Fractional order Hirota-Satsuma coupled KdV equation by Homotopy perturbation transforms method

R.N Prajapati ${ }^{\text {a }}$, Rakesh Mohan ${ }^{\text {b }}$,Pankaj Kumar ${ }^{\text {c }}$
${ }^{a}$ Department of Applied Science, IEC Group of Institution, Knowledge Park-I, Greater Noida, INDIA, 201308.
${ }^{b}$ Department of Mathematics, DIT Unievrsity Dehradun, Uttarakhand, INDIA, 248009.
${ }^{c}$ Kishori Lal Sharma Institue of Engineering \& Technology, Chandok, Bijnor, INDIA, 246721.

Abstract

In this paper, we have used homotopy perturbation method and Laplace transformation to determine approximate solutions which converge to exact solution of generalized Hirota-Satsuma coupled KdV equation.

 The nonlinear terms handled by the use of He's polynomial.Keywords: Homotopy perturbation method, Laplace transform method, Generalized Hirota-Satsuma Coupled KdV Equation.

1. Introduction:

A number of methods have been proposed in the literature recently for solving different kinds of physical and mathematical problems. Among them, the homotopy perturbation is the advance approach for finding the approximate analytical solution of linear and nonlinear problems. The method was first proposed by $\mathrm{He}[1-3]$, provides an effective procedure for explicit and numerical solutions of a wide and general class of differential systems of equations representing real physical problems. The solution of differential equations of fractional order is much involved. Though many exact solutions for linear fractional differential equations have been found but in general, there exists no method that yields an exact solution for nonlinear fractional differential equations. The nonlinear phenomena have important effects on applied mathematics, physics etc. In recent years, many authors have studied the solutions of nonlinear partial differential equations by using homotopy perturbation method, the Variational iteration method [4-6] and the Adomian decomposition method [7]. ${ }^{\text {a }}$

An elementary introduction to the homtopy perturbation method can be found in [8-15], improved homotopy perturbation method is given in [16-17]. Many researchers [18-21] have obtained the series solution of the fractional differential equations and integral equation by using HPM, In this article, we have applied the homotopy perturbation method coupled with the Laplace transformation method to determine the solution of time fractional Hirota-Satsuma Coupled KdV equation know as homotopy perturbation transform method [2223].
2. Definition: The Laplace transform of $f(t)$ is defined as

$$
F(s)=L[f(t)]=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

where s is the parameter it may be real or complex,
3. Definition: The Laplace transform of the Riemann-Liouville fractional integral [24] is defined as

$$
L\left[I^{\alpha} f(t)\right]=s^{-\alpha} F(s) .
$$

4. Definition: The Laplace transform of the Caputo fractional derivative [24] is defined as

$$
L\left[D^{\alpha} f(t)\right]=s^{\alpha} F(s)-\sum_{k=0}^{n-1} s^{(\alpha-k-1)} f^{(k)}(0), \quad n-1<\alpha \leq n
$$

5. Homotopy perturbation transforms method (HPTM)

We consider the following nonlinear fractional differential equation:

$$
\begin{align*}
& D_{t}^{\alpha} u(x, t)+R u(x, t)+N u(x, t)=0, \quad t>0, \quad x \in R, \quad 0<\alpha \leq 1, \\
& u(x, 0)=h(x) \tag{1}
\end{align*}
$$

where $D^{\alpha}=\frac{\partial^{\alpha}}{\partial t^{\alpha}}$ is the Caputo fractional derivative operator, R is the linear operator, N is the nonlinear operator.

Taking the Laplace transform on both sides of Eq. (1), we have

$$
\begin{equation*}
L\left[D^{\alpha} u(x, t)\right]+L[R u(x, t)+N u(x, t)]=0 \tag{2}
\end{equation*}
$$

The Laplace transform of the Caputo fractional derivative is defined as

$$
\begin{equation*}
L\left[D^{\alpha} f(t)\right]=s^{\alpha} F(s)-\sum_{k=0}^{n-1} s^{(\alpha-k-1)} f^{(k)}(0), \quad n-1<\alpha \leq n \tag{3}
\end{equation*}
$$

Now, using the property of Laplace for fractional derivative as given by equation (3), we obtain

$$
\begin{equation*}
L[u(x, t)]=\frac{1}{s} h(x)-\frac{1}{s^{\alpha}} L[R u(x, t)+N u(x, t)], \tag{4}
\end{equation*}
$$

On operating the inverse Laplace transform on both sides of equation (4), we get

$$
\begin{equation*}
u(x, t)=h(x)-L^{-1}\left(\frac{1}{s^{\alpha}} L[R u(x, t)+N u(x, t)]\right) . \tag{5}
\end{equation*}
$$

Further,applying the homotopy perturbation technique; the solution can be expressed as a power series in terms of p i.e.

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} p^{n} u_{n}(x, t) \tag{6}
\end{equation*}
$$

where the homotopy parameter p is considered as a small parameter $(p \in[0,1])$. The nonlinear term can be decomposed as

$$
\begin{equation*}
N u(x, t)=\sum_{n=0}^{\infty} p^{n} H_{n}(u) \tag{7}
\end{equation*}
$$

where H_{n} are He's polynomials of $u_{0}, u_{1}, u_{2}, \ldots, u_{n}$ and it can be calculated by the following formula:

$$
H_{n}\left(u_{0}, u_{1}, u_{2}, \ldots, u_{n}\right)=\frac{1}{n!} \frac{\partial^{n}}{\partial p^{n}}\left[N\left(\sum_{i=0}^{\infty} p^{i} u_{i}\right)\right]_{p=0}, \quad n=0,1,2,3, \ldots
$$

Substituting equations (6) and (7) in equation (5), using HPM [18-19], we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} p^{n} u_{n}(x, t)=h(x)-p\left(L^{-1}\left[\frac{1}{s^{\alpha}} L\left[R \sum_{n=0}^{\infty} p^{n} u_{n}(x, t)+\sum_{n=0}^{\infty} p^{n} H_{n}(u)\right]\right]\right) \tag{8}
\end{equation*}
$$

Equating the coefficient of like power of p on both sides of equation (8), the following approximations are determined as follow

$$
\begin{align*}
& p^{0}: u_{0}(x, t)=h(x) \\
& p^{n}: u_{n}(x, t)=-L^{-1}\left(\frac{1}{s^{\alpha}} L\left[R u_{n-1}(x, t)+H_{n-1}(u)\right]\right), n>0, n \in N . \tag{9}
\end{align*}
$$

Proceeding in this same manner, the rest of the components $u_{n}(x, t)$ can be completely obtained and the series solution is thus entirely found.
Finally, we approximate the solution $u(x, t)$ by truncated series

$$
\begin{equation*}
u(x, t)=\operatorname{Lim}_{N \rightarrow \infty} \sum_{n=1}^{N} u_{n}(x, t) \tag{10}
\end{equation*}
$$

The above series solutions generally converge very rapidly. A classical approach of convergence of this type of series is already presented by Abbaoui and Cherruault [25].

6. Applications and Numerical Results

Consider the following generalized Hirota-Satsuma Coupled KdV equation [26],

$$
\left.\begin{array}{l}
\frac{\partial^{\alpha} u}{\partial t^{\alpha}}=\frac{1}{2} \frac{\partial^{3} u}{\partial x^{3}}-3 u \frac{\partial^{3} u}{\partial x^{3}} u_{x}+3(v w)_{x} \\
\frac{\partial^{\alpha} v}{\partial t^{\alpha}}=-\frac{\partial^{3} v}{\partial x^{3}}+3 u \frac{\partial v}{\partial x} \tag{11}\\
\frac{\partial^{\alpha} w}{\partial t^{\alpha}}=-\frac{\partial^{3} w}{\partial x^{3}}+3 u \frac{\partial w}{\partial x}
\end{array}\right\}
$$

with initial conditions are:

$$
\left.\begin{array}{l}
u(x, 0)=\frac{1}{3}\left(\beta-2 k^{2}\right)+2 k^{2} \tanh ^{2}(k x), \\
v(x, 0)=-\frac{4 k^{2} c_{0}\left(\beta+k^{2}\right)}{3 c_{1}^{2}}+\frac{4 k^{2}\left(\beta+k^{2}\right)}{3 c_{1}} \tanh (k x), \tag{12}\\
w(x, 0)=c_{0}+c_{1} \tanh (k x)
\end{array}\right\}
$$

Applying the Laplace Transform with initial conditions (12) in (11) we obtain

$$
\begin{aligned}
& u(x, s)=\frac{1}{s}\left[\frac{1}{3}\left(\beta-2 k^{2}\right)+2 k^{2} \tanh ^{2}(k x)\right]+\frac{1}{s^{\alpha}} L\left[\frac{1}{2} u_{x x x}-3 u u_{x}+3(v w)_{x}\right], \\
& v(x, s)=\frac{1}{s}\left[-\frac{4 k^{2} c_{0}\left(\beta+k^{2}\right)}{3 c_{1}^{2}}+\frac{4 k^{2}\left(\beta+k^{2}\right)}{3 c_{1}} \tanh (k x)\right]+\frac{1}{s^{\alpha}} L\left[-v_{x x x}+3 u v_{x}\right], \\
& w(x, s)=\frac{1}{s}\left[c_{0}+c_{1} \tanh (k x)\right]+\frac{1}{s^{\alpha}} L\left[-w_{x x x}+3 u w_{x}\right],
\end{aligned}
$$

(13)

Where s is the parameter and t is the time.
Further, taking inverse Laplace Transform of equation (13), then we have

$$
\begin{align*}
& u(x, t)=\frac{1}{3}\left(\beta-2 k^{2}\right)+2 k^{2} \tanh ^{2}(k x)+L^{-1}\left(\frac{1}{s^{\alpha}} L\left[\frac{1}{2} u_{x x x}-3 u u_{x}+3(v w)_{x}\right]\right), \\
& v(x, t)=-\frac{4 k^{2} c_{0}\left(\beta+k^{2}\right)}{3 c_{1}^{2}}+\frac{4 k^{2}\left(\beta+k^{2}\right)}{3 c_{1}} \tanh (k x)+L^{-1}\left(\frac{1}{s^{\alpha}} L\left[-v_{x x x}+3 u v_{x}\right]\right), \\
& w(x, t)=c_{0}+c_{1} \tanh (k x)+L^{-1}\left(\frac{1}{s^{\alpha}} L\left[-w_{x x x}+3 u w_{x}\right]\right), \tag{14}
\end{align*}
$$

According to the Homotopy perturbation method, we construct Homotopy of (14) yield

$$
\begin{align*}
\sum_{n=0}^{\infty} p^{n} u_{n}= & \frac{1}{3}\left(\beta-2 k^{2}\right)+2 k^{2} \tanh ^{2}(k x)+p\left\{L^{-1}\left(\frac{1}{s^{\alpha}} L\left[\frac{1}{2} \sum_{n=0}^{\infty} p^{n} u_{x x x}+\sum_{n=0}^{\infty} p^{n} H_{n}(u)\right]\right)\right\}, \\
\sum_{n=0}^{\infty} p^{n} v_{n}= & -\frac{4 k^{2} c_{0}\left(\beta+k^{2}\right)}{3 c_{1}^{2}}+\frac{4 k^{2}\left(\beta+k^{2}\right)}{3 c_{1}} \tanh (k x)+p L^{-1}\left(\frac{1}{s^{\alpha}} L\left[\frac{1}{2} \sum_{n=0}^{\infty} p^{n} v_{x x x}\right]\right), \\
& \quad+p L^{-1}\left(\frac{1}{s^{\alpha}} L\left[\frac{1}{2} \sum_{n=0}^{\infty} p^{n} H_{n}(v)\right]\right), \\
\sum_{n=0}^{\infty} p^{n} w_{n}= & c_{0}+c_{1} \tanh (k x)+p L^{-1}\left(\frac{1}{s^{\alpha}} L\left[-\sum_{n=0}^{\infty} p^{n} w_{x x x}+3 \sum_{n=0}^{\infty} p^{n} H_{n}(w)\right]\right) \tag{15}
\end{align*}
$$

Equating the terms with identical powers of p of equation (15), we get

$$
\left.\begin{array}{rl}
p^{0}: u_{0} & =\frac{1}{3}\left(\beta-2 k^{2}\right)+2 k^{2} \tanh ^{2}(k x), \\
p^{1}: u_{1} & =4 k^{3} \beta \sec h^{2}(k x) \tanh (k x) \frac{t^{\alpha}}{\Gamma(1+\alpha)}, \\
p^{2}: u_{2} & =-4 k^{4} \beta^{2}(-2+\cosh [2 k x]) \sec h^{4}(k x) \frac{t^{2 \alpha}}{\Gamma(1+2 \alpha)}, \\
p^{3}: u_{3} & =-2 k^{5} \beta^{2}\left[-104 k^{2}+\beta+40 k^{2} \operatorname{coh}(2 k x)-\beta \operatorname{coh}(4 k x)\right] \sec h(k x)^{6} \tan (4 k x) \frac{t^{3 \alpha}}{\Gamma(1+3 \alpha)} \\
& -2 k^{5} \beta^{2}\left[\frac{4\left(13 k^{2}+\beta+\left(-5 k^{2}+\beta\right) \cosh (2 k x)\right) \Gamma(1+2 \alpha)}{\Gamma(1+2 \alpha)^{2}}\right] \sec h(k x)^{6} \tan (4 k x) \frac{t^{3 \alpha}}{\Gamma(1+3 \alpha)} \tag{16}
\end{array}\right\}
$$

so on for other components.
The m-th order approximate solution is given by

$$
u(x, t)=\sum_{k=0}^{m} u_{k}(x, t)
$$

Fig-1 shows the plot of $u(x, t)$ for $\alpha=0.5$ and $\alpha=0.75$.
The solution in a closed form when $\alpha=1$, is given by

$$
u(x, t)=\frac{1}{3}\left(\beta-2 k^{2}\right)+2 k^{2} \tanh ^{2}[k(x+\beta t)] .
$$

(17)

Equating the terms with identical powers of p for equation (15), again we have

$$
\left.\begin{array}{rl}
p^{0}: v_{0}= & \frac{4 k^{2} c_{0}\left(\beta+k^{2}\right)}{3 c_{1}^{2}}+\frac{4 k^{2}\left(\beta+k^{2}\right)}{3 c_{1}} \tanh (k x), \\
p^{1}: v_{1} & =\frac{4 k^{3} \beta\left(\beta+k^{2}\right) \sec h^{2}(k x)}{3 c_{1}} \frac{t^{\alpha}}{\Gamma(1+\alpha)}, \\
p^{2}: v_{2}= & \frac{8 k^{4} \beta^{2}\left(\beta+k^{2}\right) \sec h^{2}(k x)}{3 c_{1}} \frac{t^{2 \alpha}}{\Gamma(1+2 \alpha)}, \\
p^{3}: v_{3}= & 2 k^{5} \beta^{2}\left(\beta+k^{2}\right)\left[\frac{-48 k^{2}-3 \beta+\left(48 k^{2}-2 \beta\right) \cosh (2 k x)+\beta \cosh (4 k x)}{3 c_{1}}\right] \\
& \sec h^{6}(k x) \frac{t^{3 \alpha}}{\Gamma(1+3 \alpha)}-96 k^{7} \beta^{2}\left(\beta+k^{2}\right) \frac{\Gamma(1+2 \alpha) \sinh ^{2}(k x)}{3 c_{1} \Gamma(1+\alpha)^{2}} \sec h^{6}(k x) \frac{t^{3 \alpha}}{\Gamma(1+3 \alpha)}, \tag{18}
\end{array}\right\}
$$

so on for other components.
The m-th order approximate solution is given by

$$
v(x, t)=\sum_{k=0}^{m} v_{k}(x, t)
$$

Fig-2 shows the plot of $v(x, t)$ for $\alpha=0.5$ and $\alpha=0.75$.
The solution in a closed form when $\alpha=1$, is given by

$$
\begin{equation*}
v(x, t)=\frac{-4 k^{2} c_{0}\left(\beta+k^{2}\right)}{3 c_{1}^{2}}+\frac{4 k^{2} \tanh [k(x+\beta t)]\left(\beta+k^{2}\right)}{3 c_{1}} \tag{19}
\end{equation*}
$$

Similarly equating the terms with identical powers of p for equation (15), we have

$$
\left.\begin{array}{l}
p^{0}: w_{0}=c_{0}+c_{1} \tanh (k x), \\
p^{1}: w_{1}=c_{1} k \beta \sec h^{2}(k x) \frac{t^{\alpha}}{\Gamma(1+\alpha)}, \\
p^{2}: w_{2}=-2 c_{1} k^{2} \beta^{2} \sec h^{2}(k x) \tanh (k x) \frac{t^{2 \alpha}}{\Gamma(1+2 \alpha)}, \tag{20}\\
p^{3}: w_{3}=c_{1} k^{3} \beta^{2}\left[\frac{-48 \mathrm{k}^{2}-3 \beta+\left(48 k^{2}-2 \beta\right) \cosh (2 k x)+\beta \cosh (4 k x)}{2}\right]- \\
\frac{48 k^{2} \Gamma(1+2 \alpha) \sinh ^{2}(k x)}{2 \Gamma(1+2 \alpha)^{2}} \sec ^{6}(k x) \frac{t^{3 \alpha}}{\Gamma(1+3 \alpha)}
\end{array}\right\}
$$

so on for other components.
The m-th order approximate solution is given by

$$
w(x, t)=\sum_{k=0}^{m} w_{k}(x, t)
$$

Fig-3 shows the plot of $w(x, t)$ for $\alpha=0.5$ and $\alpha=0.75$.
The solution in a closed form when $\alpha=1$, is given by

$$
\begin{equation*}
w(x, t)=c_{0}+c_{1} \tanh [k(x+\beta t)] \tag{21}
\end{equation*}
$$

7. Conclusions:

In this paper, the homotopy perturbation transforms method (HPTM) was used for finding solutions of a fractional order Hirota-Satsuma coupled KdV equation with initial conditions. In our work we obtained an approximate solution which converges to exact solution for different fractional order of dependent variable. We use the MATHEMATICA-6 to determine the series solution obtained from homotopy perturbation transforms method (HPTM).

References

[^0][3]. J.H.He, Homotopy Perturbation Method: A New Non-Linear Analytical Technique, Applied Mathematics and Computation, 135(2003)73-79,doi:10.1016/S0096-3003(01)00312-5.
[4]. K. Batiha, Approximate Analytical Solutions for Time- Dependent Emden-Fowler-Type Equations by Variational Iteration Method, American Journal of Applied Sciences, 4(2007) 439-443, doi: 10.3944/ajassp.2007.439.443.
[5]. J. Biazar and H. Ghazvini, He's Variational Iteration Method for Solving Linear and Non-Linear Systems of Ordinary Differential Equations, Applied Mathematics and Computation, 191(2007) 297-297, doi:10.1016/j.amc.2007.02.153.
[6]. Ahmet Yıldırım, Solving Differential-Difference Equation, Mathematical Problems in Engineering, Article ID 869614,7 pageshttp://dx.doi.org/10.1155/2008/869614
[7]. A. M. Wazwaz, Analytic Treatment for Varcient Fourth-Order Parabolic Partial Differential Equations, Applied Mathematics and Computation, 123(2001) 219-227,doi:10.1016/S0096-3003(00)00070-9 .
[8]. J. H. He, An Elementary Introduction Perturbation Method, Computers and Mathematics with Applications, 57(2009) 410-412, doi:10.1016/j.camwa.2009.06.003 .
[9]. Z. M. Odibat, A New Modification of the Homotopy Perturbation Method for Linear and Nonlinear Operators, Applied Mathematics and Computation, 199(2007),746-753, doi:10.1016/j.amc.2006.11.199.
[10]. E. Yusufoglu, Improved Homotopy Perturbation Method for Solving Fredholm type Integro-Differential Equations, Chaos Solitons and Fractals, 41(2009) 29-37. doi:10.1016/j.chaos.2007.11.005.
[11]. M. A. Jafari and A. Aminataei, "Improved Homotopy Perturbation Method," International Mathematical Forum, 5(2010) 15671579.
[12]. M. Ghasemi, M. T. Kajani and E. Babolian, Application of He'S Homotopy Perturbation
Method to Nonlinear In- tegro-Differential Equations, Applied Mathematics and Computation, 199(2007) 539-549, doi:10.1016/j.amc.2006.10.016.
[13]. H. Jafari, M. Zabihi and M. Saidy, Application of Homotopy Perturbation Method for Solving Gas Dynamics Equation, Applied Mathematical Sciences, 2(2009) 2393-2396,
[14]. Y. Yu and H. Li, Application of the Multistage Homotopy Perturbation Method to Solve a Class of Hypercha- otic Systems, Ghaos Solitons and Fratals, 42(2009) 2330-2337,doi:10.1016/j.chaos.2009.064
[15]. P. Roul, Application of Homotopy Perturbation Biological Population Model, Application and Mathematics: An International Journal, 5(2010) 13969-1379.
[16]. M. Meran, Homotopy Perturbation Method for Solving a Model for HIV Infection of CD^{4+} Cell, Istanbul Ticaret Universitesi Fen Bilimleri Dergisi, 12(2007) 39-52.
[17]. Y. X. Wang, H. Y. Si and L. F. Mo, Homotopy Perturbation Method for Solving Reaction-Diffusion Equations, Mathematical Problem in Engineering, Vol. 2009, and Article ID: 795939. doi:10.1155/2009/795939.
[18]. S. Kumar, Y. Khan, A. Yildirim, A mathematical modeling arising in the chemical system and its approximate numerical solution, Asia Pacific J. Chem. Eng. 7(2012) 835-840.
[19]. N. Faraz, Y. Khan, Analytical solution of electrically conducted rotating flow of a second grade fluid over a shrinking surface, Ain Shams Eng. J. ,2(2011) 221-226.
[20]. S. Kumar, Om P. Singh, Numerical inversion of the Abe integral equation using homotopy, Z. Naturforsch, 65(2010) 677-682.
[21]. S.kumar, A new fractional modeling arising in engineering_sciences and its analytical approximate solution, Alexandria Engineering Journal, 52(2013) 813-819.
[22]. S. Kumar, H. Kocak, A. Yildirim, A fractional model of Gasdynamics equation and its analytical approximate solution by using Laplace transform, Z. Naturforsch, 67a(2012) 389-396.
[23]. S. Kumar, A. Yildirim, Y. Khan, L. Wei, A fractional model of the diffusion equation and its analytical solution using Laplace transform, Sci. Iran. B, 19(2012) 1117-1123.
[24]. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
[25]. Abbaoui, K., Cherruault, Y.,New ideas for proving convergence of decomposition methods, Computers \& Mathematics with Applications, 29(1995) 103-108.
[26]. Reza Abazari, Malek Abazari ,Numerical simulation of generalized Hirota-Satsuma coupled KdV equation by RDTM and comparison with DTM, 17(2012) 619-629

Fig 1. Plot of $u(x, t)$ for $k=0.1, \beta=1$ and different values of α. Fig 1(a) for $\alpha=0.75$ Fig 1(b) for $\alpha=0.5$

Fig 2.Plot of $v(x, t)$ for $c_{0}=1, c_{1}=1 k=0.1, \beta=1$, and different values of α. Fig 2(a) for $\alpha=0.75$ Fig 2(b) for $\alpha=0.5$

Fig 3. Plot of $w(x, t)$ for $k=0.1, c_{0}=1, c_{1}=1, \beta=0.1$ and different values of α. Fig 3(a) for $\alpha=0.75$ Fig 3(b) for $\alpha=0.5$

[^0]: [1].
 J.H. Homotopy Perturbation Technique, Computer Methods in Applied Mechanics and Engineering, 179(1999) 257-262, doi:10.1016/S0045-925(99)00019-3.
 [2]. J.H. He A Coupling Method of a Homotopy Technique and Perturbation Technique for
 Non-Linear problems, International Journal of Nonlinear Mechanics, 35(2000) 37-43, doi: 10.1016/S0020-7462(99)00095-7.

