On some multidimensional integral transforms of multivariable Aleph-function II

F.Y. AYANT ${ }^{1}$
1 Teacher in High School, France

ABSTRACT
The first integral evaluated here involve the exponential function, the product of two general polynomials. These integral is unified, useful and most general in nature. She is capable of yielding a large number of integrals and double Laplace transforms as their special cases. The second integral valuated here involve the exponential function, the product of two general polynomials and the Aleph-function of two variables. The third integral is a multivariable analogue of the second integral and is believed to be one of the most general integrals evaluated so far.

Keywords :Multivariable Aleph-function, multidimensional integral transforms ,General class of polynomials, Multivariable I-function, Alephfunction of two variables.

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1.Introduction and preliminaries.

The function Aleph of several variables generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [4], itself is an a generalisation of G and H -functions of multiple variables. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.
We define $: \aleph\left(z_{1}, \cdots, z_{r}\right)=\underset{p_{i}, q_{i}, \tau_{i} ; R: p_{i(1)}, q_{i(1)}, \tau_{i(1)} ; R^{(1)} ; \cdots ; p_{i(r)}, q_{i(r)} ; \tau_{i(r)} ; R^{(r)}}{0, \mathfrak{n}: m_{1}, n_{1}, \cdots, m_{r}, n_{r}}\left(\begin{array}{c}\mathrm{y}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{y}_{r}\end{array}\right)$

$$
\begin{array}{cl}
{\left[\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, \mathfrak{n}}\right]} & ,\left[\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{\mathfrak{n}+1, p_{i}}\right]: \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . & ,\left[\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right]:
\end{array}
$$

$$
\left.\left.\left[\left(\mathrm{c}_{j}^{(1)}\right) ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i(1)}\left(c_{j i(1)}^{(1)} ; \gamma_{j i(1)}^{(1)}\right)_{n_{1}+1, p_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{c}_{j}^{(r)}\right) ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right],\left[\tau_{i^{(r)}}\left(c_{j i(r)}^{(r)} ; \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i}^{(r)}}\right]
$$

$$
\left.\left.\left[\left(\mathrm{d}_{j}^{(1)}\right) ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right],\left[\tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)} ; \delta_{j i(1)}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{d}_{j}^{(r)}\right) ; \delta_{j}^{(r)}\right)_{1, m_{r}}\right],\left[\tau_{i(r)}\left(d_{j i(r)}^{(r)} ; \delta_{j i(r)}^{(r)}\right)_{m_{r}+1, q_{i}^{(r)}}\right]
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) y_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.1}
\end{equation*}
$$

with $\omega=\sqrt{-1}$
$\psi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{\mathfrak{n}} \Gamma\left(1-a_{j}+\sum_{k=1}^{r} \alpha_{j}^{(k)} s_{k}\right)}{\sum_{i=1}^{R}\left[\tau_{i} \prod_{j=\mathfrak{n}+1}^{p_{i}} \Gamma\left(a_{j i}-\sum_{k=1}^{r} \alpha_{j i}^{(k)} s_{k}\right) \prod_{j=1}^{q_{i}} \Gamma\left(1-b_{j i}+\sum_{k=1}^{r} \beta_{j i}^{(k)} s_{k}\right)\right]}$
and $\theta_{k}\left(s_{k}\right)=\frac{\prod_{j=1}^{m_{k}} \Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right) \prod_{j=1}^{n_{k}} \Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)}{\sum_{i^{(k)}=1}^{R^{(k)}}\left[\tau_{i^{(k)}} \prod_{j=m_{k}+1}^{q_{i}(k)} \Gamma\left(1-d_{j i^{(k)}}^{(k)}+\delta_{j i(k)}^{(k)} s_{k}\right) \prod_{j=n_{k}+1}^{p_{i(k)}} \Gamma\left(c_{j i(k)}^{(k)}-\gamma_{j i(k)}^{(k)} s_{k}\right)\right]}$
Suppose, as usual , that the parameters
$a_{j}, j=1, \cdots, p ; b_{j}, j=1, \cdots, q ;$
$c_{j}^{(k)}, j=1, \cdots, n_{k} ; c_{j i(k)}^{(k)}, j=n_{k}+1, \cdots, p_{i^{(k)}} ;$
$d_{j}^{(k)}, j=1, \cdots, m_{k} ; d_{j i(k)}^{(k)}, j=m_{k}+1, \cdots, q_{i(k)} ;$
with $k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)}$
are complex numbers, and the $\alpha^{\prime} s, \beta^{\prime} s, \gamma^{\prime} s$ and $\delta^{\prime} s$ are assumed to be positive real numbers for standardization purpose such that

$$
\begin{align*}
& U_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}+\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}+\tau_{i^{(k)}} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}-\sum_{j=1}^{m_{k}} \delta_{j}^{(k)} \\
& -\tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i^{(k)}}^{(k)} \leqslant 0 \tag{1.4}
\end{align*}
$$

The reals numbers τ_{i} are positives for $i=1$ to $R, \tau_{i(k)}$ are positives for $i^{(k)}=1$ to $R^{(k)}$
The contour L_{k} is in the s_{k}-p lane and run from $\sigma-i \infty$ to $\sigma+i \infty$ where σ is a real number with loop, if necessary ,ensure that the poles of $\Gamma\left(d_{j}^{(k)}-\delta_{j}^{(k)} s_{k}\right)$ with $j=1$ to m_{k} are separated from those of $\Gamma\left(1-a_{j}+\sum_{i=1}^{r} \alpha_{j}^{(k)} s_{k}\right)$ with $j=1$ to n and $\Gamma\left(1-c_{j}^{(k)}+\gamma_{j}^{(k)} s_{k}\right)$ with $j=1$ to n_{k} to the left of the contour L_{k}. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{m_{k}} \delta_{j}^{(k)}-\tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)}>0, \text { with } k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)} \tag{1.5}
\end{align*}
$$

The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(y_{1}, \cdots, y_{r}\right)=0\left(\left|y_{1}\right|^{\alpha_{1}} \ldots\left|y_{r}\right|^{\alpha_{r}}\right), \max \left(\left|y_{1}\right| \ldots\left|y_{r}\right|\right) \rightarrow 0$
$\aleph\left(y_{1}, \cdots, y_{r}\right)=0\left(\left|y_{1}\right|^{\beta_{1}} \ldots\left|y_{r}\right|^{\beta_{r}}\right), \min \left(\left|y_{1}\right| \ldots\left|y_{r}\right|\right) \rightarrow \infty$
where, with $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and
$\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}$
We will use these following notations in this paper
$U=p_{i}, q_{i}, \tau_{i} ; R ; V=m_{1}, n_{1} ; \cdots ; m_{r}, n_{r}$
$W=p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i^{(r)}} ; R^{(r)}$
$A=\left\{\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, n}\right\},\left\{\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{n+1, p_{i}}\right\}$
$B=\left\{\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right\}$
$C_{1}=\left\{\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right\},\left\{\tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)} ; \gamma_{j i(1)}^{(1)}\right)_{n_{1}+1, p_{i}(1)}\right\}, \cdots$,
$C_{r}=\left\{\left(c_{j}^{(r)} ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right\},\left\{\tau_{i(r)}\left(c_{j i^{(r)}}^{(r)} ; \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i(r)}}\right\}$
$\left.\left.D=\left\{\left(d_{j}^{(1)} ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right\}, \tau_{i^{(1)}}\left(d_{j i(1)}^{(1)} ; \delta_{j i(1)}^{(1)}\right)_{\left.m_{1}+1, q_{i(1)}\right)}\right\}, \cdots,\left\{\left(d_{j}^{(r)} ; \delta_{j}^{(r)}\right)_{1, m_{r}}\right\}, \tau_{i(r)}\left(d_{j i(r)}^{(r)} ; \delta_{j i^{(r)}}^{(r)}\right)_{m_{r}+1, q_{i}(r)}\right\}$
The multivariable Aleph-function write :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{U: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A}: \mathrm{C}_{1}: \cdots: C_{r} \\ \cdot & \cdots \\ \cdot & \cdots \cdots \\ \cdot & \mathrm{~B}: \mathrm{D}\end{array}\right)$
If $r=2$, we obtain the Aleph-function defined by K. Sharma[3].
The generalized polynomials defined by Srivastava [5], is given in the following manner :
$S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left[y_{1}, \cdots, y_{s}\right]=\sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \frac{\left(-N_{1}\right)_{M_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{s}\right)_{M_{s} K_{s}}}{K_{s}!}$
$A\left[N_{1}, K_{1} ; \cdots ; N_{s}, K_{s}\right] y_{1}^{K_{1}} \cdots y_{s}^{K_{s}}$
Where M_{1}, \cdots, M_{s} are arbitrary positive integers and the coefficients $A\left[N_{1}, K_{1} ; \cdots ; N_{s}, K_{s}\right]$ are arbitrary constants, real or complex.

In the present paper, we use the following notation

$$
\begin{equation*}
A=\frac{\left(-N_{1}\right)_{M_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{s}\right)_{M_{s} K_{s}}}{K_{s}!} A\left[N_{1}, K_{1} ; \cdots ; N_{s}, K_{s}\right] \tag{1.15}
\end{equation*}
$$

Srivastava [4] introduced the general class of polynomials :
$S_{N}^{M}(x)=\sum_{k=0}^{[N / M]} \frac{(-N)_{M k}}{k!} A_{N, k} x^{k}, N=0,1,2, \ldots$
Where M is an arbtrary positive integer and the coefficient $A_{N, k}$ are arbitrary constants, real or complex.By suitably specialized the coefficient $A_{N, k}$ the polynomials $S_{N}^{M}(x)$ can be reduced to the classical orthogonal polynomials such as Jacobi, Hermite, Legendre and Laguerre polynomials etc.

2. Main integrals

First integral

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right)^{\sigma_{1}-1}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right)^{\sigma_{2}-1} \exp \left(-t_{1}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right)-t_{2}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right)\right) \\
& S_{N_{1}}^{M_{1}}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right) S_{N_{2}}^{M_{2}}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \\
& =\frac{1}{K} \sum_{k_{1}=0}^{\left[N_{1} / M_{1}\right]\left[N_{2} / M_{2}\right]} \sum_{k_{2}=0} \frac{\left(-N_{1}\right)_{M_{1} k_{1}}\left(-N_{2}\right)_{M_{2} k_{2}} A_{N_{1}, k_{1}} A_{N_{2}, k_{2}} \Gamma\left(\sigma_{1}+k_{1}\right) \Gamma\left(\sigma_{2}+k_{2}\right)}{k_{1}!k_{2}!t_{1}^{\sigma_{1}+k_{1}} t_{2}^{\sigma_{2}+k_{2}}} \tag{2.1}
\end{align*}
$$

where $\operatorname{Re}\left(\sigma_{i}\right)>0, \operatorname{Re}\left(t_{i}\right)>0, i=1,2$ and $K=\left|\begin{array}{ll}a_{1}^{1} & a_{1}^{2} \\ a_{2}^{1} & a_{2}^{2}\end{array}\right| \neq 0$

Proof of (2.1)

we have [widder [6],1989 p.241, eq;(7)]
$\int_{0}^{\infty} \int_{0}^{\infty} F\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}, a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}=\frac{1}{K} \int_{0}^{\infty} \int_{0}^{\infty} F\left(u_{1}, u_{2}\right) \mathrm{d} u_{1} \mathrm{~d} u_{2}$
where K stands for the expression mentioned in (2.1)
If we take $F\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}, a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right)=f_{1}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right) f_{2}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right)$, then we have
$\int_{0}^{\infty} \int_{0}^{\infty} f_{1}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right) f_{2}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}=\frac{1}{K} \int_{0}^{\infty} f_{1}\left(u_{1}\right) \mathrm{d} u_{1} \int_{0}^{\infty} f_{2}\left(u_{2}\right) \mathrm{d} u_{2}$
consider $f_{1}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right)=\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right)^{\sigma_{1}-1} \exp \left(-t_{1}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right)\right) S_{N_{1}}^{M_{1}}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right)$
and $f_{2}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right)=\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right)^{\sigma_{2}-1} \exp \left(-t_{2}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right)\right) S_{N_{2}}^{M_{2}}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right)$
then from (2.3), we get
$\int_{0}^{\infty} \int_{0}^{\infty}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right)^{\sigma_{1}-1}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right)^{\sigma_{2}-1} \exp \left(-t_{1}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right)-t_{2}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right)\right)$
$S_{N_{1}}^{M_{1}}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right) S_{N_{2}}^{M_{2}}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}$
$=\frac{1}{K} \int_{0}^{\infty} u_{1}^{\sigma_{1}-1} \exp \left(-t_{1} u_{1}\right) S_{N_{1}}^{M_{1}}\left(u_{1}\right) \mathrm{d} u_{1} \int_{0}^{\infty} u_{2}^{\sigma_{2}-1} \exp \left(-t_{2} u_{2}\right) S_{N_{2}}^{M_{2}}\left(u_{2}\right) \mathrm{d} u_{2}$
On expressing the general class of polynomials occuring on the right hand side of (2.4) in terms of series with the help of (1.16) interchanging the order of integrals and summation in the result thus obtained and integrating the u_{1} and u_{2} integrals, we arrive with the help of a known formula (Gradshteyn and Ryzhik [1] 1980, p.317, eq.(3.381(14)), we get the desired result.

Second integral

$\int_{0}^{\infty} \int_{0}^{\infty}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right)^{\sigma_{1}-1}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right)^{\sigma_{2}-1} \exp \left(-t_{1}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right)-t_{2}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right)\right)$
$S_{N_{1}}^{M_{1}}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right) S_{N_{2}}^{M_{2}}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right) \aleph\left(z_{1}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right)^{\rho_{1}}, z_{2}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right)^{\rho_{2}}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}$

$\aleph_{U: W+1}^{0, n: V+1}\left(\begin{array}{c|ccc}\mathrm{z}_{1} t_{1}^{-\rho_{1}} & , \mathrm{~A}:\left(1-\sigma_{1}-k_{1} ; \rho_{1}\right), C_{1}: & \left(1-\sigma_{2}-k_{2} ; \rho_{2}\right), C_{2} \\ \cdot & \cdots & \cdots & \cdots \\ \cdot & \mathrm{~B}: & \cdots \cdots & \mathrm{D} \\ \mathrm{z}_{2} t_{2}^{-\rho_{2}} & \mathrm{~B} & \end{array}\right)$
where $V+1=m_{1}, n_{1}+1 ; m_{2}, n_{2}+1$ and $W+1=p_{i^{(1)}}+1, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, p_{i^{(2)}}+1, q_{i^{(2)}}, \tau_{i^{(2)}} ; R^{(2)}$

Provided that
$\rho_{i}>0, \operatorname{Re}\left(t_{i}\right)>0, i=1,2 ; \operatorname{Re}\left[\sigma_{i}+\rho_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>0, i=1,2 ;$ and $K=\left|\begin{array}{ll}a_{1}^{1} & a_{1}^{2} \\ a_{2}^{1} & a_{2}^{2}\end{array}\right| \neq 0$

Proof of (2.5)

If we first express the Aleph-function of two variables occuring in the left hand side of (2.5) in terms of mellin-barnes type contour integral, it reduces of interchanging the $\left(s_{1}, s_{2}\right)$ double integral and $\left(x_{1}, x_{2}\right)$ double integral to the following result after a slight simplification

$$
\begin{aligned}
& \frac{1}{(2 \pi \omega)^{2}} \int_{L_{1}} \int_{L_{2}} \psi\left(s_{1}, s_{2}\right) \theta_{1}\left(s_{1}\right) \theta_{2}\left(s_{2}\right) z_{1}^{s_{1}} z_{2}^{s_{2}} \int_{0}^{\infty} \int_{0}^{\infty} \exp \left(-t_{1}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right)-t_{2}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right)\right) \\
& \left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right)^{\rho_{1} s_{1}+\sigma_{1}-1}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right)^{\rho_{2} s_{2}+\sigma_{2}-1} S_{N_{1}}^{M_{1}}\left(a_{1}^{1} x_{1}+a_{2}^{1} x_{2}\right) S_{N_{2}}^{M_{2}}\left(a_{1}^{2} x_{1}+a_{2}^{2} x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} s_{1} \mathrm{~d} s_{2}
\end{aligned}
$$

Now evaluating the inner $\left(x_{1}, x_{2}\right)$ double integral with the help of (2.1) and reinterpreting the result so obtained in terms of the Aleph-function of two variables, we get the desired result after a little simplification.

Third integral

Let $X_{1}=\sum_{i=1}^{n} \lambda_{i}^{1} x_{i}, \cdots, X_{r}=\sum_{i=1}^{r} \lambda_{i}^{r} x_{i}$, we have the following result
$\int_{0}^{\infty} \cdots \int_{0}^{\infty} X_{1}^{\sigma_{1}-1} \cdots X_{r}^{\sigma_{r}-1} \exp \left(-\sum_{i=1}^{r} t_{i} X_{i}\right) S_{N_{1}, \cdots, N_{r}}^{M_{1}, \cdots, M_{r}}\left[e_{1} X_{1}^{v_{1}}, \cdots, e_{r} X_{r}^{v_{r}}\right]$
$\left.\aleph\left(z_{1} X_{1}^{\rho_{1}}, \cdots, z_{r} X_{r}^{\rho_{r}}\right)\right\} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{r}=\frac{1}{K} \sum_{k_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{k_{r}=0}^{\left[N_{r} / M_{r}\right]} A \prod_{i=1}^{r} t_{i}^{-\left(\sigma_{i}+v_{i} k_{i}\right)} e_{1}^{k_{1}} \cdots e_{r}^{k_{r}}$
$\aleph_{U: W+1}^{0, \mathfrak{n}: V+1}\left(\begin{array}{c|ccc}\mathrm{z}_{1} t_{1}^{-\rho_{1}} & \mathrm{~A}:\left(1-\sigma_{1}-v_{1} k_{1} ; \rho_{1}\right), C_{1}: \cdots:\left(1-\sigma_{r}-v_{r} k_{r} ; \rho_{r}\right), C_{r} \\ \cdot & \cdots \cdot & \cdots & \cdots \\ \cdot & \mathrm{~B}: & \cdots & \mathrm{D} \\ \mathrm{z}_{r} t_{r}^{-\rho_{r}} & & \cdots & \end{array}\right)$
where A is defined by (1.15) ; $K=\left|\begin{array}{ccc}\lambda_{1}^{1} & \cdots & \lambda_{r}^{1} \\ \cdots & & \\ \lambda_{1}^{r} & \ldots & \lambda_{r}^{r}\end{array}\right| \neq 0 ; V+1=m_{1}, n_{1}+1 ; \cdots ; m_{r}, n_{r}+1$ and $W+1=p_{i^{(1)}}+1, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}+1, q_{i^{(r)}}, \tau_{i^{(r)}} ; R^{(r)}$

Provided that $\rho_{i}>0, \operatorname{Re}\left(t_{i}\right)>0, i=1,2 ; \operatorname{Re}\left[\sigma_{i}+\rho_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>0, i=1, \cdots, r$

Proof of (2.6)

On making use the result given below (which is a r-variable analogue of (2.2))

$$
\int_{0}^{\infty} \cdots \int_{0}^{\infty} F\left(X_{1}, \cdots, X_{r}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{r}=\frac{1}{K} \int_{0}^{\infty} \cdots \int_{0}^{\infty} F\left(u_{1}, \cdots,, u_{r}\right) \mathrm{d} u_{1} \cdots \mathrm{~d} u_{r}
$$

Taking the definition of generalized polynomial given by (1.14) into consideration and proceeding in a manner indicated early in the proof of (2.5), we arrive at the desired result after simplications.

On account of the general nature of multivariable Aleph-function and the generalized class of polynomial $S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left[x_{1}, \cdots, x_{s}\right]$, the result given by (2.6) is capable of yielding numerous integrals involving products of several special functions and simple polynomials.

Special case

Let $. \tau_{i}=\tau_{i(1)}=\cdots=\tau_{i^{(r)}}=1$ The Multivariable Aleph-function degenere to the multivariable I-function defined by Sharma et al [2], and we obtain
$\int_{0}^{\infty} \cdots \int_{0}^{\infty} X_{1}^{\sigma_{1}-1} \cdots X_{r}^{\sigma_{r}-1} \exp \left(-\sum_{i=1}^{r} t_{i} X_{i}\right) S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left[e_{1} X_{1}^{v_{1}}, \cdots, e_{r} X_{r}^{v_{r}}\right]$
$\left.I\left(z_{1} X_{1}^{\rho_{1}}, \cdots, z_{r} X_{r}^{\rho_{r}}\right)\right\} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{r}=\frac{1}{K} \sum_{k_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{k_{r}=0}^{\left[N_{r} / M_{r}\right]} A \prod_{i=1}^{r} t_{i}^{-\left(\sigma_{i}+v_{i} k_{i}\right)} e_{1}^{k_{1}} \cdots e_{r}^{k_{r}}$
$I_{U: W+1}^{0, \mathfrak{n}: V+1}\left(\begin{array}{c|ccc}\mathrm{z}_{1} t_{1}^{-\rho_{1}} & \mathrm{~A}:\left(1-\sigma_{1}-v_{1} k_{1} ; \rho_{1}\right), C_{1}: \cdots:\left(1-\sigma_{r}-v_{r} k_{r} ; \rho_{r}\right), C_{r} \\ \cdot & \cdots \cdot & \cdots \\ \cdot & \mathrm{~B}: & \cdots \cdot & \mathrm{D} \\ \mathrm{z}_{r} t_{r}^{-\rho_{r}} & \mathrm{~B} & \cdots & \end{array}\right)$
where A is defined by (1.15) ; $K=\left|\begin{array}{ccc}\lambda_{1}^{1} & \cdots & \lambda_{r}^{1} \\ \cdots & & \\ \lambda_{1}^{r} & \cdots & \lambda_{r}^{r}\end{array}\right| \neq 0 ; V+1=m_{1}, n_{1}+1 ; \cdots ; m_{r}, n_{r}+1$
and $W+1=p_{i^{(1)}}+1, q_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}+1, q_{i^{(r)}} ; R^{(r)}$
Provided that $\rho_{i}>0, \operatorname{Re}\left(t_{i}\right)>0, i=1,2 ; \operatorname{Re}\left[\sigma_{i}+\rho_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>0, i=1, \cdots, r$

3. Conclusion

Due to the nature of the multivariable Aleph-function and the general class of polynomials $S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}$, we can get general product of Laguerre, Legendre, Jacobi and other polynomials, the special functions of one and several variables.

REFERENCES

[1]Gradshteyn I.S and Ryzhik I.N. Tables of integrals, series and products, Fourth ed. Academic. Press. New York (1965)
[2] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113116.
[3] Sharma K. On the integral representation and applications of the generalized function of two variables , International Journal of Mathematical Engineering and Sciences, Vol 3 , issue1 (2014) , page1-13.
[4] Srivastava H.M., A contour integral involving Fox's H-function. Indian J.Math. 14(1972), page1-6.
[5] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. Vol 77(1985), page183-191.
[6]Widder D. Advanced calculus. Prentice Hall (1989)

Personal adress : 411 Avenue Joseph Raynaud Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE

