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ABSTRACT: Stiff system of Ordinary Differential
Equations can be exemplified by problems in chemical
kinetics, fluid dynamics, quantum mechanics, electrical
networks, etc. In this paper, a third order Backward
Differentiation Formula (BDF-3) is suggested on a
piecewise uniform mesh(PUM) to solve a system of first
order stiff Ordinary Differential Equations(ODEs). It is
proved that the numerical approximations generated by
this method with PUM produce numerical solutions
with less computational effort and less error as
compared to the method without PUM. Numerical
results are presented in support of the theory.
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I.  INTRODUCTION

In this paper, we are concerned with the numerical
solution of the linear system of first order equations

Where( fl(t,u,v)J _ A(u(t)}(gl(t)J
Ltuy)) ) (g0

a. a
where A = ( e J
aZl a22

a constant matrix and g, (t), g, (t)

are continuous functions of t, where t € (0,1]
with initial values

u@)=a , v(0) =B, e (1.2)
and here
|a; |>>1,fori, j=1,2.
The linear system (1.1) - (1.2) is said to be stiff if
i=1,..,n and

(i) Re(4;) <0,

(iymax; | Re(4,)| >> min, |Re(4,)| where A

are the eigenvalues of stiff ODEs,

du(t) n is the number of equations in the system and
f,(t,u,v the ratio
gt | [ htuv) (L) (L.1)
dv(t) f,(t,u,v)
at SR = max; | real partof A | =12 1
min, |real partof A |
(1.3)
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is called the stiffness ratio or stiffness index. In [24], [25]
and [26] Trapezoidal method, Backward euler method
and second order Backward difference formula with the
PUM was implemented for stiff system of ODEs for all

a; >>1. In this paper we apply the work for another

method BDF-3in PUM for all a; >>1.

For a detailed discussion on stiff nature,
application, implicit methods and BDF-3 with UM of stiff
system of ODEs, one may referto[1, 2,5, 6,7, 9, 10, 11,
12, 15, 17, 18, 21, 22, 23] and the thesis [3], to name a
few. PUM are discussed by several researchers such as
C. Clavero, J. L. Gracia and F. Lisbona [4], Kailash C.
Patidar [13], J. J. H. Miller, E. O’ Riordan and G. I.
Shishkin [16], Natalia Kopteva and Eugene O’ Riordan
[19].

2 BDF-3 Scheme
Approximating the equations (1.1) and (1.2) by applying

the BDF-3 method we
have
_2 9 18 6h
uj+1 - Euj—z _Euj—l +Euj +E[ fl(tj+1’ uj+1’Vj+1)]
_2 9 18 6h
Via = Vi T Vin T Vi +H[f2(tj+1’ Uj1 Vi)l
....................................... (2.1)
where j=1to(N —1) and N is the number of mesh
point.

From (2.1), u;, and v,, are determined

implicitly. The new solution approximation needs to be
computed iteratively, typically by a explict Euler method

U, =u;+hf(t;,u;,v,)

where j=0to(N -1)

j+l
Vi, =V, +hf,(t;,u;,v;)

(2.2)

BDF-2 is A-stable (damping out errors but not
being too dissipative) but all higher order methods are
not A-stable. Indeed, Dahlquist in 1963, proved that a
multistep method that is A-stable cannot have an order
greater than two and that the method of order two with
the smallest error constant (0.5) is the trapezoidal rule.
[7] Since the restriction on order for an A-stable method
to solve stiff systems is a severe one, two less
demanding stability definitions have been proposed:

(i) A(er)—stable [14] if it is absolute stable for

some (sufficiently small) o € (0,%) and

(ii) Stiffly stable [8, 14] if in the region R,
(Re(Ah) < —a) it is absolutely stable, and in R,
(—a<Re(4h) <Db), (| Im(Ah)|<c) itis accurate. BDfs
are not necessarily A-stable but are A(et)— or stiffly
stable.

BDF-3 is A(a) stable rather than A-stable; its
stability region includes a wedge of angle « and this
includes the eigenvalues of many problems such as
those arising in fluid mechanics. BDF-3 method may not
be pretty or easy to use, but it will handle rough country
and will nearly always get you where you want to go.

In the next section, the description of PUM is
presented.

3 Description of PUM

The point o is called the transition point in the
literature of SPPs. This point divide the given region
[0,1] into two regions [0,0] and [o,1]; in one region
the solution changes abruptly and in another it is
smooth. To get a better picture of the solution in the
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, . : N .
first region, being a smaller one, we take " points
there.

Therefore the PUM is constructed by dividing

[0,0] into % equal mesh elements and [oc,1] into

N : , :
ST equal mesh elements. The piecewise uniform

mesh is used with the following location of the

transition point o = min{%, (i) InN}. (3.1)
a
Choose the parameter ¢ as
e< i (3.2)
where M is the greatest eigen value and « is the
smallest eigen value of the matrix A.
Assume that
N =2" with m=>11for all|a;(t)[>>1
for j =1,2where te(0,1] and
. 4
t; = jh, where h =29
N
. N
=0(1)—,
1=0(1)- -
_ . N _4(1l-o
t,=o+(J —Z)h2 where h, = 3N
. N
] =(—=+1)()N.
4
(3.3

If GZ%then h=N"and h,=N".

In such a case the method can be analysed using the
standard techniques. We therefore assume that

e
o =—InN.
a

(3.4)

ISSN No : 2231-5373

www.internationaljournalssrg.org

—Volume 33 Number 4- may 2016

The above scheme will give less error and less average
error of the solution if the stiff ratio lies between 400 to
1000.

4 Order of Convergence
In general, u(t;,,) is the exact value and u;,,

is the approximate numerical value and the local
truncation error at the point t;,;, in the BDF-3 with UM

is

T,.=u(t;,,)-u;, wherej=0,1.N-1

_ 9
u(tj+l) u(t )+ (tj—l)_ﬁu(tj—z)
__[f(tj+l’ (j+1))]
18 ' h? .
= u(tj+1)_ﬁ[u(tj+l)_hu (tj+1)+?u (tj+1)
h® . h*
_au (tj+1)+zu4(tj+l)]
9 ' an* 8h® ..
+ﬁ[u(tj+1)_2hu (tj+1)+7u (tj+1)_?u (tj.)
:|.6h4
u (t]+l)]
2 hu' oh? . 27h% .
—E[U(tj+1)—3 u (tj+1)+TU (t”l)_Tu (tj1)
8:|.h4
T 4( ]+1)] ( j+1)

U(t )_U(t,+1 h); f(tj+1’uj+1):u‘(tj+l);
u(t; ,) = u(t;,, —2h);
U(tjfz) = U(tj+1 —3h)

where
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= Tj+1 = Ch4u4(tj+l)
= Tj+1 = Ch14u4(tj+l)

Applying the BDF-3 with PUM, the truncation error for _ N . _
The truncation error for 2 <J<N-1is

Oﬁjﬁﬂ—l is
4

T,.=u(t,,)-u;, wherej=01.N-1

T,.=u(t;,,)-u;, wherej=01.N-1

- 9 2
_ 9 2 =u(ty,) - u(t )+ (tj—l)_ﬁu(tjfz)
u(tj+l) U(t )+ (tjfl)_ﬁu(tjfz)

6h
O ree L utt )]
h1[f(t,+1, ut, )] 1

_ hy
_ 18 ‘ h12 ., - u(tj+1) [u(t]+1) h u (t]+1)+ u (t]+1)
- u(tj+1)_ﬂ[u(tj+l)_h1u (tj+1)+7u (tj+1)

hd . hy
3 4 —=u (8 1)+_2U4(t'+1)]
hy h, 3t :
_Eu (t]+1)+ Al (tj+1)]

41

9 ' 4h? . 8h® . 9 ' 4h?
#0200 () U () - T )+ 2 () + U )

16 8h3 :|.6h4
4r:1 J+1)] 3| (t]+1) +— A1 4(tj+1)]

3
SIS

2 -sha't )+ -
11[u(tj+l) 3h1u (tj+1)+ 2 u (t]+1) 3|

2 : oh? .
_ﬁ[u(tj+l)_3h2u (tj+1)+72u (tj+1)

|81 h1
j+l)] ( j+1) 3 4
A1
- 2?::2 u (tj+1) % 4( ]+1)] ( j+1)

u(t;) = u(t;, —hy); ' '

f(tj+1! j+1) = u‘(tj+1); where !
where Ut ) = ut, , — 2h,); ut;) =u(t,,—hy); f(t,..u.)=u(t,);

u(t;,) = u(t;,, —3h) u(t;,) =u(t;, —2hy); u(t;,) =u(t;, —3n,)
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The calculation of error (for PUM and UM) is given as,
— 4, .4 -
= Tj+1 - Chz u (tj+1) errorj _l u(tj )(exact solution) l'Ij(approximate) | '

Therefore, the truncation error for BDF-3 with  For maximum error (MAXE) (for PUM and UM), we use
piecewise uniform mesh is the formula,

MAXE" = max(error;)

. N
4 4 ) < j<
Chiu(t,) for 0<j< 4 ! The average error for BDF-3 with UM is defined as,
T, =<Chju’(t,,) for %S JSN-1 N (4.1)
> error,
AVE ==

Similarly, the truncation error for the second The average error(AVE) for BDF-3 with PUM is defined

component v can be easily derived. as,
we define [|Y ;= supgl u® () || v () [} ry
forall te(0,1]. Z(errorj)
AVE1= 12
. 4 _ 4 N
since h, <h, then h* =h, "
Therefore T;,,(h) <Ch*|Y ||,
where ||Y ||,= “IIviy forall t 1]. N
ere |Y [l,= sup{ju‘[,|v*[} forall te(0,1] $° (error )
Hence, by the definition given as in [12], the order of AVE?2 = )
convergence of BDF-3 with PUM is four. 37N
4

5 Numerical example

In this section, we present two examples to
illustrate the performance of our method. The
numerical results of BDF-3 with PUM will be compared
with uniform mesh(UM). The comparison is based in  Examples 5.1 and 5.2 have stiffness ratio between 400
terms of maximum error and average error. The to 1000.
numerical results are recorded interms of the following
quantities and tabulated. As the formula given in [20] Example 5.1 u’(t) = 998u(t) +1998v(t)
for UM we have,

AVE = max{AVE1, AVE2}.

V/(t) = —999u(t) —1999v(t) Vt e [0,1],

ICET

, Where b is the end value of tand a u(0) =1,v(0) =1.

is the initial value of t. The exact solution is:
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u(t) = 4e' -3
v(t) = -2 +3e7%",

The numerical results obtained by applying the PUM to
the example 5.1 are givenin Table 1.

Example 5.2 u’(t) =1195u(t) —1995v(t)
V'(t) =1197u(t) —1997v(t) Vte[0,1],
u(0) =1,v(0) =1.
Exact solution is:
u(t) = 10e —8e*
v(t) = —6e7*" +8e %",

The numerical results obtained by applying the PUM to
the example 5.2 are given in Table 2.

6 Conclusion

In this paper the BDF-3 have been presented
and implemented with new mesh generation makes our
method attractive for numerical solution of stiff
problems having stiffness ratio from 400 to 1000 type
problems. We have demonstrated the efficiency of our
BDF-3 with PUM over the existing BDF-3 with UM as
shown in the tables. Numerical example of differential
equations has been used here to show the superiority
of the proposed integration method, we conclude that
when the number of subintervals N is increased we can
obtain a very good accuracy. In general, for stiff
equations when the mesh is refined with more number
of points the stability will be lost. But on PUM
eventhough the number of mesh points are increased
the stability is not lost.

Table 1: Value of
MAXE(u),AVE (u),MAXE(v),AVE(v) for the

solution component u and Vv for the Example 5.1

MESH MAXE(u) |JAVE(U) |MAXE(v) |AVE(v)
0.1250e- |0.1876e- [0.6087e- |0.9352€-
PUM (004 006 005 007
0.4287e- |0.1047e- |0.2143e- |0.5233e-
UM [01 004 001 005
0.6545e- [0.2777e- |0.3275e- |0.1387e-
PUM (004 007 004 007
0.1267e- |0.1546e- [0.6333e- [0.7731e-
UM [01 005 002 006
0.4570e- |0.4045e- |0.2285e- |0.2021e-
PUM (004 008 004 008
0.3581e- |0.2185e- |0.1790e- |0.1093e-
UM (002 006 002 006
0.2590e- |0.1054e- |0.1295e- |0.5270e-
PUM (004 008 004 009
0.9572e- [0.2921e- [0.4785e- |0.1461e-
UM (003 007 003 007
0.1366e- [0.2779%- [0.6831e- [0.1390e-
PUM (004 009 005 009
0.2477e- [0.3780e- [0.123%- [0.1890e-
UM [003 008 003 008
0.6986e- [0.7107e- [0.3493e- |0.3554e-
PUM (005 010 005 010
0.6303e- |0.4809e- |0.3151e- |0.2404e-
UM (004 009 004 009
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Table 2: Value of
MAXE(u),AVE (u),MAXE(v),AVE(v) for the
solution component u and Vv for the Example 5.2

MAXE(u) |AVE(u) MAXE(v) |AVE(v)
Mesh

0.7269e- |0.2366e- |0.4362e- [0.1420e-
PUM |002 005 002 005

0.4655e- [0.1137e- [0.2793e- |0.6820e-
UM 001 004 001 005

0.8184e- [0.1332e- |0.4912e- |0.7994e-
PUM |003 006 003 007

0.1429e- |0.1744e- |0.8571e- |0.1046e-
UM 001 005 002 005

0.1751e- [0.1425e- [0.1051e- [0.8551e-
PUM |003 007 003 008

0.4112e- |0.2510e- |0.2468e- |0.1506e-
UM 002 006 002 006

0. [0.2407e- [0.3550e- |0.1444e-

PUM [5915e-004 008 004 008

0.1110e- [0.3388e- [0.6660e- [0.2033e-
UM 002 007 003 007

0.2633e- [0.5356e- |0.1580e- |0.3214e-
PUM [004 009 004 009

0.2887e- |0.4405e- |0.1732e- |0.2643e-
UM 003 008 003 008

0.1295e- [0.1317e- [0.7767e- [0.7901e-
PUM [004 009 005 010

0. |0.5619e- |0.4418e- |0.3371e-

UM  [7364e-004|009 004 009
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