On some multidimensional integral transforms of multivariable Aleph-functions I

F.Y. AYANT ${ }^{1}$
1 Teacher in High School, France

ABSTRACT
In this present document, we obtain multidimensional Laplace transforms and Whittaker transforms of Aleph-function of several variables. During the course of finding, we establish several particular cases.

Keywords :Multivariable Aleph-function, multidimensional Laplace transforms, multidimentional Whittaker transforms . Multivariable I-function, Aleph-function of two variables.

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1.Introduction and preliminaries.

The function Aleph of several variables generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [5], itself is an a generalisation of G and H -functions of multiple variables. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

We define $: \aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{p_{i}, q_{i}, \tau_{i} ; R: p_{i}(1), q_{i}(1), \tau_{i}(1) ; R^{(1)} ; \cdots ; p_{i(r)}, q_{i}(r) ; \tau_{i}(r) ; R^{(r)}}^{0, \mathfrak{n}: m_{1}, n_{1}, \cdots, m_{r}, n_{r}}\left(\begin{array}{c}\mathrm{y}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{y}_{r}\end{array}\right)$

$$
\begin{array}{cl}
{\left[\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, \mathfrak{n}}\right]} & ,\left[\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{\mathfrak{n}+1, p_{i}}\right]: \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . & ,\left[\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right]:
\end{array}
$$

$$
\begin{gathered}
\left.\left.\left[\left(\mathrm{c}_{j}^{(1)}\right) ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i(1)}\left(c_{j i(1)}^{(1)} ; \gamma_{j i(1)}^{(1)}\right)_{n_{1}+1, p_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{c}_{j}^{(r)}\right) ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right],\left[\tau_{i(r)}\left(c_{j i(r)}^{(r)} ; \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i}^{(r)}}\right] \\
\left.\left.\left.\left[\left(\mathrm{d}_{j}^{(1)}\right) ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right],\left[\tau_{i^{(1)}}\left(d_{j i(1)}^{(1)} ; \delta_{j i^{(1)}}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}\right] ; \cdots ;\left[\left(\mathrm{d}_{j}^{(r)}\right) ; \delta_{j}^{(r)}\right)_{1, m_{r}}\right],\left[\tau_{i(r)}\left(d_{j i(r)}^{(r)} ; \delta_{j i(r)}^{(r)}\right)_{m_{r}+1, q_{i}^{(r)}}\right]\right)
\end{gathered}
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) y_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.1}
\end{equation*}
$$

with $\omega=\sqrt{-} 1$
For more details, see Ayant [1].
The reals numbers τ_{i} are positives for $i=1, \cdots, R, \tau_{i^{(k)}}$ are positives for $i^{(k)}=1, \cdots, R^{(k)}$
The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{m_{k}} \delta_{j}^{(k)}-\tau_{i(k)}^{\sum_{j=m_{k}+1}^{q_{i(k)}} \delta_{j i^{(k)}}^{(k)}>0, \quad \text { with } k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)}} . \tag{1.2}
\end{align*}
$$

The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(y_{1}, \cdots, y_{r}\right)=0\left(\left|y_{1}\right|^{\alpha_{1}} \ldots\left|y_{r}\right|^{\alpha_{r}}\right), \max \left(\left|y_{1}\right| \ldots\left|y_{r}\right|\right) \rightarrow 0$
$\aleph\left(y_{1}, \cdots, y_{r}\right)=0\left(\left|y_{1}\right|^{\beta_{1}} \ldots\left|y_{r}\right|^{\beta_{r}}\right), \min \left(\left|y_{1}\right| \ldots\left|y_{r}\right|\right) \rightarrow \infty$
where, with $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and
$\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}$
We will use these following notations in this paper
$U=p_{i}, q_{i}, \tau_{i} ; R ; V=m_{1}, n_{1} ; \cdots ; m_{r}, n_{r}$
$W=p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i^{(r)}} ; R^{(r)}$
$A=\left\{\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, n}\right\},\left\{\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{n+1, p_{i}}\right\}$
$B=\left\{\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right\}$
$C_{1}=\left\{\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right\},\left\{\tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)} ; \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i}(1)}\right\}, \cdots$,
$C_{r}=\left\{\left(c_{j}^{(r)} ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right\},\left\{\tau_{i(r)}\left(c_{j i(r)}^{(r)} ; \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i}(r)}\right\}$
$\left.\left.D=\left\{\left(d_{j}^{(1)} ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right\}, \tau_{i(1)}\left(d_{j i(1)}^{(1)} ; \delta_{j i(1)}^{(1)}\right)_{m_{1}+1, q_{i}(1)}\right\}, \cdots,\left\{\left(d_{j}^{(r)} ; \delta_{j}^{(r)}\right)_{1, m_{r}}\right\}, \tau_{i(r)}\left(d_{j i(r)}^{(r)} ; \delta_{j i(r)}^{(r)}\right)_{m_{r}+1, q_{i}(r)}\right\}$
The multivariable Aleph-function write :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{U: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A}: \mathrm{C}_{1}: \cdots: C_{r} \\ \cdot & \mathrm{~A} \\ \cdot & \cdots \cdot \\ \cdot & \mathrm{~B}: \mathrm{D}\end{array}\right)$

2. Multivariable Laplace Transform

Chandel [2] introduced the multivariable Laplace transform
$L_{a_{1}, \cdots, a_{n}}^{\lambda, \mu}\{ \}=\frac{\Gamma\left(a_{1}+\cdots+a_{n}\right) \lambda^{a_{1}+\cdots+a_{n}+\mu}}{\Gamma\left(a_{1}\right) \cdots \Gamma\left(a_{n}\right) \Gamma\left(a_{1}+\cdots+a_{n}+\mu\right)} \int_{0}^{\infty} \cdots \int_{0}^{\infty} e^{-\lambda \sum_{i=1}^{n} x_{i}}\left(\sum_{i=1}^{n} x_{i}\right)^{\mu}$
$x_{1}^{a_{1}-1} \cdots x_{n}^{a_{n}-1}\{ \} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}$
Where $\operatorname{Re}\left(a_{i}\right)>0, j=1, \cdots, n, \operatorname{Re}(\lambda)>0$ and $\operatorname{Re}\left(a_{1}+\cdots+a_{n}+\mu\right)>0$
Here we give following additional application of the above operator
Let $X=\sum_{i=1}^{n} x_{i}, C_{1} \cdots, C_{n}$ are defined by (1.7) and (1.8), we have
$L_{a_{1}, \cdots, a_{n}}^{\lambda, \mu}\left\{\aleph\left(u_{1} x^{\sigma_{1}} X^{v_{1}}, \cdots, u_{n} x^{\sigma_{n}} X^{v_{n}}\right)\right\}=\frac{\Gamma\left(a_{1}+\cdots+a_{n}\right)}{\Gamma\left(a_{1}\right) \cdots \Gamma\left(a_{n}\right) \Gamma\left(a_{1}+\cdots+a_{n}+\mu\right)}$
$\aleph_{U_{11}: W+1}^{0, \mathfrak{n}+1: V+1}\left(\begin{array}{c|c}\mathrm{u}_{1} / \lambda^{\sigma_{1}+v_{1}} \\ \cdot & \left(1-\sum_{i=1}^{n} a_{i}-\mu: \sigma_{1}+v_{1}, \cdots, \sigma_{n}+v_{n}\right), A:\left(1-\mathrm{a}_{1} ; \sigma_{1}\right), C_{1}: \cdots: \\ \dot{\cdot} & \cdots \\ \mathrm{u}_{n} / \lambda^{\sigma_{n}+v_{n}} & \left(1-\sum_{i=1}^{n} a_{i}: \sigma_{1}, \cdots, \sigma_{n}\right), B: \\ \cdots\end{array}\right.$
$\left.\begin{array}{c}\left(1-\mathrm{a}_{n} ; \sigma_{n}\right), C_{n} \\ \ldots \\ \mathrm{D}\end{array}\right)$
where $U_{11}=p_{i}+1, q_{i}+1, \tau_{i} ; R ; V+1=m_{1}, n_{1}+1 ; \cdots ; m_{r}, n_{r}+1$
and $W+1=p_{i^{(1)}}+1, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}+1, q_{i^{(r)}}, \tau_{i^{(r)}} ; R^{(r)}$
Provided $\operatorname{Re}\left(a_{i}\right)>0, j=1, \cdots, n, \operatorname{Re}(\lambda)>0$ and $\operatorname{Re}\left(a_{1}+\cdots+a_{n}+\mu\right)>0$
and $\left|\arg u_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is defined by (1.2) ; $\sigma_{i}, v_{i}>0$
Proof of (2.2) : Let $M=\frac{1}{(2 \pi \omega)^{n}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{n}\right) \prod_{k=1}^{n} \theta_{k}\left(s_{k}\right)$, we have
$L_{a_{1}, \cdots, a_{n}}^{\lambda, \mu}\left\{\aleph\left(u_{1} x^{\sigma_{1}} X^{v_{1}}, \cdots, u_{n} x^{\sigma_{n}} X^{v_{n}}\right)\right\}=L_{a_{1}, \cdots, a_{n}}^{\lambda, \mu}\left\{M\left\{\prod_{k=1}^{n}\left(u_{i} x^{\sigma_{i}} X^{v_{i}}\right)^{s_{i}}\right\} \mathrm{d} s_{1} \cdots \mathrm{~d} s_{n}\right\}$
We interchange the order of integrations (which is permissible under the conditions stated), we obtain
$M\left\{L_{a_{1}, \cdots, a_{n}}^{\lambda, \mu}\left\{\prod_{k=1}^{n}\left(u_{i} x^{\sigma_{i}} X^{v_{i}}\right)^{s_{i}}\right\}\right\} \mathrm{d} s_{1} \cdots \mathrm{~d} s_{n}$
Now evaluating the inner multiple Laplace integral,see [1], after simplifications and on reinterpreting the Mellin-Barnes contour integral, we get the desired result

3. Generalized Whittaker transforms

Chandel and Dwivedi [3] and [4] introduced the multivariable Whittaker transform
$W_{a_{1}, \cdots, a_{n}, \sigma}^{\lambda, \mu, v}\{ \}=\frac{\Gamma\left(\sum_{i=1}^{n} a_{i}+\sigma+1-\mu\right) \Gamma\left(\sum_{i=1}^{n} a_{i}\right) \lambda^{\sum_{i=1}^{n} a_{i}}}{\Gamma\left(a_{1}\right) \cdots \Gamma\left(a_{n}\right) \Gamma\left(\sigma+\sum_{i=1}^{n} a_{i}+1 / 2 \pm v\right)}$
$\int_{0}^{\infty} \cdots \int_{0}^{\infty} x_{1}^{a_{1}-1} \cdots x_{n}^{a_{n}-1} e^{-\lambda\left(\sum_{i=1}^{n} x_{i}\right) / 2}\left(\sum_{i=1}^{n} x_{i}\right)^{\sigma} W_{\mu, v}\left(\lambda \sum_{i=1}^{n} x_{i}\right)\{ \} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}$
where $\operatorname{Re}\left(a_{i}\right)>0, j=1, \cdots, n, \operatorname{Re}(\lambda)>0$ and $\operatorname{Re}\left(\sigma+1 / 2+a_{1}+\cdots+a_{n} \pm v\right)>0$
Here we give following additional application of the above operator
Let $X=\sum_{i=1}^{n} x_{i}, C_{1} \cdots, C_{n}$ are defined by (1.7) and (1.8), we have
$W_{a_{1}, \cdots, a_{n}, \sigma}^{\lambda, \mu, v}\left\{\aleph\left(u_{1} x^{\sigma_{1}} X^{\rho_{1}}, \cdots, u_{n} x^{\sigma_{n}} X^{\rho_{n}}\right)\right\}=\frac{\Gamma\left(\sum_{i=1}^{n} a_{i}+\sigma+1-\mu\right) \Gamma\left(\sum_{i=1}^{n} a_{i}\right)}{\Gamma\left(a_{1}\right) \cdots \Gamma\left(a_{n}\right) \Gamma\left(\sigma+\sum_{i=1}^{n} a_{i}+1 / 2 \pm v\right)}$
$\aleph_{U_{22}: W+1}^{0, \mathfrak{n}+2: V+1}\left(\begin{array}{c|c}\mathrm{u}_{1} / \lambda^{\sigma_{1}+\rho_{1}} & \left(1 / 2-\sum_{i=1}^{n} a_{i}-(\sigma \pm v): \sigma_{1}+\rho_{1}, \cdots, \sigma_{n}+\rho_{n}\right), \\ \cdot & \cdot \\ \dot{u_{n}} / \lambda^{\sigma_{n}+\rho_{n}} & \left(\mu-\sigma-\sum_{i=1}^{n} a_{i}: \sigma_{1}+\rho_{1}, \cdots, \sigma_{n}+\rho_{n}\right),\end{array}\right.$
$\left.\begin{array}{ccc}\text { A : } & \left(1-\mathrm{a}_{1} ; \sigma_{1}\right), C_{1}: \cdots:\left(1-\mathrm{a}_{n} ; \sigma_{n}\right), C_{n} \\ \cdots & \cdots & \cdots \\ \left(1-\sum_{i=1}^{n} a_{i}: \sigma_{1}, \cdots, \sigma_{n}\right), B: & \cdots \cdots & \mathrm{D}\end{array}\right)$
where $U_{22}=p_{i}+2, q_{i}+2, \tau_{i} ; R ; V+1=m_{1}, n_{1}+1 ; \cdots ; m_{r}, n_{r}+1$
and $W+1=p_{i^{(1)}}+1, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}+1, q_{i^{(r)}}, \tau_{i^{(r)}} ; R^{(r)}$
Provided $\operatorname{Re}\left(a_{i}\right)>0, j=1, \cdots, n, \operatorname{Re}(\lambda)>0$ and $\operatorname{Re}\left(\sigma+1 / 2+a_{1}+\cdots+a_{n} \pm v\right)>0$
and $\left|\arg u_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi, \quad$ where $A_{i}^{(k)}$ is defined by (1.2) $\sigma_{i}, \rho_{i}>0$
Proof of (3.2) : Let $M=\frac{1}{(2 \pi \omega)^{n}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{n}\right) \prod_{k=1}^{n} \theta_{k}\left(s_{k}\right)$, we have
$W_{a_{1}, \cdots, a_{n}, \sigma}^{\lambda, \mu, v}\left\{\aleph\left(u_{1} x^{\sigma_{1}} X^{v_{1}}, \cdots, u_{n} x^{\sigma_{n}} X^{v_{n}}\right)\right\}=W_{a_{1}, \cdots, a_{n}, \sigma}^{\lambda, \mu, v}\left\{M\left\{\prod_{k=1}^{n}\left(u_{i} x^{\sigma_{i}} X^{\rho_{i}}\right)^{s_{i}}\right\} \mathrm{d} s_{1} \cdots \mathrm{~d} s_{n}\right\}$
We interchange the order of integrations (which is permissible under the conditions stated), we obtain
$M\left\{W_{a_{1}, \cdots, a_{n}, \sigma}^{\lambda, \mu, v}\left\{\prod_{k=1}^{n}\left(u_{i} x^{\sigma_{i}} X^{\rho_{i}}\right)^{s_{i}}\right\}\right\} \mathrm{d} s_{1} \cdots \mathrm{~d} s_{n}$
Now evaluating the inner multiple Whittaker integral, see [2], after simplifications and on reinterpreting the MellinBarnes contour integral, we get the desired result

Special cases of (3.2)
a) For $\sigma_{1}=\cdots \sigma_{n}=0$, we derive from (3.2)
$W_{a_{1}, \cdots, a_{n}, \sigma}^{\lambda, \mu, v}\left\{\aleph\left(u_{1} X^{\rho_{1}}, \cdots, u_{n} X^{\rho_{n}}\right)\right\}=\frac{\Gamma\left(\sum_{i=1}^{n} a_{i}+\sigma+1-\mu\right) \Gamma\left(\sum_{i=1}^{n} a_{i}\right)}{\Gamma\left(a_{1}\right) \cdots \Gamma\left(a_{n}\right) \Gamma\left(\sigma+\sum_{i=1}^{n} a_{i}+1 / 2 \pm v\right)}$
$\aleph_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|cc}\mathrm{u}_{1} / \lambda^{\rho_{1}} & \left(1 / 2-\sum_{i=1}^{n} a_{i}-(\sigma \pm v): \rho_{1}, \cdots, \rho_{n}\right), & , \\ \cdot & \cdots \\ \cdot & \left(\mu-\sigma-\sum_{i=1}^{n} a_{i}: \rho_{1}, \cdots, \rho_{n}\right), & \left(1-\sum_{i=1}^{n} a_{i}: \sigma_{1}, \cdots, \sigma_{n}\right),\end{array}\right.$
$\left.\begin{array}{cccc}\mathrm{A}: & \mathrm{C}_{1}: \cdots & \mathrm{C}_{n} \\ \cdots & \cdots & \cdots \\ \mathrm{~B}: \ldots & \cdots & \mathrm{D}\end{array}\right)$
where $U_{21}=p_{i}+2, q_{i}+1, \tau_{i} ; R ; \quad$ Provided $\operatorname{Re}\left(a_{i}\right)>0, j=1, \cdots, n, \operatorname{Re}(\lambda)>0$ and
$\operatorname{Re}\left(\sigma+1 / 2+a_{1}+\cdots+a_{n} \pm v\right)>0$
and $\left|\arg u_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is defined by (1.2) $\rho_{i}>0$
a) For $\rho_{1}=\cdots \rho_{n}=0$, we derive from (3.2)
$W_{a_{1}, \cdots, a_{n}, \sigma}^{\lambda, \mu, v}\left\{\aleph\left(u_{1} x^{\sigma_{1}}, \cdots, u_{n} x^{\sigma_{n}}\right)\right\}=\frac{\Gamma\left(\sum_{i=1}^{n} a_{i}+\sigma+1-\mu\right) \Gamma\left(\sum_{i=1}^{n} a_{i}\right)}{\Gamma\left(a_{1}\right) \cdots \Gamma\left(a_{n}\right) \Gamma\left(\sigma+\sum_{i=1}^{n} a_{i}+1 / 2 \pm v\right)}$
$\aleph_{U_{22}: W+1}^{0, \mathfrak{n}+2: V+1}\left(\begin{array}{c|cc}\mathrm{u}_{1} / \lambda^{\sigma_{1}} \\ \cdot & \left(1 / 2-\sum_{i=1}^{n} a_{i}-(\sigma \pm v): \sigma_{1}, \cdots, \sigma_{n}\right), & \mathrm{A}: \\ \cdot & \cdots & \cdots \\ \mathrm{u}_{n} / \lambda^{\sigma_{n}} & \left(\mu-\sigma-\sum_{i=1}^{n} a_{i}: \sigma_{1}, \cdots, \sigma_{n}\right), & \left(1-\sum_{i=1}^{n} a_{i}: \sigma_{1}, \cdots, \sigma_{n}\right), B:\end{array}\right.$
$\left.\begin{array}{cc}\left(1-\mathrm{a}_{1} ; \sigma_{1}\right), C_{1}: \cdots:\left(1-\mathrm{a}_{n} ; \sigma_{n}\right), C_{n} \\ \cdots & \cdots \\ \cdots \cdots & \mathrm{D}\end{array}\right)$
where $U_{22}=p_{i}+2, q_{i}+2, \tau_{i} ; R ; V+1=m_{1}, n_{1}+1 ; \cdots ; m_{r}, n_{r}+1$
and $W+1=p_{i^{(1)}}+1, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}+1, q_{i^{(r)}}, \tau_{i^{(r)}} ; R^{(r)}$
Provided $\operatorname{Re}\left(a_{i}\right)>0, j=1, \cdots, n, \operatorname{Re}(\lambda)>0$ and $\operatorname{Re}\left(\sigma+1 / 2+a_{1}+\cdots+a_{n} \pm v\right)>0$
and $\left|\operatorname{argu}_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is defined by (1.2) $\sigma_{i}>0$

4. Other Multidimentional Whittaker transform

Chandel and Dwivedi [4] introduced and studied the multidimensional Whittaker transform
$T_{\beta_{1}, \cdots, \beta_{n}, \sigma}^{\lambda, \mu, v}\{ \}=\frac{K \lambda^{\sigma+\sum_{i=1}^{n} \beta_{j}} \Gamma\left(\sum_{i=1}^{n} \beta_{i}+\sigma+1-\mu\right) \Gamma\left(\sum_{i=1}^{n} \beta_{i}\right)}{\Gamma\left(\beta_{1}\right) \cdots \Gamma\left(\beta_{n}\right) \Gamma\left(\sigma+\sum_{i=1}^{n} \beta_{i}+1 / 2 \pm v\right)} \int_{0}^{\infty} \cdots \int_{0}^{\infty}$
$\prod_{j=1}^{n}\left(\sum_{i=1}^{n} a_{i}^{j} x_{i}\right)^{\beta_{j}-1} e^{-\lambda\left(\sum_{j, i=1}^{n} a_{i}^{j} x_{i}\right) / 2} \sum_{j, i=1}^{n}\left(a_{i}^{j} x_{i}\right)^{\sigma} W_{\mu, v}\left(\lambda \sum_{j, i=1}^{n} a_{i}^{j} x_{i}\right)\{ \} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}$
where $\operatorname{Re}\left(\beta_{i}\right)>0, j=1, \cdots, n, \operatorname{Re}(\lambda)>0$ and $\operatorname{Re}\left(\sigma+1 / 2+\beta_{1}+\cdots+\beta_{n} \pm v\right)>0$,
$\operatorname{Re}\left(\sigma+1+\beta_{1}+\cdots+\beta_{n}-\mu\right)>0$ and $K=\left|\begin{array}{ccc}a_{1}^{1} & \cdots & a_{n}^{1} \\ \cdots & & \\ a_{1}^{n} & \cdots & a_{n}^{n}\end{array}\right| \neq 0$
Let $X_{1}=\sum_{i=1}^{n} a_{i}^{1} x_{i}, \cdots, X_{n}=\sum_{i=1}^{n} a_{i}^{n} x_{i}$
$T_{\beta_{1}, \cdots, \beta_{n}, \sigma}^{\lambda, \mu, v}\left\{\aleph\left(u_{1} X_{1}^{\eta_{1}}, \cdots, u_{n} X_{n}^{\eta_{n}}\right)\right\}=\frac{K \lambda^{\sigma+\sum_{i=1}^{n} \beta_{j}} \Gamma\left(\sum_{i=1}^{n} \beta_{i}+\sigma+1-\mu\right) \Gamma\left(\sum_{i=1}^{n} \beta_{i}\right)}{\Gamma\left(\beta_{1}\right) \cdots \Gamma\left(\beta_{n}\right) \Gamma\left(\sigma+\sum_{i=1}^{n} \beta_{i}+1 / 2 \pm v\right)}$
$\aleph_{U_{22}: W+1}^{0, \mathfrak{n}+2: V+1}\left(\begin{array}{c|cc}\mathrm{u}_{1} / \lambda^{\eta_{1}} & \left(1 / 2-(\sigma \pm v)-\sum_{i=1}^{n} \beta_{i}: \eta_{1}, \cdots, \eta_{n}\right), & \mathrm{A}: \\ \cdot & \cdots \cdot \\ \dot{\mathrm{u}_{n}} / \lambda^{\eta_{n}} & \left(\mu-\sigma-\sum_{i=1}^{n} \beta_{i}: \eta_{1}, \cdots, \eta_{n}\right), & \left(1-\sum_{i=1}^{n} \beta_{i}: \eta_{1}, \cdots, \eta_{n}\right), B:\end{array}\right.$
$\left.\begin{array}{cc}\left(1-\beta_{1} ; \sigma_{1}\right), C_{1}: \cdots:\left(1-\beta_{n} ; \sigma_{n}\right), C_{n} \\ \cdots & \cdots \\ \cdots \cdots & \mathrm{D}\end{array}\right)$
where $U_{22}=p_{i}+2, q_{i}+2, \tau_{i} ; R ; V+1=m_{1}, n_{1}+1 ; \cdots ; m_{r}, n_{r}+1$
and $W+1=p_{i^{(1)}}+1, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}+1, q_{i^{(r)}}, \tau_{i^{(r)}} ; R^{(r)}$
Provided $\operatorname{Re}\left(a_{i}\right)>0, j=1, \cdots, n, \operatorname{Re}(\lambda)>0$ and $\operatorname{Re}\left(\sigma+1 / 2+a_{1}+\cdots+a_{n} \pm v\right)>0$
$\operatorname{Re}\left(\sigma+1+\beta_{1}+\cdots+\beta_{n}-\mu\right)>0$ and $K=\left|\begin{array}{ccc}a_{1}^{1} & \cdots & a_{n}^{1} \\ \cdots & & \\ a_{1}^{n} & \cdots & a_{n}^{n}\end{array}\right| \neq 0$
and $\left|\arg u_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is defined by (1.2) $\sigma_{i}>0$
Proof of (4.2) : Let $M=\frac{1}{(2 \pi \omega)^{n}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{n}\right) \prod_{k=1}^{n} \theta_{k}\left(s_{k}\right)$, we have
$T_{\beta_{1}, \cdots, \beta_{n}, \sigma}^{\lambda, \mu, v}\left\{\aleph\left(u_{1} x^{\sigma_{1}} X^{v_{1}}, \cdots, u_{n} x^{\sigma_{n}} X^{v_{n}}\right)\right\}=T_{\beta_{1}, \cdots, \beta_{n}, \sigma}^{\lambda, \mu, v}\left\{M\left\{\prod_{k=1}^{n}\left(u_{i} x^{\sigma_{i}} X^{\eta_{i}}\right)^{s_{i}}\right\} \mathrm{d} s_{1} \cdots \mathrm{~d} s_{n}\right\}$
We interchange the order of integrations (which is permissible under the conditions stated), we obtain
$M\left\{T_{\beta_{1}, \cdots, \beta_{n}, \sigma}^{\lambda, \mu, v}\left\{\prod_{k=1}^{n}\left(u_{i} x^{\sigma_{i}} X^{\eta_{i}}\right)^{s_{i}}\right\}\right\} \mathrm{d} s_{1} \cdots \mathrm{~d} s_{n}$
Now evaluating the inner multiple Whittaker integral, see [3], after simplifications and on reinterpreting the MellinBarnes contour integral, we get the desired result.

$$
\begin{aligned}
& \text { Let } X_{1}=\sum_{i=1}^{n} a_{i}^{1} x_{i}, \cdots, X_{n}=\sum_{i=1}^{n} a_{i}^{n} x_{i} \text { and } X_{n n}=\sum_{j, i=1}^{n} a_{i}^{j} x_{i, \text { we have }} \\
& T_{\beta_{1}, \cdots, \beta_{n}, \sigma}^{\lambda, \mu, v}\left\{\aleph\left(u_{1} X_{1}^{\eta_{1}} X_{n n}^{\zeta_{1}}, \cdots, u_{n} X_{n}^{\eta_{n}} X_{n n}^{\zeta_{n}}\right)\right\}=\frac{K \lambda^{\sigma+\sum_{i=1}^{n} \beta_{j}} \Gamma\left(\sum_{i=1}^{n} \beta_{i}+\sigma+1-\mu\right) \Gamma\left(\sum_{i=1}^{n} \beta_{i}\right)}{\Gamma\left(\beta_{1}\right) \cdots \Gamma\left(\beta_{n}\right) \Gamma\left(\sigma+\sum_{i=1}^{n} \beta_{i}+1 / 2 \pm v\right)} \\
& \aleph_{U_{22}: W+1}^{0, n+2: V+1}\left(\begin{array}{c}
\mathrm{u}_{1} / \lambda^{\eta_{1}+\zeta_{1}} \\
\cdot \\
\cdot \\
\mathrm{u}_{n} / \lambda^{\eta_{n}+\zeta_{n}}
\end{array} \left\lvert\, \begin{array}{c}
\left(1 / 2-(\sigma \pm v)-\sum_{i=1}^{n} \beta_{i}: \eta_{1}+\zeta_{1}, \cdots, \eta_{n}+\zeta_{n}\right), \\
\\
\left(\mu-\sigma-\sum_{i=1}^{n} \beta_{i}: \eta_{1}+\zeta_{1}, \cdots, \eta_{n}+\zeta_{n}\right),
\end{array}\right.\right.
\end{aligned}
$$

$$
\left.\begin{array}{ccc}
\mathrm{A}: & \left(1-\beta_{1} ; \sigma_{1}\right), C_{1}: \cdots:\left(1-\beta_{n} ; \sigma_{n}\right): C_{n} \tag{4.3}\\
\cdots \cdot & \cdots & \cdots \\
\left(1-\sum_{i=1}^{n} \beta_{i}: \eta_{1}, \cdots, \eta_{n}\right), B: & \cdots \cdots & \mathrm{D}
\end{array}\right)
$$

where $U_{22}=p_{i}+2, q_{i}+2, \tau_{i} ; R ; V+1=m_{1}, n_{1}+1 ; \cdots ; m_{r}, n_{r}+1$
and $W+1=p_{i^{(1)}}+1, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}+1, q_{i^{(r)}}, \tau_{i^{(r)}} ; R^{(r)}$
Provided $\operatorname{Re}\left(a_{i}\right)>0, j=1, \cdots, n, \operatorname{Re}(\lambda)>0$ and $\operatorname{Re}\left(\sigma+1 / 2+a_{1}+\cdots+a_{n} \pm v\right)>0$
$\operatorname{Re}\left(\sigma+1+\beta_{1}+\cdots+\beta_{n}-\mu\right)>0$ and $K=\left|\begin{array}{ccc}a_{1}^{1} & \cdots & a_{n}^{1} \\ \cdots & & \\ a_{1}^{n} & \cdots & a_{n}^{n}\end{array}\right| \neq 0$
and $\left|\arg u_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is defined by (1.5) $\sigma_{i}>0$. To prove (4.3), the method is similar that (4.2).

5. Multivariable I-function

In these section, we get several multidimensional transforms concerning the multivariable I-function defined by Sharma et al [5] Let $\tau_{i}=\tau_{i^{(1)}}=\cdots=\tau_{i^{(r)}}=1$, we have the following relations.
a) $L_{a_{1}, \cdots, a_{n}}^{\lambda, \mu}\left\{I\left(u_{1} x^{\sigma_{1}} X^{v_{1}}, \cdots, u_{n} x^{\sigma_{n}} X^{v_{n}}\right)\right\}=\frac{\Gamma\left(a_{1}+\cdots+a_{n}\right)}{\Gamma\left(a_{1}\right) \cdots \Gamma\left(a_{n}\right) \Gamma\left(a_{1}+\cdots+a_{n}+\mu\right)}$
$I_{U_{11}: W+1}^{0, n+1: V+1}\left(\begin{array}{c|c}\mathrm{u}_{1} / \lambda^{\sigma_{1}+v_{1}} & \left(1-\sum_{i=1}^{n} a_{i}-\mu: \sigma_{1}+v_{1}, \cdots, \sigma_{n}+v_{n}\right), A^{\prime}:\left(1-\mathrm{a}_{1} ; \sigma_{1}\right), C_{1}^{\prime}: \cdots: \\ \cdot & \cdots \\ \dot{u}_{n} / \lambda^{\sigma_{n}+v_{n}} & \left(1-\sum_{i=1}^{n} a_{i}: \sigma_{1}, \cdots, \sigma_{n}\right), B^{\prime}: \\ \cdots & \cdots\end{array}\right.$
$\left.\begin{array}{c}\left(1-\mathrm{a}_{n} ; \sigma_{n}\right), C_{n}^{\prime} \\ \cdots \\ \mathrm{D}^{\prime}\end{array}\right)$
where $L_{a_{1}, \cdots, a_{n}}^{\lambda, \mu}\{ \}$ is the multivariable Laplace transform defined by Chandel [1] and $X=\sum_{i=1}^{n} x_{i}$
which holds true under the same conditions from (2.2)
b) $W_{a_{1}, \cdots, a_{n}, \sigma}^{\lambda, \mu, v}\left\{I\left(u_{1} x^{\sigma_{1}} X^{\rho_{1}}, \cdots, u_{n} x^{\sigma_{n}} X^{\rho_{n}}\right)\right\}=\frac{\Gamma\left(\sum_{i=1}^{n} a_{i}+\sigma+1-\mu\right) \Gamma\left(\sum_{i=1}^{n} a_{i}\right)}{\Gamma\left(a_{1}\right) \cdots \Gamma\left(a_{n}\right) \Gamma\left(\sigma+\sum_{i=1}^{n} a_{i}+1 / 2 \pm v\right)}$
$I_{U_{22}: W+1}^{0, \mathfrak{n}+2: V+1}\left(\begin{array}{c|c}\mathrm{u}_{1} / \lambda^{\sigma_{1}+\rho_{1}} \\ \cdot \\ \cdot & \left(1 / 2-\sum_{i=1}^{n} a_{i}-(\sigma \pm v): \sigma_{1}+\rho_{1}, \cdots, \sigma_{n}+\rho_{n}\right), \\ \mathrm{u}_{n} / \lambda^{\sigma_{n}+\rho_{n}} & \left(\mu-\sigma+\sum_{i=1}^{n} a_{i}: \sigma_{1}+\rho_{1}, \cdots, \sigma_{n}+\rho_{n}\right),\end{array}\right.$
$\left.\begin{array}{ccc}\mathrm{A}^{\prime}: & \left(1-\mathrm{a}_{1} ; \sigma_{1}\right), C_{1}^{\prime}: \cdots:\left(1-\mathrm{a}_{n} ; \sigma_{n}\right), C_{n}^{\prime} \\ \cdots & \cdots & \cdots \\ \left(1-\sum_{i=1}^{n} a_{i}: \sigma_{1}, \cdots, \sigma_{n}\right), B^{\prime}: & \cdots \cdots & \mathrm{D}^{\prime}\end{array}\right)$
where $W_{a_{1}, \cdots, a_{n}, \sigma}^{\lambda, \mu, v}\{ \}$ is multivariable Whittaker transform defined by Chandel and Dwivedi [2] and [3] and $X=\sum_{i=1}^{n} x_{i}$ which holds true under the same conditions from (3.2)
c) $T_{\beta_{1}, \cdots, \beta_{n}, \sigma}^{\lambda, \mu, v}\left\{I\left(u_{1} X_{1}^{\eta_{1}}, \cdots, u_{n} X_{n}^{\eta_{n}}\right)\right\}=\frac{K \lambda^{\sigma+\sum_{i=1}^{n} \beta_{j}} \Gamma\left(\sum_{i=1}^{n} \beta_{i}+\sigma+1-\mu\right) \Gamma\left(\sum_{i=1}^{n} \beta_{i}\right)}{\Gamma\left(\beta_{1}\right) \cdots \Gamma\left(\beta_{n}\right) \Gamma\left(\sigma+\sum_{i=1}^{n} \beta_{i}+1 / 2 \pm v\right)}$
$I_{U_{22}: W+1}^{0, \mathfrak{n}+2: V+1}\left(\begin{array}{c|cc}\mathrm{u}_{1} / \lambda^{\eta_{1}} \\ \cdot & \left(1 / 2-(\sigma \pm v)-\sum_{i=1}^{n} \beta_{i}: \eta_{1}, \cdots, \eta_{n}\right), & \mathrm{A}: \\ \cdot & \cdots \\ \mathrm{u}_{n} / \lambda^{\eta_{n}} & \left.\left(\mu-\sigma-\sum_{i=1}^{n} \beta_{i}\right): \eta_{1}, \cdots, \eta_{n}\right), & \left(1-\sum_{i=1}^{n} \beta_{i}: \eta_{1}, \cdots, \eta_{n}\right), B:\end{array}\right.$
$\left.\begin{array}{cc}\left(1-\beta_{1} ; \sigma_{1}\right), C_{1}: \cdots:\left(1-\beta_{n} ; \sigma_{n}\right): C_{n} \\ \cdots & \cdots \\ \cdots \cdots & \mathrm{D}\end{array}\right)$
where $T_{\beta_{1}, \cdots, \beta_{n}, \sigma}^{\lambda, \mu, v}\{ \}$ is multivariable Whittaker transform defined by Chandel and Dwivedi [4], and
$X_{1}=\sum_{i=1}^{n} a_{i}^{1} x_{i}, \cdots, X_{n}=\sum_{i=1}^{n} a_{i}^{n} x_{i} \quad$ which holds true under the same conditions from (3.2)
d) $T_{\beta_{1}, \cdots, \beta_{n}, \sigma}^{\lambda, \mu, v}\left\{I\left(u_{1} X_{1}^{\eta_{1}} X_{n n}^{\zeta_{1}}, \cdots, u_{n} X_{n}^{\eta_{n}} X_{n n}^{\zeta_{n}}\right)\right\}=\frac{K \lambda^{\sigma+\sum_{i=1}^{n} \beta_{j}} \Gamma\left(\sum_{i=1}^{n} \beta_{i}+\sigma+1-\mu\right) \Gamma\left(\sum_{i=1}^{n} \beta_{i}\right)}{\Gamma\left(\beta_{1}\right) \cdots \Gamma\left(\beta_{n}\right) \Gamma\left(\sigma+\sum_{i=1}^{n} \beta_{i}+1 / 2 \pm v\right)}$
$I_{U_{22}: W+1}^{0, \mathfrak{n}+2: V+1}\left(\begin{array}{c|c}\mathrm{u}_{1} / \lambda^{\eta_{1}+\zeta_{1}} & \left(1 / 2-(\sigma \pm v)-\sum_{i=1}^{n} \beta_{i}: \eta_{1}+\zeta_{1}, \cdots, \eta_{n}+\zeta_{n}\right), \\ \cdot & \cdots \\ \cdot \\ \mathrm{u}_{n} / \lambda^{\eta_{n}+\zeta_{n}} & \left.\left(\mu-\sigma-\sum_{i=1}^{n} \beta_{i}\right): \eta_{1}+\zeta_{1}, \cdots, \eta_{n}+\zeta_{n}\right),\end{array}\right.$
$\left.\begin{array}{ccc}\text { A : } & \left(1-\beta_{1} ; \sigma_{1}\right), C_{1}: \cdots:\left(1-\beta_{n} ; \sigma_{n}\right): C_{n} \\ \cdots \cdot & \cdots & \cdots \\ \left(1-\sum_{i=1}^{n} \beta_{i}: \eta_{1}, \cdots, \eta_{n}\right), B: & \cdots \cdots & \mathrm{D}\end{array}\right)$
where $W_{a_{1}, \cdots, a_{n}, \sigma}^{\lambda, \mu, v}\{ \}$ is multivariable Whittaker transform defined by Chandel and Dwivedi [3] and [4] and $X_{1}=\sum_{i=1}^{n} a_{i}^{1} x_{i}, \cdots, X_{n}=\sum_{i=1}^{n} a_{i}^{n} x_{i}$ and Let $X_{n n}=\sum_{j, i=1}^{n} a_{i}^{j} x_{i}$ which holds true under the same conditions

from (4.2)

6. Aleph-function of two variables

In these section, we get several multidimensional transforms concerning oncerning the Aleph-function of two variables defined by K. Sharma [6].
a) $L_{a_{1}, a_{2}}^{\lambda, \mu}\left\{\aleph\left(u_{1} x^{\sigma_{1}} X^{v_{1}}, u_{2} x^{\sigma_{2}} X^{v_{2}}\right)\right\}=\frac{\Gamma\left(a_{1}+a_{2}\right)}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right) \Gamma\left(a_{1}+a_{2}+\mu\right)} \aleph_{U_{11}: W+1}^{0, \mathfrak{n}+1: V+1}\left(\begin{array}{c}\mathrm{u}_{1} / \lambda^{\sigma_{1}+v_{1}} \\ \cdot \\ \dot{\cdot} \\ \mathrm{u}_{2} / \lambda^{\sigma_{2}+v_{2}}\end{array}\right)$
$\left.\begin{array}{ccc}\left(1-\sum_{i=1}^{2} a_{i}-\mu: \sigma_{1}+v_{1}, \sigma_{2}+v_{2}\right), A^{\prime \prime}:\left(1-\mathrm{a}_{1} ; \sigma_{1}\right), C_{1}^{\prime \prime}:\left(1-\mathrm{a}_{2} ; \sigma_{2}\right), C_{2}^{\prime \prime} \\ \cdots & \cdots & \cdots \cdots \\ \left(1-\sum_{i=1}^{2} a_{i}: \sigma_{1}, \sigma_{2}\right), B^{\prime \prime}: & \cdots \cdots & \mathrm{D}^{\prime \prime}\end{array}\right)$
where $L_{a_{1}, a_{2}}^{\lambda, \mu}\{ \}$ is the doubleLaplace transform and $X=\sum_{i=1}^{2} x_{i}$ which holds true under the same conditions from (2.2) with $n=2$
b) $W_{a_{1}, a_{2}, \sigma}^{\lambda, \mu, v}\left\{\aleph\left(u_{1} x^{\sigma_{1}} X^{\rho_{1}}, u_{2} x^{\sigma_{2}} X^{\rho_{2}}\right)\right\}=\frac{\Gamma\left(\sum_{i=1}^{2} a_{i}+\sigma+1-\mu\right) \Gamma\left(\sum_{i=1}^{2} a_{i}\right)}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right) \Gamma\left(\sigma+\sum_{i=1}^{2} a_{i}+1 / 2 \pm v\right)}$
$\aleph_{U_{2}: W+1}^{0, \mathfrak{n}+2: V+1}\left(\begin{array}{c|cc}\mathrm{u}_{1} / \lambda^{\sigma_{1}+\rho_{1}} \\ \cdot & \left(1 / 2-\sum_{i=1}^{2} a_{i}-(\sigma \pm v): \sigma_{1}+\rho_{1}, \sigma_{2}+\rho_{2}\right), & \mathrm{A}^{\prime \prime}: \\ \cdot & \cdots \\ \mathrm{u}_{2} / \lambda^{\sigma_{2}+\rho_{2}} & \left(\mu-\sigma+\sum_{i=1}^{2} a_{i}: \sigma_{1}+\rho_{1}, \sigma_{2}+\rho_{2}\right), & \left(1-\sum_{i=1}^{2} a_{i}: \sigma_{1}, \sigma_{2}\right), B^{\prime \prime}:\end{array}\right.$
$\left.\begin{array}{cc}\left(1-\mathrm{a}_{1} ; \sigma_{1}\right), C_{1}^{\prime \prime} & :\left(1-\mathrm{a}_{n} ; \sigma_{2}\right), C_{2}^{\prime \prime} \\ \cdots & \cdots \\ \cdots \cdots & \mathrm{D} \prime\end{array}\right)$
where $W_{a_{1}, a_{2}, \sigma}^{\lambda, \mu, v}\{ \}$ double Whittaker transform and $X=\sum_{i=1}^{2} x_{i}$ which holds true under the same conditions from (3.2) with $\mathrm{n}=2$
c) $T_{\beta_{1}, \beta_{2}, \sigma}^{\lambda, \mu, v}\left\{\aleph\left(u_{1} X_{1}^{\eta_{1}}, u_{2} X_{2}^{\eta_{2}}\right)\right\}=\frac{k \lambda^{\sigma+\sum_{i=1}^{2} \beta_{j}} \Gamma\left(\sum_{i=1}^{2} \beta_{i}+\sigma+1-\mu\right) \Gamma\left(\sum_{i=1}^{2} \beta_{i}\right)}{\Gamma\left(\beta_{1}\right) \Gamma\left(\beta_{2}\right) \Gamma\left(\sigma+\sum_{i=1}^{2} \beta_{i}+1 / 2 \pm v\right)}$
$\aleph_{U_{2}: W+1}^{0, \mathfrak{n}+2: V+1}\left(\begin{array}{c|cc}\mathrm{u}_{1} / \lambda^{\eta_{1}} & \left(1 / 2-(\sigma \pm v)-\sum_{i=1}^{2} \beta_{i}: \eta_{1}, \eta_{2}\right), & \mathrm{A}^{\prime \prime}: \\ \cdot & \cdots \\ \dot{\cdot} & \left.\left(\mu-\sigma-\sum_{i=1}^{2} \beta_{i}\right): \eta_{1}, \eta_{2}\right), & \left(1-\sum_{i=1}^{2} \beta_{i}: \eta_{1}, \eta_{2}\right), B^{\prime \prime}:\end{array}\right.$
$\left.\begin{array}{cc}\left(1-\beta_{1} ; \sigma_{1}\right) C_{1}^{\prime \prime}: & \left(1-\beta_{2} ; \sigma_{2}\right), C_{2}^{\prime \prime} \\ \cdots \cdot & \cdots \cdot \\ \cdots \cdots & \mathrm{D} "\end{array}\right)$
where $T_{\beta_{1}, \beta_{2}, \sigma}^{\lambda, \mu, v}\{ \}$ is doubleWhittaker transform and
$X_{1}=\sum_{i=1}^{n} a_{i}^{1} x_{i}, X_{2}=\sum_{i=1}^{2} a_{i}^{2} x_{i}$ which holds true under the same conditions from (4.2) with $n=2$
d) $T_{\beta_{1}, \beta_{2}, \sigma}^{\lambda, \mu, v}\left\{\aleph\left(u_{1} X_{1}^{\eta_{1}} X_{22}^{\zeta_{1}}, u_{2} X_{2}^{\eta_{2}} X_{22}^{\zeta_{2}}\right)\right\}=\frac{k \lambda^{\sigma+\sum_{i=1}^{2} \beta_{j}} \Gamma\left(\sum_{i=1}^{2} \beta_{i}+\sigma+1-\mu\right) \Gamma\left(\sum_{i=1}^{2} \beta_{i}\right)}{\Gamma\left(\beta_{1}\right) \Gamma\left(\beta_{2}\right) \Gamma\left(\sigma+\sum_{i=1}^{2} \beta_{i}+1 / 2 \pm v\right)}$
$\aleph_{U_{2}: W+1}^{0, \mathfrak{n}+2: V+1}\left(\begin{array}{c|c}\mathrm{u}_{1} / \lambda^{\eta_{1}+\zeta_{1}} \\ \cdot \\ \cdot & \left(1 / 2-(\sigma \pm v)-\sum_{i=1}^{2} \beta_{i}: \eta_{1}+\zeta_{1}, \eta_{2}+\zeta_{2}\right), \\ \mathrm{u}_{2} / \lambda^{\eta_{2}+\zeta_{2}} & \left.\left(\mu-\sigma-\sum_{i=1}^{2} \beta_{i}\right): \eta_{1}+\zeta_{1}, \eta_{2}+\zeta_{2}\right),\end{array}\right.$
$\left.\begin{array}{ccc}\mathrm{A} ": & \left(1-\beta_{1} ; \sigma_{1}\right) C_{1}^{\prime \prime}:\left(1-\beta_{2} ; \sigma_{2}\right), C_{2}^{\prime \prime} \\ \cdots & \cdots & \cdots, \\ \left(1-\sum_{i=1}^{2} \beta_{i}: \eta_{1}, \eta_{2}\right), B^{\prime \prime}: & \ldots . & \mathrm{D} "\end{array}\right)$
where $W_{a_{1}, a_{2}, \sigma}^{\lambda, \mu, v}\{ \}$ is the double Whittaker transform and $X_{1}=\sum_{i=1}^{2} a_{i}^{1} x_{i}, X_{2}=\sum_{i=1}^{2} a_{i}^{2} x_{i}$ and $X_{22}=\sum_{j, i=1}^{2} a_{i}^{j} x_{i}$ which holds true under the same conditions from (4.2) with $n=2$

6. Conclusion

The aleph-function of several variables presented in this paper, is quite basic in nature. Therefore, on specializing the parameters of this function, we may obtain various other special functions such as, multivariable H -function, defined by Srivastava et al [7] , the Aleph-function of two variables defined by K.sharma [6].

REFERENCES

[1] Ayant F.Y. An integral associated with the Aleph-functions of several variables. International Journal of Mathematics Trends and Technology (IJMTT). 2016 Vol 31 (3), page 142-154.
[2] Chandel R.C.S the products of certain classical polynomials and the generalized Laplacian operator. Ganita 20(1969) p.79-87
[3] Chandel R.C.S and Dwivedi B.N. Generalized Whittaker transforms of hypergeometric functions of several variables. Bull. Inst. Math. Acad . Sinica 8, no4 (1980), p.595-601.
[4] Chandel R.C.S and Dwivedi B.N. Multidimensional Whittaker transforms, Indian. J. Math. 24 (1982), p. 49-53
[5] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113116.
[6] Sharma K. On the integral representation and applications of the generalized function of two variables , International Journal of Mathematical Engineering and Sciences, Vol 3 , issue1 (2014) , page1-13.
[7] Srivastava H.M.And Panda R. Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.

Personal adress : 411 Avenue Joseph Raynaud Le parc Fleuri, Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department: VAR
Country : FRANCE

