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ABSTRACT: In this paper, a piecewise uniform mesh a, a, a,
(PUM)is constructed and used, in conjuction with
Trapezoidal method to solve the stiff first order system
of three Ordinary Differential Equations(ODEs) with
complex roots. The capability of the method is proved
by the numerical result.

where A=| a,, a, a, |,aconstantmatrixand
aSl a32 a33

g,(t), 9,(t), g5(t) are continuous functions of t, where
t € (0,1] with initial values

Keywords: Stiff systems, Trapezoidal method,

Piecewise uniform mesh. u@) =a , v(0)=4, W) =7. .o (1.2)

The system is said to be stiff if the eigenvalues A, of
I.  INTRODUCTION _ _ _
the matrix A have negative real parts and for which

In this paper, we are concerned with the numerical

solution of the linear system of first order equations max; | 2; [>>min; [ 4; |.
du(t) a commonly used stiffness index is
dt f,(t,u,v,w -
dv(t) i ) L =max |Re(4,)].
T = fz(t,U,V, W) , (11)
dw(t) f3(t,u,v, w) It should be noted that L is not invariant under a
—dt simple rescaling of the problem. That raises the
distinction between the mathematical problem and the
f,(t,u,v, w) u(t) g,(t) computational problem. The computational problem
1 ) ) ) 1

includes the nature of the error control and the error
tolerances; and whether a problem is stiff may depend
on this. In particular, rescaling a problem must include a
corresponding change of error control if an equivalent
problem is to be solved.

where| f,(t,u,v,w) = A v(t) |+] 9,(t)
f3(t,u, v, w) w(t)) \ 95(t)
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Generally, we consider a system to be stiff if the
stiffness index is large. More specifically, a system is

considered to be stiff on an interval [t,,t,] if
L(t, —t,)>>1. Often the role of the interval is

overlooked, though we will see that what might seem a
small value of L could contribute to a stiff problem
because the interval is long. We have seen examples for
which the reverse is true. For instance, a nuclear reactor
water hammer modeled by a system of several
thousand differential equations had an L that was
extremely large. Nevertheless, the model was easily
solved using explicit methods because the time interval
of interest was a fraction of a millisecond and as a
consequence, the problem was not stiff.

For a detailed discussion on stiff nature, application,
implicit methods, Trapezoidal method method with UM
and Trapezoidal method method with PUM of stiff
system of ODEs, one may referto [1, 2, 3,5, 7, 8, 10, 11,
12], to name a few.

As in [8], [9] and [10] the focus of this paper is to
improve the performance of the Trapezoidal method by
applying it in a PUM (Shishkin mesh).

The rest of the paper is organized as follows: In section
2, we present the description of PUM. In section 3, we
discuss the order of convergence of the method. In
section 4, we establish the efficiency of the method
through numerical example. Finally, in section 5, we
present some concluding remarks.

The Trapezoidal method is given by

h

Uja = Uj +§[f1(tpuj1Vij)+ f (U Vi W)
h

Via =V +E[f2(tj,uj,vj,wj)+ fo (i Ujans Vi Wil

h
Wiy =W, +E[f3(tj!ujlvjle)+ fa(tisn Ujaas Vinas Wiaa)],
j=0to(N -1).

(1.3)

This is another implicit method which needs a function
solve at each step to find u,,, v;,; and w;,; using a
predictor- corrector method and here a corrector is
explict Euler method.

Ujy = U, +hf1(tj,uj,vj,wj)
Vig =V, +hf2(tj,uj,vj,wj)

W, =V, +hfy(t;,u;,v;,w,;),where j=0to(N -1).
(1.4)
2 Discription of PUM
APUM is constructed on the interval [0,1] as follows:

o : L 1
Choose a transition point o satisfying 0<a£z.

Which divides the
subintervals [0,0] and [o,1].

interval [0,1] into the two

The PUM is constructed by dividing [0,o] into %

. N
equal mesh elements and [o,1] into ST equal mesh
elements.
The PUM is used with the following location of the

transition point [4]

o = mind2, (£) InN} 2.1)
4 '«
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the parameter ¢ as
2

= u(tj+1) _[u(tj+l) - hu‘(tiJrl) +%U” (tj+1)

1
&< —. (2.2) h3 . h . h .
M _au (tj+1)]_§u (tj+1)_§u (tj)
If A has complex eigenvalues c, +ic, then M takes
h . h* . h® .
the value of /¢ +cC. and « takes the smallest =5u (t,-+1)—EU (t,-+1)+au (t;.)
eigenvalue.
) ) h_ . . h® .
N =2" with m>7 (becauseofstiffnesso ftheproblem). —E[U (t;.1)—hu (tj+1)+§“ (tj.0)]
and '
. 4o . N =T, =Ch%u’(t.,).
.= = = — j+l j+1
t; = jhwhere h N 0(1) 7
t=o (] —%)hzwhere h, = 4(1- 0) _ (E +1)(ABRlying the Trapezoidal method with PUM,
(2.3)  the truncation error for 0< ] S%—l is
— l — -1 — -1
If o =2 then h, =N"and h,=N". Tia= u(tj+1)_uj+1 j=01.N-1
In such a case the method can be analysed using the h,
standard techniques. We therefore assume that =u(t;.,) —[U(t,-)+5 FQut;.o).t.,)
o =2InN. (2.4)
o ) h12 .,
= u(tj+1)_[u(tj+l)_h1u (tj+1)+Eu (tj+1)
3
3 Order of Convergence h1| ot Hl)]_ﬁu (t.0) - h1 i)
In general, u(t;,,) is the exact value and u;,, 3!

is the approximate numerical value and the local
truncation error at the point t ;,,, in the Trapezoidal h1

method with UM is

u (t]+1)_iu (t]+1)+ gll (tj+1)

Tj+1 = u(tj+1)_uj+1 J =0,1..N-1

) -hu )+ (0]
= u(t;,) - [u(t)+ , Ut t,+1)+ f(u(,).t,)] 2 2!

= Tj+1 = Ch13u'” (tj+1)'
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The truncation error for %S J<N-1is
T,.=u(t,)-u,;, j=01.N-1
_ h,
= u(tj+1)_[u(tj)+? fult.,)t)
h, ¢
+? (u(tj)!tj)]

2

. h: .
= u(tj+1)_[u(tj+l)_h2u (tj+1)+2_2!U (tj+1)

hS . h , h .
—?Z!U (tm)]—zzu (ti+1)_?2u (t;)
h, . h . hy -

=>T. = Chju” (tj.0)-

Therefore, the truncation error for Trapezoidal method
for the component u with PUM is

ja T

Similarly, the truncation error for v and w can be
easily derived.

Wedefine [|Y [|,= sup{|u®® (®) |,Iv®? () || w* () [}
vt e (0,1].

Therefore

T..(h) <Ch*||Y ||, sinceh, < h,thenh® = h,*

where || Y |l,=sup{lu” |,|v" |,|w" [} forall te(0,1].

Hence, by the definition given as in [1], a one step
method has order of convergent p, if for any

sufficiently smooth solution y(t), there exists constant
k and h, such that |T (h)[<kh®® | 0<h<h,
(where T, (h) is the local truncation error), the order of

convergence of the Trapezoidal method with the PUM is
two. If alinear s-step method is A-stable then it must be
an implicit method. Moreover, the order of the method
is atmost 2. Therefore Trapezoidal method is A-stable.

4 Numerical examples

In this section, we present an example and it
numerical result to illustrate the performance of our
method.ﬁrhe numerical results of#rapezoidal method

with PUNEZaEB'émear@dW{/(fmﬂm?Z! u (0]

The comparison is based in terms of maximum error
and average error. The numerical results are recorded
interms of the following quantities and tabulated.

As the formula given in [6] for uniform mesh we have,

(b-a)

h= , Where b is the end value of t and a

is the initial value of t.

3.
The calculation of error (for piecewise Lgnli%rm mesh
and uniform mesh) is given as,

errorj :| u(tj )(exact solution) l'Ij(approximate) | '

For maximum error (MAXE) (for piecewise uniform
mesh and uniform mesh), we use the formula,

MAXE" = max(error;)

The average error for Trapezoidal method with uniform
mesh is defined as,
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where b is the end value of t and a is the initial value of
t.

The average error(AVE) for Trapezoidal method with

piecewise uniform mesh is defined as,
N
n
> (error;)
AVEl=12
9
h
4
N
> (error))
=N
AVE2=“+4+
= and
3h,
4

AVE = max{AVE1, AVE2}

Trapezoidal method works well for a system of three
ODEs. To prove this we consider the following example.

Example 4.1
u'(t) =—-20u—0.25v-19.75w, u(0)=1,

V'(t) = 20u—20.25v+0.25w, v(0)=0,

w'(t) =20u—-19.75v—-0.25w, w(0)=-1
andt € (0,1].

Exact solution is:
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u=[e 2 +e 2 (cos(20t) +sin(20t))]/2,

1

v=[e 2 —e®(cos(20t) —sin(20t))]/2,

1

w = e 2 +e " (cos(20t) —sin(20t))]/2.

The eigenvalues of this problem is
—20+20i,—20-20i,—0.5

Which are complex and real. So for this problem we

. 1
consider &£ = —,
M

let, the maximum eigen value M be 100 and « as %

The numerical results obtained by applying the PUM
method to the Examples 4.1 is given in Table 1-3.

5 Conclusion

From the numerical table, we observe that
eventhough the number of mesh points are increased in
PUM the stability is not lost and the new modified
Trapezoidal Method with PUM gives better accuracy
than UM for a stiff system of three ordinary differential
equations.
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Table 1: Values of MAXE(u),AVE(u) for the solution

component u for the Example 4.1 for Trapezoidal
Method

MAXE(U) |AVE(u)

Mesh

0.1198e-04
PUM (0.1217e-03

0.9455e-04
UM |0.2007e-02

PUM 0.1921e-05

0.4753e-04

UM 0.1133e-04
0.4800e-03

PUM 0.3065e-06

0.1890e-04

UM 0.1386€e-05
0.1174e-03

0.4838e-07
PUM (0.6877e-05

0.1715e-06
UM  |0.2905e-04

0.7524e-08
PUM (0.2313e-05

0.2133e-07
UM |0.7223e-05

0.1149e-08
PUM (0.7347e-06

0.2660e-08
UM |0.1801e-05
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PUM

0.2240e-06

0.1720e-09

UM

0.4497e-06

0.3321e-09

UM

0.2007e-02

0.8942e-04

PUM

0.6636e-07

0.2527e-10

PUM

0.4731e-04

0.2395e-05

UM

0.1124e-06

0.4148e-10

UM

0.4798e-03

0.1074e-04

PUM

0.1926e-07

0.3647e-11

PUM

0.1885e-04

0.3476e-06

UM

0.2808e-07

0.5183e-11

UM

0.1174e-03

0.1316e-05

PUM

0.5508e-08

0.5182e-12

PUM

0.6864e-05

0.5024e-07

UM

0.7018e-08

0.6478e-12

UM

0.2904e-04

0.1630e-06

PUM

0.1558e-08

0.7269e-13

PUM

0.2310e-05

0.7282e-08

UM

0.1754e-08

0.8097e-13

UM

0.7221e-05

0.2027e-07

Table 2: Values of MAXE(V),AVE(Vv) for the solution
component v for the Example 4.1 for Trapezoidal

Method
MAXE(V) |AVE(V)
N |Mesh
0.1208e-03|0.1622e-04
PUM
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PUM

0.7339e-06

0.1061e-08

UM

0.1801e-05

0.2528e-08

PUM

0.2238e-06

0.1550e-09

UM

0.4495e-06

0.3156e-09

PUM

0.6632e-07

0.2263e-10
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0.3943e-10
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UM

0.1925e-07|0.328%e-11
PUM

0.2807e-07|0.4927e-11
UM

0.5506e-08/0.4743e-12
PUM

0.7016e-08/0.6158e-12
UM

0.1557e-08/0.6776e-13
PUM

0.1754e-08/0.7697e-13
UM

Table 3: Values of MAXE(w),AVE(w) for the solution
component w for the Example 4.1 for Trapezoidal

Method

N |Mesh

MAXE(w)

AVE(w)

PUM

0.1208e-03

0.1360e-04

UM

0.2007e-02

0.9284e-04

PUM

0.4731e-04

0.2438e-05

UM

0.4798e-03

0.1109e-04

PUM

0.1885e-04

0.4060e-06
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UM

0.1174e-03

0.1357e-05

PUM

0.6864e-05

0.6387e-07

UM

0.2904e-04

0.1678e-06

PUM

0.2310e-05

0.9623e-08

UM

0.7221e-05

0.2086e-07

PUM

0.7339e-06

0.1403e-08

UM

0.1801e-05

0.2601e-08

PUM

0.2238e-06

0.1995e-09

UM

0.4495e-06

0.3247e-09

PUM

0.6632e-07

0.2789e-10

UM

0.1123e-06

0.4056e-10

PUM

0.1925e-07

0.3854e-11

UM

0.2807e-07

0.5069¢e-11

PUM

0.5506e-08

0.5289¢e-12

UM

0.7016e-08

0.6335e-12
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PUM

0.1557e-08

0.7231e-13

UM

0.1754e-08

0.7918e-13
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