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Abstract: In this paper, we have used homotopy perturbation method and Laplace transformation to determine 

approximate solutions which converge to exact solution of generalized Hirota−Satsuma coupled KdV equation. 

The nonlinear terms handled by the use of He’s polynomial. 
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1. Introduction:  
 
 A number of methods have been proposed in the literature recently for solving different kinds of physical and 

mathematical problems. Among them, the homotopy perturbation is the advance approach for finding the 

approximate analytical solution of linear and nonlinear problems. The method was first proposed by He [1–3], 

provides an effective procedure for explicit and numerical solutions of a wide and general class of differential 

systems of equations representing real physical problems. The solution of differential equations of fractional 

order is much involved. Though many exact solutions for linear fractional differential equations have been 

found but in general, there exists no method that yields an exact solution for nonlinear fractional differential 

equations. The nonlinear phenomena have important effects on applied mathematics, physics etc. In recent 

years, many authors have studied the solutions of nonlinear partial differential equations by using homotopy 

perturbation method, the Variational iteration method [4-6] and the Adomian decomposition method [7].a 

 

An elementary introduction to the homtopy perturbation method can be found in [8-15], improved homotopy 

perturbation method is given in [16-17].  Many researchers [18–21] have obtained the series solution of the 

fractional differential equations and integral equation by using HPM, In this article, we have applied the 

homotopy perturbation method coupled with the Laplace transformation method to determine the solution of 

time fractional Hirota-Satsuma Coupled KdV equation know as homotopy perturbation transform method [22–

23]. 

2. Definition: The Laplace transform of )(tf  is defined as 
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where s is the parameter it may be real or complex, 
3. Definition: The Laplace transform of the Riemann–Liouville fractional integral [24] is defined as 

).()]([ sFstfIL        

4. Definition: The Laplace transform of the Caputo fractional derivative [24] is defined as 

.1),0()()]([ )(
1

0

)1( nnfssFstfDL k
n

k

k  




 
                                                         

 
5. Homotopy perturbation transforms method (HPTM) 
 
We consider the following nonlinear fractional differential equation:

 ),()0,(
,10,,0,0),(),(),(

xhxu
RxttxNutxRutxuDt



 

                                              (1) 

where 




t
D




  is the Caputo fractional derivative operator, R  is the linear operator, N is the nonlinear 

operator. 

Taking the Laplace transform on both sides of Eq. (1), we have  

0)],(),([)],([  txNutxRuLtxuDL                                                                              (2) 

The Laplace transform of the Caputo fractional derivative is defined as 
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Now, using the property of Laplace for fractional derivative as given by equation (3), we obtain 

)],,(),([1)(1)],([ txNutxRuL
s

xh
s

txuL                                                                        (4) 

 

On operating the inverse Laplace transform on both sides of equation (4), we get 







   )],(),([1)(),( 1 txNutxRuL

s
Lxhtxu  .                                                                 (5) 

Further,applying the homotopy perturbation technique; the solution can be expressed as a power series in terms 

of p  i.e. 

( , ) ( , ),
0

nu x t p u x tnn


 


                                                                                                     (6) 

where the homotopy parameter p  is considered as a small parameter ( ]1,0[p ). The nonlinear term can be 

decomposed as 
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where nH are He’s polynomials of nuuuu ,...,,, 210  and it can be calculated by the following formula:  
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Substituting equations (6) and (7) in equation (5), using HPM [18-19], we have 
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Equating the coefficient of like power of p on both sides of equation (8), the following approximations are 

determined as follow   
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Proceeding in this same manner, the rest of the components ),( txun  can be completely obtained and the series 

solution is thus entirely found. 

Finally, we approximate the solution ),( txu  by truncated series  
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The above series solutions generally converge very rapidly. A classical approach of convergence of this type of 
series is already presented by Abbaoui and Cherruault [25]. 

 
6. Applications and Numerical Results  
 
Consider the following generalized Hirota-Satsuma Coupled KdV equation [26], 
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,                                                                             (11) 

with initial conditions are: 
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Applying the Laplace Transform with initial conditions (12) in (11) we obtain 
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(13) 
Where s is the parameter and t is the time. 
 
Further, taking inverse Laplace Transform of equation (13), then we have 
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According to the Homotopy perturbation method, we construct Homotopy of (14) yield 
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(15) 

 

Equating the terms with identical powers of p of equation (15), we get 
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(16)        

 

so on for other components. 

The m-th order approximate solution is given by 
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Fig-1 shows the plot of ),( txu  for 5.0 and 75.0 . 

 The solution in a closed form when 1 , is given by   

     txkkktxu   222 tanh22
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(17) 

Equating the terms with identical powers of p for equation (15), again we have 
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so on for other components. 

The m-th order approximate solution is given by 
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Fig-2 shows the plot of ),( txv  for 5.0 and 75.0 . 

 The solution in a closed form when 1 , is given by 
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Similarly equating the terms with identical powers of p for equation (15), we have
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so on for other components. 

The m-th order approximate solution is given by 
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Fig-3 shows the plot of ),( txw  for 5.0 and 75.0 .  

The solution in a closed form when 1 , is given by   

            )(tanh),( 10 txkcctxw                                                                                           (21) 

 
7. Conclusions:  
 
In this paper, the homotopy perturbation transforms method (HPTM) was used for finding solutions of a 
fractional order Hirota-Satsuma coupled KdV equation with initial conditions. In our work we obtained an 
approximate solution which converges to exact solution for different fractional order of dependent variable. We 
use the MATHEMATICA-6 to determine the series solution obtained from homotopy perturbation transforms 
method (HPTM). 
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                                          1(a)                           1(b) 
Fig 1. Plot of ),( txu  for 1.0k , 1 and  different values of  . Fig 1(a) for 75.0  Fig 1(b) for 

5.0  
 

            
                              2(a)                                                                        2(b) 
 
Fig 2.Plot of ),( txv  for 10 c , 11 c 1.0k , 1 , and  different values of  . Fig 2(a) for 75.0  

Fig 2(b) for 5.0  
 

       
             3(a)    `  3(b) 
Fig 3. Plot of ),( txw  for 1.0k , 10 c , 11 c , 1.0  and  different values of  . Fig 3(a) for 

75.0  Fig 3(b) for 5.0  


