electronic journal of combinatorics, 17(2014), # DS6(2014).

[3]. R.B.Gnanajothi, Topics in Graph Theory

[4]. S.W.Golomb , How to number a graph in graph theory and computing

[5]. F. Harary, Graph theory (Addison-Wesley, Reading, MA 1969)

[6]. K. Indirani, On "Rate sequence spaces", thesis submitted to Mother Teresa Women's University.