Finite integrals involving product of multivariable Jacobi polynomial

and Aleph-function of several variables

$F.Y. AYANT^1$

1 Teacher in High School , France

Abstract

In the present paper, few finite integrals involving products of multivariable Jacobi polynomial and Aleph-function of several variables of generalized arguments have been evaluated. These integrals have been utilized to established the expansion formula for multivariable Aleph-function in series involving product of multivariable Jacobi polynomials since multivariable Aleph-function quite general function in nature. On specializing the parameters of the function involving in results many news relations may be obtained as particular cases.

Keywords Multivariable Aleph-function, Multivariable I-function, Aleph-function of two variables, Multivariable Jacobi polynomial.

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

The object of this document is to study a number of a general integrals involving the multivariables aleph-function. These function generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [5]. The generalized multivariable I-function is an a generalisation of G and H-functions of multiple variables. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

For more details, see Ayant [1].

The reals numbers τ_i are positives for $i = 1, \dots, R$, $\tau_{i^{(k)}}$ are positives for $i^{(k)} = 1, \dots, R^{(k)}$. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H-function given by as :

$$|argz_{k}| < \frac{1}{2}A_{i}^{(k)}\pi, \text{ where}$$

$$A_{i}^{(k)} = \sum_{j=1}^{n} \alpha_{j}^{(k)} - \tau_{i} \sum_{j=n+1}^{p_{i}} \alpha_{ji}^{(k)} - \tau_{i} \sum_{j=1}^{q_{i}} \beta_{ji}^{(k)} + \sum_{j=1}^{n_{k}} \gamma_{j}^{(k)} - \tau_{i^{(k)}} \sum_{j=n_{k}+1}^{p_{i^{(k)}}} \gamma_{ji^{(k)}}^{(k)}$$

$$+ \sum_{j=1}^{m_{k}} \delta_{j}^{(k)} - \tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i^{(k)}}} \delta_{ji^{(k)}}^{(k)} > 0 \quad \text{, with } k = 1 \text{ to } r \text{, } i = 1 \text{ to } R \text{, } i^{(k)} = 1 \text{ to } R^{(k)} \tag{1.2}$$

ISSN: 2231-5373

http://www.ijmttjournal.org

Page 237

1

1

The complex numbers z_i are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function. We will use these following notations in this paper

$$U = p_i, q_i, \tau_i; R \; ; \; V = m_1, n_1; \cdots; m_r, n_r \tag{1.3}$$

$$W = p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i^{(1)}}; R^{(1)}, \cdots, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i^{(r)}}; R^{(r)}$$
(1.4)

$$A = \{ (a_j; \alpha_j^{(1)}, \cdots, \alpha_j^{(r)})_{1,n} \}, \{ \tau_i(a_{ji}; \alpha_{ji}^{(1)}, \cdots, \alpha_{ji}^{(r)})_{n+1, p_i} \}$$

$$(1.5)$$

$$B = \{\tau_i(b_{ji}; \beta_{ji}^{(1)}, \cdots, \beta_{ji}^{(r)})_{m+1, q_i}\}$$
(1.6)

$$C_1 = \{ (c_j^{(1)}; \gamma_j^{(1)})_{1,n_1} \}, \tau_{i^{(1)}}(c_{ji^{(1)}}^{(1)}; \gamma_{ji^{(1)}}^{(1)})_{n_1+1, p_{i^{(1)}}} \}, \cdots,$$

$$C_r = \{ (c_j^{(r)}; \gamma_j^{(r)})_{1,n_r} \}, \tau_{i^{(r)}} (c_{ji^{(r)}}^{(r)}; \gamma_{ji^{(r)}}^{(r)})_{n_r+1, p_{i^{(r)}}} \}$$

$$(1.7)$$

$$D_1 = \{ (d_j^{(1)}; \delta_j^{(1)})_{1,m_1} \}, \tau_{i^{(1)}} (d_{ji^{(1)}}^{(1)}; \delta_{ji^{(1)}}^{(1)})_{m_1+1,q_{i^{(1)}}} \}, \cdots,$$

$$D_r = \{ (d_j^{(r)}; \delta_j^{(r)})_{1,m_r} \}, \tau_{i^{(r)}} (d_{ji^{(r)}}^{(r)}; \delta_{ji^{(r)}}^{(r)})_{m_r+1,q_{i^{(r)}}} \}$$
(1.8)

The multivariable Aleph-function write :

. .

$$\aleph(z_1, \cdots, z_r) = \aleph_{U:W}^{0, \mathfrak{n}: V} \begin{pmatrix} z_1 \\ \cdot \\ \vdots \\ z_r \end{pmatrix} A ; C_1; \cdots; C_r \\ \vdots \\ B ; D_1; \cdots; D_r \end{pmatrix}$$
(1.9)

2. Multivariable Jacobi polynomial

The Jacobi polynomial for one variable is defined as [4; eq.(1), p.254].

$$P_n^{(a,b)}(x) = \frac{(1+a)_n}{n!} {}_2F_1 \left(\begin{array}{c} -n, 1+a+b+n\\ \dots\\ 1+a \end{array}; \frac{1-x}{2} \end{array} \right)$$
(2.1)

The Jacobi polynomial of two variables and several variables is defined by Shrivastava [7,eq.(1.3), (1.7) p.159-161] in the following manner.

$$P_n^{(a_1,b_1;a_2,b_2)}(x_1,x_2) = \frac{(1+a_1)_n(1+a_2)_n}{(n!)^2} F_2 \left(\begin{array}{c} -n;1+a_2+b_2+n;1+a_1+b_1+n\\ \ddots\\ 1+a_2;1+a_1\end{array}; \frac{1-x_2}{2}; \frac{1-x_1}{2} \right) (2.2)$$

and
$$P_n^{(a_1,b_1;\cdots;a_r,b_r)}(x_1,\cdots,x_r) = \prod_{i=1}^r \frac{(1+a_i)_n}{n!}$$

 $\times F_{0;1;\cdots;1}^{1;1;\cdots;1} \begin{pmatrix} -n;1+a_r+b_r+n;\cdots;1+a_1+b_1+n\\ & \ddots\\ & 1+a_r;\cdots;1+a_1 \end{pmatrix}; \frac{1-x_r}{2},\cdots,\frac{1-x_1}{2} \end{pmatrix}$ (2.3)

In this document, we will use the following result [1,p.58]

First integral

ISSN: 2231-5373

$$\int_{-1}^{1} \cdots \int_{-1}^{1} \prod_{i=1}^{r} \left[x_{i}^{\lambda_{i}} (1-x_{i})^{a_{i}} (1+x)^{\sigma_{i}} \right] P_{n}^{(a_{1},b_{1};\cdots;a_{r},b_{r})}(x_{1},\cdots,x_{r}) dx_{1} \cdots dx_{r} \\
= \frac{1}{(n!)^{r}} \prod_{i=1}^{r} \frac{(-)^{ni} 2^{\sigma_{i}+a_{i}+\frac{1}{r}} \Gamma(a_{i}+n+1) \Gamma(\sigma_{i}-b_{i}+1) \Gamma(\sigma_{i}+1)}{\Gamma(\sigma_{i}-b_{i}-n+1) \Gamma(\sigma_{i}+a_{i}+n+2)} \\
\times \prod_{i=1}^{r} {}_{3}F_{2} \left(\begin{array}{c} -\lambda_{i},\sigma_{i}-b_{i}+1,\sigma_{i}+1\\ \dots\\ \sigma_{i}-b_{i}-n+1,\sigma_{i}+a_{i}+n+2 \end{array} \right) \right)$$
(2.4)

Second integral

$$\int_{-1}^{1} \cdots \int_{-1}^{1} \prod_{i=1}^{r} \left[x_{i}^{\lambda_{i}} (1-x_{i})^{\rho_{i}} (1+x)^{b_{i}} \right] P_{n}^{(a_{1},b_{1};\cdots;a_{r},b_{r})}(x_{1},\cdots,x_{r}) dx_{1} \cdots dx_{r} \\
= \frac{1}{(n!)^{r}} \prod_{i=1}^{r} \frac{(-)^{ni} 2^{\rho_{i}+b_{i}+\frac{1}{r}} \Gamma(b_{i}+n+1) \Gamma(\rho_{i}-b_{i}+1) \Gamma(\rho_{i}+1)}{\Gamma(\rho_{i}-a_{i}-n+1) \Gamma(\rho_{i}+b_{i}+n+2)} \\
\times \prod_{i=1}^{r} {}_{3}F_{2} \left(\begin{array}{c} -\lambda_{i},\rho_{i}-b_{i}+1,\rho_{i}+1\\ \cdots\\ \rho_{i}-a_{i}-n+1,\rho_{i}+b_{i}+n+2 \end{array} \right) \right)$$
(2.4)

3. Main integrals

In these section we evaluate four multiple integrals involving the Aleph-function of several variables and multivariable Jacobi polynomial. Throughout this paper, we note :

$$W_{33} = p_{i^{(1)}} + 3, q_{i^{(1)}} + 3, \tau_{i^{(1)}}; R^{(1)}, \cdots, p_{i^{(r)}} + 3, q_{i^{(r)}} + 3, \tau_{i^{(r)}}; R^{(r)}$$

and $V + 3 = m_1, n_1 + 3; \cdots; m_r, n_r + 3$

$$\mathbf{a} \int_{-1}^{1} \cdots \int_{-1}^{1} \prod_{i=1}^{r} \left[x_{i}^{\lambda_{i}} (1-x_{i})^{a_{i}} (1+x)^{\sigma_{i}} \right] P_{n}^{(a_{1},b_{1};\cdots;a_{r},b_{r})}(x_{1},\cdots,x_{r}) \\ \approx \left(z_{1} \left(\frac{1+x_{1}}{x_{1}} \right)^{\mu_{1}}, \cdots, z_{r} \left(\frac{1+x_{r}}{x_{r}} \right)^{\mu_{r}} \right) \mathrm{d}x_{1} \cdots \mathrm{d}x_{r} = \frac{1}{(n!)^{r}} \prod_{i=1}^{r} \left[(-)^{ni} 2^{\sigma_{i}+a_{i}+\frac{1}{r}} \Gamma(a_{i}+n+1) \right] \\ \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{r}=0}^{\infty} \frac{2^{\sum_{i=1}^{r} k_{i}}}{k_{1}! \cdots k_{r}!} \approx_{U:W_{33}}^{0,\mathfrak{n}:V+3} \begin{pmatrix} 2^{\mu_{1}} z_{1} \\ \cdot \\ 2^{\mu_{r}} z_{r} \end{pmatrix} A : C_{1}, (\lambda_{1}+1-k_{1};\mu_{1}), \quad (b_{1}-\sigma_{1}-k_{1};\mu_{1}), \\ B : D_{1}, (\lambda_{1}+1;\mu_{1}), \quad (b_{1}-\sigma_{1}+n-k_{1};\mu_{1}), \end{pmatrix}$$

$$(-\sigma_1 - k_1; \mu_1); \cdots; \quad C_r, (\lambda_r + 1 - k_r; \mu_r),$$

 \cdots
 $(-1-\sigma_1 - a_1 - n - k_1; \mu_1); \cdots; \quad D_r, (\lambda_r + 1; \mu_r),$

ISSN: 2231-5373

$$(b_{r} - \sigma_{r} - k_{r}; \mu_{r}), (-\sigma_{r} - k_{r}; \mu_{r}) \\ \cdots \\ (b_{r} - \sigma_{r} + n - k_{r}; \mu_{r}), (-1 - \sigma_{r} - a_{r} - n - k_{r}; \mu_{r})$$
(3.1)

Provided that

$$\begin{split} \mathbf{a})Re(\lambda_{i}) &> -1, Re(a_{i}) > -1, \mu_{i} > 0, i = 1, \cdots, r \\ \mathbf{b}) Re[\sigma_{i} + \mu_{j} \min_{1 \leqslant j \leqslant m_{j}} \frac{d_{i}^{(j)}}{\delta_{i}^{(j)}}] > 0 ; Re[\lambda_{i} - \mu_{j} \min_{1 \leqslant j \leqslant m_{j}} \frac{d_{i}^{(j)}}{\delta_{i}^{(j)}}] > 0 , i, j = 1, \cdots, r \\ \mathbf{c})|argz_{i}| &< \frac{1}{2}A_{i}^{(k)}\pi, \text{ where } A_{i}^{(k)} \text{ is given in (1.2)} \\ \\ \mathbf{b}) \int_{-1}^{1} \cdots \int_{-1}^{1} \prod_{i=1}^{r} \left[x_{i}^{\lambda_{i}}(1 - x_{i})^{a_{i}}(1 + x)^{\sigma_{i}} \right] P_{n}^{(a_{1},b_{1};\cdots;a_{r},b_{r})}(x_{1},\cdots,x_{r}) \\ & \aleph(z_{1}x_{1}^{\mu_{1}}(1 + x_{1})^{\delta_{1}},\cdots,z_{r}x_{r}^{\mu_{r}}(1 + x_{r})^{\delta_{r}}) dx_{1} \cdots dx_{r} = \frac{1}{(n!)^{r}} \prod_{i=1}^{r} \left[(-)^{ni}2^{\sigma_{i}+a_{i}+\frac{1}{r}}\Gamma(a_{i}+n+1) \right] \\ & \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{r}=0}^{\infty} \frac{2\sum_{i=1}^{r}k_{i}}{k_{1}!\cdots k_{r}!} \, \aleph_{U:W_{33}}^{0,n:V+3} \begin{pmatrix} 2^{\delta_{1}}z_{1} \\ \vdots \\ 2^{\delta_{r}}z_{r} \\ R : C_{1}, (-\lambda_{1}+k_{1};\mu_{1}), \quad (b_{1}-\sigma_{1}-k_{1};\delta_{1}), \\ \vdots \\ B : D_{1}, (-\lambda_{1};\mu_{1}), \quad (b_{1}-\sigma_{1}+n-k_{1};\delta_{1}), \\ (-\sigma_{1}-k_{1};\delta_{1}); \cdots; \quad C_{r}, (-\lambda_{r}+k_{r};\mu_{r}), \\ \vdots \\ (-1-\sigma_{1}-a_{1}-n-k_{1};\delta_{1}); \cdots; \quad D_{r}, (-\lambda_{r};\mu_{r}), \end{pmatrix}$$

$$(\mathbf{b}_{r} - \sigma_{r} - k_{r}; \delta_{r}), (-\sigma_{r} - k_{r}; \delta_{r})$$

$$(\mathbf{b}_{r} - \sigma_{r} + n - k_{r}; \delta_{r}), (-1 - \sigma_{r} - a_{r} - n - k_{r}; \delta_{r})$$
(3.2)

Provided that

a)
$$Re(a_i) > 1, \mu_i > 0, \delta > 0, i = 1, \cdots, r$$

b) $Re[\sigma_i + \delta_j \min_{1 \le j \le m_j} \frac{d_i^{(j)}}{\delta_i^{(j)}}] > 0$; $Re[\lambda_i + \mu_j \min_{1 \le j \le m_j} \frac{d_i^{(j)}}{\delta_i^{(j)}}] > 0$, $i, j = 1, \cdots, r$
c) $|argz_i| < \frac{1}{2}A_i^{(k)}\pi$, where $A_i^{(k)}$ is given in (1.2)
c) $\int_{-1}^1 \cdots \int_{-1}^1 \prod_{i=1}^r \left[x_i^{\lambda_i}(1-x_i)^{\rho_i}(1+x)^{b_i} \right] P_n^{(a_1,b_1;\cdots;a_r,b_r)}(x_1,\cdots,x_r)$
 $\approx (z_1 x_1^{\mu_1}(1-x_1)^{\delta_1}, \cdots, z_r x_r^{\mu_r}(1-x_r)^{\delta_r}) dx_1 \cdots dx_r = \frac{1}{(n!)^r} \prod_{i=1}^r \left[(-)^{n_i} 2^{\sigma_i + a_i + \frac{1}{r}} \Gamma(b_i + n + 1) \right]$

ISSN: 2231-5373

http://www.ijmttjournal.org

Page 240

$$\sum_{k_1=0}^{\infty} \cdots \sum_{k_r=0}^{\infty} \frac{2^{\sum_{i=1}^{r} k_i}}{k_1! \cdots k_r!} \aleph_{U:W_{33}}^{0,\mathfrak{n}:V+3} \begin{pmatrix} 2^{\delta_1} z_1 \\ \cdot \\ 2^{\delta_r} z_r \end{pmatrix} A : \mathcal{C}_1, (-\lambda_1 + k_1; \mu_1), \quad (\mathbf{b}_1 - \rho_1 - k_1; \delta_1), \\ \cdots \\ \mathbf{B} : \mathcal{D}_1, (-\lambda_1; \mu_1), \quad (\mathbf{a}_1 - \rho_1 + n - k_1; \delta_1), \end{pmatrix}$$

$$(-\rho_{1} - k_{1}; \delta_{1}); \cdots; \qquad C_{r}, (-\lambda_{r} + k_{r}; \mu_{r}),$$

$$(-1-\rho_{1} - b_{1} - n - k_{1}; \delta_{1}); \cdots; \qquad D_{r}, (-\lambda_{r}; \mu_{r}),$$

$$(b_{r} - \rho_{r} - k_{r}; \delta_{r}), (-\rho_{r} - k_{r}; \delta_{r})$$

$$(a_{r} - \rho_{r} + n - k_{r}; \delta_{r}), (-1 - \rho_{r} - b_{r} - n - k_{r}; \delta_{r})$$

$$(3.2)$$

Provided that

$$\begin{aligned} \mathbf{a})Re(\lambda_{i}) &> -1, Re(b_{i}) > -1, \mu_{i} > 0, i = 1, \cdots, r \\ \mathbf{b}) Re[\rho_{i} + \delta_{j} \min_{1 \leq j \leq m_{j}} \frac{d_{i}^{(j)}}{\delta_{i}^{(j)}}] > 0; Re[\lambda_{i} + \mu_{j} \min_{1 \leq j \leq m_{j}} \frac{d_{i}^{(j)}}{\delta_{i}^{(j)}}] > 0, i, j = 1, \cdots, r \\ \mathbf{c})|argz_{i}| &< \frac{1}{2}A_{i}^{(k)}\pi, \text{ where } A_{i}^{(k)} \text{ is given in (1.2)} \\ \mathbf{d}) \int_{-1}^{1} \cdots \int_{-1}^{1} \prod_{i=1}^{r} \left[x_{i}^{\lambda_{i}}(1 - x_{i})^{\rho_{i}}(1 + x)^{b_{i}} \right] P_{n}^{(a_{1},b_{1};\cdots;a_{r},b_{r})}(x_{1},\cdots,x_{r}) \\ & \aleph(z_{1}(\frac{1 - x_{1}}{x_{1}})^{\mu_{1}}, \cdots, z_{r}(\frac{1 - x_{r}}{x_{r}})^{\mu_{r}}) dx_{1} \cdots dx_{r} = \frac{1}{(n!)^{r}} \prod_{i=1}^{r} \left[(-)^{ni} 2^{\sigma_{i} + a_{i} + \frac{1}{r}} \Gamma(b_{i} + n + 1) \right] \\ & \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{r}=0}^{\infty} \frac{2\sum_{i=1}^{r} k_{i}}{k_{1}! \cdots k_{r}!} \aleph_{U:W_{33}}^{0, n:V+3} \begin{pmatrix} 2^{\mu_{1}} z_{1} \\ \vdots \\ 2^{\mu_{r}} z_{r} \end{pmatrix} \mathbf{A} : C_{1}, (\lambda_{1} - k_{1}; \mu_{1}), \quad (b_{1} - \rho_{1} - k_{1}; \mu_{1}), \\ & \vdots \\ B : D_{1}, (-\lambda_{1} - 1; \mu_{1}), (a_{1} - \rho_{1} + n - k_{1}; \mu_{1}), \end{pmatrix} \end{aligned}$$

$$(b_r - \rho_r - k_1; \mu_r), (-\rho_r - k_r; \mu_r) \dots (a_r - \rho_r + n - k_r; \mu_r), (-1 - \rho_r - b_r - n - k_r; \mu_r)$$
(3.1)

Provided that

a)
$$Re(\lambda_i) > -1, Re(b_i) > -1, \mu_i > 0, i = 1, \cdots, r$$

b) $Re[\rho_i + \mu_j \min_{1 \leq j \leq m_j} \frac{d_i^{(j)}}{\delta_i^{(j)}}] > 0$; $Re[\lambda_i - \mu_j \min_{1 \leq j \leq m_j} \frac{d_i^{(j)}}{\delta_i^{(j)}}] > 0$, $i, j = 1, \cdots, r$

ISSN: 2231-5373

c)
$$|argz_i| < rac{1}{2}A_i^{(k)}\pi$$
 , $\,$ where $A_i^{(k)}$ is given in (1.2)

Proof of (3.1): Let
$$M = \frac{1}{(2\pi\omega)^r} \int_{L_1} \cdots \int_{L_r} \psi(s_1, \cdots, s_r) \prod_{k=1}^r \phi_k(s_k)$$

To establish (3.1), expressing the multivariable Aleph-function on L.H.S. as Mellin-Barnes contour integral (1.1) and then change the order of integration (which is permissible under the stated conditions). We get the following result.

$$M\left\{\frac{z_{1}^{s_{1}}\cdots z_{r}^{s_{r}}}{(n!)^{r}}\int_{-1}^{1}\cdots\int_{-1}^{1}\prod_{i=1}^{r}\left[x_{i}^{\lambda_{i}-\mu_{i}s_{i}}(1-x_{i})^{a_{i}}(1+x)^{\sigma_{i}+\mu_{i}s_{i}}\right]P_{n}^{(a_{1},b_{1};\cdots;a_{r},b_{r})}(x_{1},\cdots,x_{r})$$
$$dx_{1}\cdots dx_{r}\right\}ds_{1}\cdots ds_{r}$$

Evaluate the inner multiple integral with the help (2.4), we get the following result.

$$M\left\{\frac{z_{1}^{s_{1}}\cdots z_{r}^{s_{r}}}{(n!)^{r}}\prod_{i=1}^{r}\frac{(-)^{ni}2^{\sigma_{i}+a_{i}+\mu_{i}s_{i}+\frac{1}{r}}\Gamma(a_{i}+n+1)\Gamma(\sigma_{i}+\mu_{i}s_{i}-b_{i}+1)\Gamma(\sigma_{i}+\mu_{i}s_{i}+1)}{\Gamma(\sigma_{i}+\mu_{i}s_{i}-b_{i}-n+1)\Gamma(\sigma_{i}+\mu_{i}s_{i}+a_{i}+n+2)}\right\}$$

$$\times \prod_{i=1}^{r} {}_{3}F_{2} \left(\begin{array}{c} -\lambda_{i} + \mu_{i}s_{i}, \sigma_{i} + \mu_{i}s_{i} - b_{i} + 1, \sigma_{i} + \mu_{i}s_{i} + 1\\ \dots \\ \sigma_{i} + \mu_{i}s_{i} - b_{i} - n + 1, \sigma_{i} + a_{i} + \mu_{i}s_{i} + n + 2 \end{array} ; 2 \right) \right\} ds_{1} \cdots ds_{r}$$

Now we represent the hypergeometric function into series and addition and integration [2,p.176 (75)] which is valid under the stated conditions.and on reinterpreting the Mellin-Barnes contour integral in the R.H.S. of (3.1) in term of the multivariable Aleph-function given by (1.1), we arrive at the desired result. To prove (3.2) to (3.4), we use the similar methods.

4. Expansion

The objective of these section is to apply the result of (3.1) to (3.4) and established four expansion formulas.

$$\mathbf{a} \mathbf{j} \prod_{i=1}^{r} \left[x_{i}^{\lambda_{i}} (1+x_{i})^{\sigma_{i}} \right] \aleph \left(z_{1} \left(\frac{1+x_{1}}{x_{1}} \right)^{\mu_{1}}, \cdots, z_{r} \left(\frac{1+x_{r}}{x_{r}} \right)^{\mu_{r}} \right) = \prod_{i=1}^{r} 2^{\sigma_{i}} (-1)^{l_{i}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{r}=0}^{\infty} \frac{2^{\sum_{i=1}^{r} k_{i}}}{k_{1}! \cdots k_{r}!} \\ \sum_{l=0}^{\infty} (1+a_{i}+b_{i}+l)(1+a_{i}+b_{i}+2l) P_{l}^{(a_{1},b_{1};\cdots;a_{r},b_{r})}(x_{1},\cdots,x_{r}) \aleph_{U:W_{33}}^{0,\mathfrak{n}:V+3} \begin{pmatrix} 2^{\mu_{1}} z_{1} \\ \vdots \\ 2^{\mu_{r}} z_{r} \end{pmatrix} \\ A: C_{1}, (\lambda_{1}+1-k_{1};\mu_{1}), \quad (-a_{1}-k_{1};\mu_{1}), (\sigma_{1}+b_{1}-k_{1};\mu_{1}); \cdots; \\ B: D_{1}, (\lambda_{1}+1;\mu_{1}), \quad (1-\sigma_{1}-k_{1};\mu_{1}), (1-l-\sigma_{1}-k_{1};\mu_{1}); \cdots; \end{cases}$$

$$\begin{array}{ccc}
C_{r}, (\lambda_{r}+1-k_{r}; \mu_{r}), & (-a_{r}-k_{r}; \mu_{r}), (\sigma_{r}+b_{r}-k_{r}; \mu_{r}) \\
& & \ddots & & \ddots & \\
D_{r}, (\lambda_{r}+1; \mu_{r}), & (1-\sigma_{r}-k_{r}; \mu_{r}), (1-\sigma_{r}-k_{r}-l; \mu_{r})
\end{array}\right)$$
(4.1)

the equation (4.1) is valid under the same conditions mentioned in (3.1).

$$\mathbf{b} \prod_{i=1}^{r} \left[x_{i}^{\lambda_{i}} (1+x_{i})^{\sigma_{i}} \right] \aleph \left(z_{1} x_{1}^{\mu_{1}} (1+x_{1})^{\delta_{1}}, \cdots, z_{r} x_{r}^{\mu_{r}} (1+x_{r})^{\delta_{r}} \right) = \prod_{i=1}^{r} 2^{\sigma_{i}} (-1)^{l_{i}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{r}=0}^{\infty} \frac{2^{\sum_{i=1}^{r} k_{i}}}{k_{1}! \cdots k_{r}!}$$

ISSN: 2231-5373

$$\sum_{l=0}^{\infty} (1+a_{i}+b_{i}+l)(1+a_{i}+b_{i}+2l) P_{l}^{(a_{1},b_{1};\cdots;a_{r},b_{r})}(x_{1},\cdots,x_{r}) \aleph_{U:W_{33}}^{0,\mathfrak{n}:V+3} \begin{pmatrix} 2^{\delta_{1}}z_{1} \\ \cdot \\ 2^{\delta_{r}}z_{r} \end{pmatrix} \\
\xrightarrow{I}_{2^{\delta_{r}}z_{r}} \\
A: C_{1}, (-\lambda_{1};\mu_{1}), (-\sigma_{1}-k_{1};\delta_{1}), (-\sigma_{1}-b_{1}-k_{1};\delta_{1});\cdots; \\
\cdots \\
B: D_{1}, (k_{1}-\lambda_{1};\mu_{1}), (1-\sigma_{1}-k_{1};\delta_{1}), (-1-l-\sigma_{1};\delta_{1});\cdots; \\
C_{r}, (-\lambda_{r};\mu_{r}), (-\sigma_{r}-k_{r};\delta_{r}), (-\sigma_{r}-b_{r}-k_{r};\delta_{r}) \\
\cdots \\
D_{r}, (k_{r}-\lambda_{r};\mu_{r}), (1-\sigma_{r}-k_{r};\delta_{r}), (-1-l-\sigma_{r};\delta_{r}) \end{pmatrix}$$
(4.2)

the equation (4.2) is valid under the same conditions mentioned in (3.2).

$$\mathbf{c})\prod_{i=1}^{r} \left[x_{i}^{\lambda_{i}} (1-x_{i})^{\sigma_{i}} \right] \aleph \left(z_{1} x_{1}^{\mu_{1}} (1-x_{1})^{\delta_{1}}, \cdots, z_{r} x_{r}^{\mu_{r}} (1-x_{r})^{\delta_{r}} \right) = \prod_{i=1}^{r} 2^{\sigma_{i}} (-1)^{l_{i}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{r}=0}^{\infty} \frac{2^{\sum_{i=1}^{r} k_{i}}}{k_{1}! \cdots k_{r}!}$$

$$\sum_{l=0}^{\infty} (1+a_i+b_i+l)(1+a_i+b_i+2l) P_l^{(a_1,b_1;\cdots;a_r,b_r)}(x_1,\cdots,x_r) \aleph_{U:W_{33}}^{0,\mathfrak{n}:V+3} \begin{pmatrix} 2^{\delta_1} z_1 \\ \cdot \\ 2^{\delta_r} z_r \end{pmatrix}$$

A : C₁,
$$(-\lambda_1; \mu_1)$$
, $(-\rho_1 + k_1; \delta_1)$, $(-\rho_1 - l - k_1; \delta_1)$; ...;
B : D₁, $(k_1 - \lambda_1; \mu_1)$, $(l-\rho_1 - k_1; \delta_1)$, $(1 - l - a_1 - b_1 - \rho_1 - k_1; \delta_1)$; ...;

$$\begin{array}{ccc}
C_{r}, (-\lambda_{r}; \mu_{r}), & (-\rho_{r} + k_{r}; \delta_{r}), (-\rho_{r} - l - k_{r}; \delta_{r}) \\
& & \ddots & & \\
D_{r}, (k_{r} - \lambda_{r}; \mu_{r}), (l - \rho_{r} - k_{r}; \delta_{r}), (1 - l - a_{r} - b_{r} - \rho_{r} - k_{r}; \delta_{r})
\end{array} \tag{4.3}$$

the equation (4.3) is valid under the same conditions mentioned in (3.3).

$$\begin{aligned} \mathbf{d}\mathbf{j} \prod_{i=1}^{r} \left[x_{i}^{\lambda_{i}} (1-x_{i})^{\sigma_{i}} \right] & \otimes \left(z_{1} \left(\frac{1-x_{1}}{x_{1}} \right)^{\mu_{1}}, \cdots, z_{r} \left(\frac{1-x_{r}}{x_{r}} \right)^{\mu_{r}} \right) = \prod_{i=1}^{r} 2^{\sigma_{i}} (-1)^{l_{i}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{r}=0}^{\infty} \frac{2\sum_{i=1}^{r} k_{i}}{k_{1}! \cdots k_{r}!} \\ & \sum_{l=0}^{\infty} (1+a_{i}+b_{i}+l)(1+a_{i}+b_{i}+2l) P_{l}^{(a_{1},b_{1};\cdots;a_{r},b_{r})}(x_{1},\cdots,x_{r}) \otimes_{U:W_{33}}^{0,\mathfrak{n}:V+3} \begin{pmatrix} 2^{\mu_{1}} z_{1} \\ \vdots \\ 2^{\mu_{r}} z_{r} \end{pmatrix} \\ & A: C_{1}, (\lambda_{1}+1-k_{1};\mu_{1}), \quad (\rho_{1}-k_{1};\mu_{1}), (\rho_{1}+a_{1}-k_{1};\mu_{1});\cdots; \\ & \dots \\ & B: D_{1}, (\lambda_{1}+1;\mu_{1}), \quad (1-\rho_{1}-k_{1};\mu_{1}), (1-\rho_{1}-k_{1}-b-l;\mu_{1});\cdots; \\ & C_{r_{1}}(\lambda_{r}+1-k_{r};\mu_{r}), \quad (\rho_{r}-k_{r};\mu_{r}), (\rho_{r}+a_{r}-k_{r};\mu_{r}) \end{pmatrix} \end{aligned}$$

$$\begin{array}{ccc}
C_{r}, (\lambda_{r}+1-k_{r};\mu_{r}), & (\rho_{r}-k_{r};\mu_{r}), (\rho_{r}+a_{r}-k_{r};\mu_{r}) \\
& \ddots & & \\
D_{r}, (\lambda_{r}+1;\mu_{r}), & (1-\rho_{r}-k_{r};\mu_{r}), (1-\rho_{r}-k_{r}-b_{r}-l;\mu_{r})
\end{array}\right)$$
(4.4)

ISSN: 2231-5373

the equation (4.4) is valid under the same conditions mentioned in (3.4).

Proof

To prove (4.1), Let

$$\prod_{i=1}^{r} \left[x_i^{\lambda_i} (1+x_i)^{\sigma_i} \right] \aleph \left(z_1 \left(\frac{1+x_1}{x_1} \right)^{\mu_1}, \cdots, z_r \left(\frac{1+x_r}{x_r} \right)^{\mu_r} \right) = \sum_{i=1}^{\infty} a_i P_i^{(a_1,b_1;\cdots;a_r,b_r)}(x_1,\cdots,x_r)$$
(4.5)

where a_i is a constant. For finding this we multiply $\prod_{i=1}^{r} \left[(1-x_i)^{a_i} (1+x_i)^{b_i} \right]$ on both sides of the equation (4.5) and then integrate in the limit -1 and +1. Lastly in the left side of equation (3.1) is recalculated and on right side, use

and then integrate in the limit -1 and +1. Lastly in the left side of equation (3.1) is recalculated and on right side, use the orthogonal property of Jacobi polynomial [3,p.285 (5) and (9)], we obtain the desired result. To prove (4.2) to (4.4), we use the similar methods.

5. Multivariable I-function

If $\tau_i = \tau_{i^{(1)}} = \tau_{i^{(r)}} = 1$, the multivariable Aleph-function degenere to the multivariable I-function defined by Sharma et al [5]. In this section, we establish four expansion formulas concerning the multivariable I-function.

$$\mathbf{a} \mathbf{j} \prod_{i=1}^{r} \left[x_{i}^{\lambda_{i}} (1+x_{i})^{\sigma_{i}} \right] I \left(z_{1} \left(\frac{1+x_{1}}{x_{1}} \right)^{\mu_{1}}, \cdots, z_{r} \left(\frac{1+x_{r}}{x_{r}} \right)^{\mu_{r}} \right) = \prod_{i=1}^{r} 2^{\sigma_{i}} (-1)^{l_{i}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{r}=0}^{\infty} \frac{2^{\sum_{i=1}^{r} k_{i}}}{k_{1}! \cdots k_{r}!}$$

$$\sum_{l=0}^{\infty} (1+a_{i}+b_{i}+l)(1+a_{i}+b_{i}+2l) P_{l}^{(a_{1},b_{1};\cdots;a_{r},b_{r})}(x_{1},\cdots,x_{r}) I_{U:W_{33}}^{0,\mathfrak{n}:V+3} \begin{pmatrix} 2^{\mu_{1}}z_{1} \\ \cdot \\ 2^{\mu_{r}}z_{r} \end{pmatrix}$$

$$\mathbf{A} : \mathbf{C}_{1}, (\lambda_{1}+1-k_{1};\mu_{1}), \quad (-\mathbf{a}_{1}-k_{1};\mu_{1}), (\sigma_{1}+b_{1}-k_{1};\mu_{1}); \cdots;$$

$$\mathbf{B} : \mathbf{D}_{1}, (\lambda_{1}+1;\mu_{1}), \quad (1-\sigma_{1}-k_{1};\mu_{1}), (1-l-\sigma_{1}-k_{1};\mu_{1}); \cdots;$$

$$\begin{array}{c}
C_{r}, (\lambda_{r}+1-k_{r}; \mu_{r}), \quad (-a_{r}-k_{r}; \mu_{r}), (\sigma_{r}+b_{r}-k_{r}; \mu_{r}) \\
\vdots \\
D_{r}, (\lambda_{r}+1; \mu_{r}), \quad (1-\sigma_{r}-k_{r}; \mu_{r}), (1-\sigma_{r}-k_{r}-l; \mu_{r})
\end{array}$$
(5.1)

the equation (4.1) is valid under the same conditions mentioned in (3.1).

$$\mathbf{b}\prod_{i=1}^{r} \left[x_{i}^{\lambda_{i}} (1+x_{i})^{\sigma_{i}} \right] I\left(z_{1} x_{1}^{\mu_{1}} (1+x_{1})^{\delta_{1}}, \cdots, z_{r} x_{r}^{\mu_{r}} (1+x_{r})^{\delta_{r}} \right) = \prod_{i=1}^{r} 2^{\sigma_{i}} (-1)^{l_{i}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{r}=0}^{\infty} \frac{2^{\sum_{i=1}^{r} k_{i}}}{k_{1}! \cdots k_{r}!}$$

$$\sum_{l=0}^{\infty} (1+a_i+b_i+l)(1+a_i+b_i+2l) P_l^{(a_1,b_1;\cdots;a_r,b_r)}(x_1,\cdots,x_r) I_{U:W_{33}}^{0,\mathfrak{n}:V+3} \begin{pmatrix} 2^{\delta_1} z_1 \\ \cdot \\ 2^{\delta_r} z_r \end{pmatrix}$$

A : C₁,
$$(-\lambda_1; \mu_1)$$
, $(-\sigma_1 - k_1; \delta_1)$, $(-\sigma_1 - b_1 - k_1; \delta_1)$; ...;
B : D₁, $(k_1 - \lambda_1; \mu_1)$, $(1 - \sigma_1 - k_1; \delta_1)$, $(-1 - l - \sigma_1; \delta_1)$; ...;

ISSN: 2231-5373

$$C_r, (-\lambda_r; \mu_r), \quad (-\sigma_r - k_r; \delta_r), (-\sigma_r - b_r - k_r; \delta_r) \\
 \dots \\
 D_r, (k_r - \lambda_r; \mu_r), \quad (1 - \sigma_r - k_r; \delta_r), (-1 - l - \sigma_r; \delta_r)$$
(5.2)

the equation (4.2) is valid under the same conditions mentioned in (3.2).

$$\mathbf{c} \prod_{i=1}^{r} \left[x_{i}^{\lambda_{i}} (1-x_{i})^{\sigma_{i}} \right] I \left(z_{1} x_{1}^{\mu_{1}} (1-x_{1})^{\delta_{1}}, \cdots, z_{r} x_{r}^{\mu_{r}} (1-x_{r})^{\delta_{r}} \right) = \prod_{i=1}^{r} 2^{\sigma_{i}} (-1)^{l_{i}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{r}=0}^{\infty} \frac{2^{\sum_{i=1}^{r} k_{i}}}{k_{1}! \cdots k_{r}!}$$

$$\sum_{l=0}^{\infty} (1+a_i+b_i+l)(1+a_i+b_i+2l) P_l^{(a_1,b_1;\cdots;a_r,b_r)}(x_1,\cdots,x_r) I_{U:W_{33}}^{0,\mathfrak{n}:V+3} \begin{pmatrix} 2^{\delta_1} z_1 \\ \cdot \\ 2^{\delta_r} z_r \\ 2^{\delta_r} z_r \end{pmatrix}$$

A : C₁,
$$(-\lambda_1; \mu_1)$$
, $(-\rho_1 + k_1; \delta_1)$, $(-\rho_1 - l - k_1; \delta_1)$; ...;
B : D₁, $(k_1 - \lambda_1; \mu_1)$, $(l-\rho_1 - k_1; \delta_1)$, $(1 - l - a_1 - b_1 - \rho_1 - k_1; \delta_1)$; ...;

$$C_{r}, (-\lambda_{r}; \mu_{r}), \qquad (-\rho_{r} + k_{r}; \delta_{r}), (-\rho_{r} - l - k_{r}; \delta_{r}) \\ \vdots \\ D_{r}, (k_{r} - \lambda_{r}; \mu_{r}), (l - \rho_{r} - k_{r}; \delta_{r}), (1 - l - a_{r} - b_{r} - \rho_{r} - k_{r}; \delta_{r})$$
(5.3)

the equation (4.3) is valid under the same conditions mentioned in (3.3).

$$\begin{aligned} \mathbf{d}\mathbf{j} \prod_{i=1}^{r} \left[x_{i}^{\lambda_{i}} (1-x_{i})^{\sigma_{i}} \right] I\left(z_{1} \left(\frac{1-x_{1}}{x_{1}} \right)^{\mu_{1}}, \cdots, z_{r} \left(\frac{1-x_{r}}{x_{r}} \right)^{\mu_{r}} \right) &= \prod_{i=1}^{r} 2^{\sigma_{i}} (-1)^{l_{i}} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{r}=0}^{\infty} \frac{2^{\sum_{i=1}^{r} k_{i}}}{k_{1}! \cdots k_{r}!} \\ \sum_{l=0}^{\infty} (1+a_{i}+b_{i}+l)(1+a_{i}+b_{i}+2l) P_{l}^{(a_{1},b_{1};\cdots;a_{r},b_{r})}(x_{1},\cdots,x_{r}) I_{U:W_{33}}^{0,\mathfrak{n}:V+3} \begin{pmatrix} 2^{\mu_{1}} z_{1} \\ \vdots \\ 2^{\mu_{r}} z_{r} \end{pmatrix} \\ A: C_{1}, (\lambda_{1}+1-k_{1};\mu_{1}), \quad (\rho_{1}-k_{1};\mu_{1}), (\rho_{1}+a_{1}-k_{1};\mu_{1});\cdots; \\ B: D_{1}, (\lambda_{1}+1;\mu_{1}), \quad (1-\rho_{1}-k_{1};\mu_{1}), (1-\rho_{1}-k_{1}-b-l;\mu_{1});\cdots; \\ C \quad (\lambda_{r}+1-k_{r};\mu_{r}) = \left(a_{r}-k_{r};\mu_{r} \right) \left(a_{r}+a_{r}-k_{r};\mu_{r} \right) \end{aligned}$$

the equation (4.4) is valid under the same conditions mentioned in (3.4).

6. Aleph-function of two variables

If r = 2, we obtain the Aleph-function of two variables defined by K.Sharma [6]. In this section, we establish four expansion formulas concerning the Aleph-function of two variables.

$$\begin{aligned} \mathbf{a} \mathbf{j} &\prod_{i=1}^{2} \left[x_{i}^{\lambda_{i}} (1+x_{i})^{\sigma_{i}} \right] \aleph \left(z_{1} \left(\frac{1+x_{1}}{x_{1}} \right)^{\mu_{1}}, z_{2} \left(\frac{1+x_{2}}{x_{2}} \right)^{\mu_{r}} \right) = \prod_{i=1}^{2} 2^{\sigma_{i}} (-1)^{l_{i}} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{2\sum_{i=1}^{2} k_{i}}{k_{1}!k_{2}!} \\ &\sum_{l=0}^{\infty} (1+a_{i}+b_{i}+l)(1+a_{i}+b_{i}+2l) P_{l}^{(a_{1},b_{1};a_{2},b_{2})}(x_{1},x_{2}) \aleph_{U:W_{33}}^{0,\mathfrak{n}:V+3} \begin{pmatrix} 2^{\mu_{1}}z_{1} \\ \cdot \\ 2^{\mu_{2}}z_{2} \end{pmatrix} \\ &A: C_{1}, (\lambda_{1}+1-k_{1};\mu_{1}), \quad (-a_{1}-k_{1};\mu_{1}), (\sigma_{1}+b_{1}-k_{1};\mu_{1}); \\ &\vdots \\ B: D_{1}, (\lambda_{1}+1;\mu_{1}), \quad (1-\sigma_{1}-k_{1};\mu_{1}), (1-l-\sigma_{1}-k_{1};\mu_{1}); \end{aligned}$$

$$\begin{array}{c} C_{2}, (\lambda_{2}+1-k_{2};\mu_{2}), & (-a_{2}-k_{2};\mu_{r}), (\sigma_{2}+b_{2}-k_{2};\mu_{2}) \\ & \ddots & \ddots & \\ D_{2}, (\lambda_{2}+1;\mu_{2}), & (1-\sigma_{2}-k_{2};\mu_{2}), (1-\sigma_{2}-k_{2}-l;\mu_{2}) \end{array}$$

$$(4.1)$$

the equation (4.1) is valid under the same conditions mentioned in (3.1).

$$\mathbf{b} \prod_{i=1}^{2} \left[x_{i}^{\lambda_{i}} (1+x_{i})^{\sigma_{i}} \right] \aleph \left(z_{1} x_{1}^{\mu_{1}} (1+x_{1})^{\delta_{1}}, z_{2} x_{2}^{\mu_{2}} (1+x_{2})^{\delta_{2}} \right) = \prod_{i=1}^{2} 2^{\sigma_{i}} (-1)^{l_{i}} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{2\sum_{i=1}^{2} k_{i}}{k_{1}! k_{2}!} \right) \\ \sum_{l=0}^{\infty} (1+a_{i}+b_{i}+l)(1+a_{i}+b_{i}+2l) P_{l}^{(a_{1},b_{1};a_{2},b_{2})}(x_{1},x_{2}) \aleph_{U:W_{33}}^{0,\mathfrak{n}:V+3} \begin{pmatrix} 2^{\delta_{1}} z_{1} \\ \vdots \\ 2^{\delta_{2}} z_{2} \end{pmatrix} \\ \mathbb{A}: C_{1}, (-\lambda_{1};\mu_{1}), \ (-\sigma_{1}-k_{1};\delta_{1}), (-\sigma_{1}-b_{1}-k_{1};\delta_{1}); \\ \vdots \\ \mathbb{B}: D_{1}, (k_{1}-\lambda_{1};\mu_{1}), \ (1-\sigma_{1}-k_{1};\delta_{1}), (-1-l-\sigma_{1};\delta_{1}); \end{cases}$$

$$\begin{array}{c} C_{2}, (-\lambda_{2}; \mu_{2}), & (-\sigma_{2} - k_{2}; \delta_{2}), (-\sigma_{2} - b_{2} - k_{2}; \delta_{2}) \\ & \ddots & \ddots & \\ D_{2}, (k_{2} - \lambda_{2}; \mu_{2}), & (1 - \sigma_{2} - k_{2}; \delta_{2}), (-1 - l - \sigma_{2}; \delta_{2}) \end{array}$$

$$(4.2)$$

the equation (4.2) is valid under the same conditions mentioned in (3.2).

$$\mathbf{c} \prod_{i=1}^{2} \left[x_{i}^{\lambda_{i}} (1-x_{i})^{\sigma_{i}} \right] \aleph \left(z_{1} x_{1}^{\mu_{1}} (1-x_{1})^{\delta_{1}}, z_{2} x_{r}^{\mu_{2}} (1-x_{2})^{\delta_{2}} \right) = \prod_{i=1}^{2} 2^{\sigma_{i}} (-1)^{l_{i}} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{2\sum_{i=1}^{2} k_{i}}{k_{1}! k_{2}!} \right]$$
$$\sum_{l=0}^{\infty} (1+a_{i}+b_{i}+l) (1+a_{i}+b_{i}+2l) P_{l}^{(a_{1},b_{1};a_{2},b_{2})} (x_{1},x_{2}) \aleph_{U:W_{33}}^{0,\mathfrak{n}:V+3} \begin{pmatrix} 2^{\delta_{1}} z_{1} \\ \vdots \\ 2^{\delta_{2}} z_{2} \end{pmatrix}$$

A : C₁,
$$(-\lambda_1; \mu_1)$$
, $(-\rho_1 + k_1; \delta_1)$, $(-\rho_1 - l - k_1; \delta_1)$;
...
B : D₁, $(k_1 - \lambda_1; \mu_1)$, $(l - \rho_1 - k_1; \delta_1)$, $(1 - l - a_1 - b_1 - \rho_1 - k_1; \delta_1)$;

ISSN: 2231-5373

$$\begin{array}{c} C_{2}, (-\lambda_{2}; \mu_{2}), & (-\rho_{2} + k_{2}; \delta_{2}), (-\rho_{2} - l - k_{2}; \delta_{2}) \\ & \ddots & \ddots & \\ D_{2}, (k_{2} - \lambda_{2}; \mu_{2}), (l - \rho_{2} - k_{2}; \delta_{2}), (1 - l - a_{2} - b_{2} - \rho_{2} - k_{2}; \delta_{2}) \end{array}$$

$$(4.3)$$

the equation (4.3) is valid under the same conditions mentioned in (3.3).

$$\mathbf{d} \prod_{i=1}^{2} \left[x_{i}^{\lambda_{i}} (1-x_{i})^{\sigma_{i}} \right] \aleph \left(z_{1} \left(\frac{1-x_{1}}{x_{1}} \right)^{\mu_{1}}, z_{2} \left(\frac{1-x_{2}}{x_{2}} \right)^{\mu_{2}} \right) = \prod_{i=1}^{2} 2^{\sigma_{i}} (-1)^{l_{i}} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{2\sum_{i=1}^{2} k_{i}}{k_{1}!k_{2}!} \\ \sum_{l=0}^{\infty} (1+a_{i}+b_{i}+l)(1+a_{i}+b_{i}+2l) P_{l}^{(a_{1},b_{1};a_{2},b_{2})}(x_{1},x_{2}) \aleph_{U:W_{33}}^{0,\mathfrak{n}:V+3} \begin{pmatrix} 2^{\mu_{1}}z_{1} \\ \vdots \\ 2^{\mu_{2}}z_{2} \end{pmatrix} \\ A: C_{1}, (\lambda_{1}+1-k_{1};\mu_{1}), \qquad (\rho_{1}-k_{1};\mu_{1}), (\rho_{1}+a_{1}-k_{1};\mu_{1}); \\ \cdots \\ \cdots \\ \cdots \\ \cdots \\ \cdots \\ \cdots \\ \cdots$$

B : D₁,
$$(\lambda_1 + 1; \mu_1)$$
, $(1-\rho_1 - k_1; \mu_1)$, $(1-\rho_1 - k_1 - b - l; \mu_1)$;

$$\begin{array}{ccc}
C_{2}, (\lambda_{2}+1-k_{2}; \mu_{2}), & (\rho_{2}-k_{2}; \mu_{2}), (\rho_{2}+a_{2}-k_{2}; \mu_{2}) \\
& & \ddots & & \\
D_{2}, (\lambda_{2}+1; \mu_{2}), & (1-\rho_{2}-k_{2}; \mu_{2}), (1-\rho_{2}-k_{2}-b_{2}-l; \mu_{2})
\end{array}$$
(4.4)

6. Conclusion

The aleph-function of several variables presented in this paper, is quite basic in nature. Therefore, on specializing the parameters of this function, we may obtain various other special functions such as , multivariable I-function, defined by Sharma and Ahmad et al [5], the Aleph-function of two variables defined by K.sharma [6].

REFERENCES

[1] Ayant F.Y. An integral associated with the Aleph-functions of several variables. *International Journal of Mathematics Trends and Technology (IJMTT)*. 2016 Vol 31 (3), page 142-154.

[2] Carslaw H.S. Introduction to theory of Fourier series and integrals . Dober Publications, New York (1950)

[3] Erdelyi A. Tables of integrals transforms. Part2. Ms Graw Hill, New York (1954)

[4] Rainville E.D. Special functions, McMillan New York (1967)

[5] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113-116

[6] Sharma K. On the integral representation and applications of the generalized function of two variables , International Journal of Mathematical Engineering and Sciences , Vol 3 , issue1 (2014) , page 1-13.

[7] Shrivastava H.S.P. Journ of the Indian Acad math, vol 25 no1 (2003) p.159-168

Personal adress : 411 Avenue Joseph Raynaud Le parc Fleuri , Bat B 83140 , Six-Fours les plages Tel : 06-83-12-49-68 Department : VAR (FRANCE)

ISSN: 2231-5373