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ABSTRACT: Stiff system of Ordinary Differential 
Equations can be exemplified by problems in chemical 
kinetics, fluid dynamics, quantum mechanics, electrical 
networks, etc. In this paper, a third order Backward 
Differentiation Formula (BDF-3) is suggested on a 
piecewise uniform mesh(PUM) to solve a system of first 
order stiff Ordinary Differential Equations(ODEs). It is 
proved that the numerical approximations generated by 
this method with PUM produce numerical solutions 
with less computational effort and less error as 
compared to the method without PUM. Numerical 
results are presented in support of the theory.  

 

Keywords: System of stiff differential equations, Initial 
value problem, BDF-3, Piecewise uniform mesh.  

 
 
  

I. INTRODUCTION 

In this paper, we are concerned with the numerical 
solution of the linear system of first order equations  
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 are continuous functions of t, where (0,1]t  

with initial values  

 ,=(0)  ,  =(0)  vu ………….(1.2) 

 and here  

 1,2.=, f 1,  || jioraij   

The linear system (1.1) - (1.2) is said to be stiff if  

(i) niRe i 1,...,=0,<)(  and 

(ii) |)(| ii Remax   >> |)(| ii Remin   where i  

are the eigenvalues of stiff ODEs, 

n is the number of equations in the system and 
the ratio  

 ni
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is called the stiffness ratio or stiffness index. In [24], [25] 
and [26] Trapezoidal method, Backward euler method 
and second order Backward difference formula with the 
PUM was implemented for stiff system of ODEs for all 

1ija . In this paper we apply the work for another 

method BDF-3 in PUM for all 1ija . 

For a detailed discussion on stiff nature, 
application, implicit methods and BDF-3 with UM of stiff 
system of ODEs, one may refer to [1, 2, 5, 6, 7, 9, 10, 11, 
12, 15, 17, 18, 21, 22, 23] and the thesis [3], to name a 
few. PUM are discussed by several researchers such as 
C. Clavero, J. L. Gracia and F. Lisbona [4], Kailash C. 
Patidar [13], J. J. H. Miller, E. O’ Riordan and G. I. 
Shishkin [16], Natalia Kopteva and Eugene O’ Riordan 
[19]. 

2  BDF-3 Scheme 
Approximating the equations (1.1) and (1.2) by applying 

the BDF-3 method we 

have
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where   1)(to1 = Nj   and N is the number of mesh 

point. 

From (2.1), 1ju  and 1jv  are determined 

implicitly. The new solution approximation needs to be 
computed iteratively, typically by a explict Euler method 
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 (2.2) 

 BDF-2 is A-stable (damping out errors but not 
being too dissipative) but all higher order methods are 
not A-stable. Indeed, Dahlquist in 1963, proved that a 
multistep method that is A-stable cannot have an order 
greater than two and that the method of order two with 
the smallest error constant (0.5) is the trapezoidal rule. 
[7] Since the restriction on order for an A-stable method 
to solve stiff systems is a severe one, two less 
demanding stability definitions have been proposed: 

(i) )(A stable [14] if it is absolute stable for 

some (sufficiently small) )
2

(0,   and 

 (ii) Stiffly stable [8, 14] if in the region 1R  

))(( ahRe   it is absolutely stable, and in 2R  

)<)(<( bhRea  , )|<)((| chIm   it is accurate. BDfs 

are not necessarily A-stable but are )(A  or stiffly 

stable. 

 BDF-3 is )(A  stable rather than A-stable; its 
stability region includes a wedge of angle   and this 
includes the eigenvalues of many problems such as 
those arising in fluid mechanics. BDF-3 method may not 
be pretty or easy to use, but it will handle rough country 
and will nearly always get you where you want to go. 

In the next section, the description of PUM is 
presented.  

3  Description of PUM 
 The point   is called the transition point in the 

literature of SPPs. This point divide the given region 
[0,1]  into two regions ][0,  and ,1][ ; in one region 

the solution changes abruptly and in another it is 
smooth. To get a better picture of the solution in the 
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first region, being a smaller one, we take 
4
N

 points 

there. 

Therefore the PUM is constructed by dividing 

][0,  into 
4
N

 equal mesh elements and ,1][  into 

4
 3 N

 equal mesh elements. The piecewise uniform 

mesh is used with the following location of the 

transition point }. )(,
4
1{min= lnN


  (3.1) 

 Choose the parameter   as  

,1<
M

  (3.2) 

 where M is the greatest eigen value and   is the 
smallest eigen value of the matrix A. 

Assume that 

 1  |)(|    11     2=  taallformwithN ij
m  

(0,1]  where 1,2= for tj  and  
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 If 
4
1=  then 1

1 = Nh  and 1
2 = Nh . 

In such a case the method can be analysed using the 
standard techniques. We therefore assume that  

.= lnN

  (3.4) 

 The above scheme will give less error and less average 
error of the solution if the stiff ratio lies between 400 to 
1000. 

4  Order of Convergence 
 In general, )( 1jtu  is the exact value and 1ju  

is the approximate numerical value and the local 
truncation error at the point 1)( jt  in the BDF-3 with UM 

is  
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)(= 1
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Applying the BDF-3 with PUM, the truncation error  for 

1
4

0 
Nj  is  
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)(= 1
44

21  jj tuChT  

Therefore, the truncation error for BDF-3 with 
piecewise uniform mesh is  
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Similarly, the truncation error for the second 
component v  can be easily derived.  
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 Hence, by the definition given as in [12], the order of 
convergence of BDF-3 with PUM is four. 

5  Numerical example 
 In this section, we present two examples to 

illustrate the performance of our method. The 
numerical results of BDF-3 with PUM will be compared 
with uniform mesh(UM). The comparison is based in 
terms of maximum error and average error. The 
numerical results are recorded interms of the following 
quantities and tabulated. As the formula given in [20] 
for UM we have, 

,)(=
N

abh 
 where b is the end value of t and a 

is the initial value of t. 

The calculation of error (for PUM and UM) is given as, 

|)(=| )()  ( eapproximatjsolutionexactjj utuerror  . 

For maximum error (MAXE) (for PUM and UM), we use 
the formula, 

NMAXE  =  )(max jerror  

The average error for BDF-3 with UM is defined as,  

 .= 1=

N
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AVE
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 The average error(AVE) for BDF-3 with PUM is defined 
as,  
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Examples 5.1 and 5.2 have stiffness ratio between 400 
to 1000.  

Example 5.1  )(1998)(998=)( tvtutu    

)(1999)(999=)( tvtutv    [0,1],t   

 1.=(0)1,=(0) vu   

The exact solution is: 
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)(tu  =  tt ee 100034     

tt eetv 100032=)(   . 

The numerical results obtained by applying the PUM to 
the 5.1 example  are given in Table 1.  

Example 5.2  )(1995)(1195=)( tvtutu    

)(1997)(1197=)( tvtutv    [0,1],t   

 1.=(0)1,=(0) vu   

Exact solution is: 

)(tu  =  tt ee 8002 810     

tt eetv 8002 86=)(   . 

The numerical results obtained by applying the PUM to 
the 5.2 example  are given in Table 2. 

6  Conclusion 
 In this paper the BDF-3 have been presented 

and implemented with new mesh generation makes our 
method attractive for numerical solution of stiff 
problems having stiffness ratio from 400 to 1000 type 
problems. We have demonstrated the efficiency of our 
BDF-3 with PUM over the existing BDF-3 with UM as 
shown in the tables. Numerical example of differential 
equations has been used here to show the superiority 
of the proposed integration method, we conclude that 
when the number of subintervals N is increased we can 
obtain a very good accuracy. In general, for stiff 
equations when the mesh is refined with more number 
of points the stability will be lost. But on PUM 
eventhough the number of mesh points are increased 
the stability is not lost.  

 

 

Table  1:  Value of 
)(),(),(),( vAVEvMAXEuAVEuMAXE  for the 

solution component u  and v  for the Example 5.1 

  

N MESH MAXE(u)  AVE(u) MAXE(v)  AVE(v)  

PUM  
 0.1250e-
004  

0.1876e-
006  

0.6087e-
005  

 0.9352e-
007  

  UM  
 0.4287e-
001  

0.1047e-
004  

 0.2143e-
001  

0.5233e-
005 

PUM  
0.6545e-
004  

0.2777e-
007  

 0.3275e-
004  

 0.1387e-
007 

  UM  
0.1267e-
001  

 0.1546e-
005  

0.6333e-
002  

0.7731e-
006  

PUM  
 0.4570e-
004  

 0.4045e-
008  

 0.2285e-
004  

 0.2021e-
008 

  UM  
 0.3581e-
002  

0.2185e-
006  

 0.1790e-
002  

0.1093e-
006 

PUM  
 0.2590e-
004  

 0.1054e-
008  

 0.1295e-
004  

0.5270e-
009 

  UM  
 0.9572e-
003  

0.2921e-
007  

0.4785e-
003  

0.1461e-
007  

PUM  
0.1366e-
004  

0.2779e-
009  

0.6831e-
005  

0.1390e-
009 

  UM  
0.2477e-
003  

0.3780e-
008  

0.1239e-
003  

0.1890e-
008 

PUM  
0.6986e-
005  

0.7107e-
010  

0.3493e-
005  

 0.3554e-
010 

  UM  
 0.6303e-
004  

 0.4809e-
009  

 0.3151e-
004  

0.2404e-
009 
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Table  2:  Value of 
)(),(),(),( vAVEvMAXEuAVEuMAXE  for the 

solution component u  and v  for the Example 5.2  

Mesh 
MAXE(u)  AVE(u) MAXE(v)  AVE(v) 

 

PUM  
0.7269e-
002  

0.2366e-
005  

 0.4362e-
002  

0.1420e-
005 

  UM  
 0.4655e-
001  

0.1137e-
004  

 0.2793e-
001  

0.6820e-
005 

PUM  
0.8184e-
003  

0.1332e-
006  

 0.4912e-
003  

 0.7994e-
007 

  UM  
0.1429e-
001  

0.1744e-
005  

 0.8571e-
002  

0.1046e-
005 

PUM  
 0.1751e-
003  

0.1425e-
007  

0.1051e-
003  

0.8551e-
008  

  UM  
0.4112e-
002  

0.2510e-
006  

0.2468e-
002  

0.1506e-
006 

PUM  
0.

5915e-004 
0.2407e-
008  

0.3550e-
004  

 0.1444e-
008  

  UM  
 0.1110e-
002  

0.3388e-
007  

 0.6660e-
003  

0.2033e-
007 

PUM  
0.2633e-
004  

0.5356e-
009  

0.1580e-
004  

0.3214e-
009 

  UM  
0.2887e-
003  

0.4405e-
008  

0.1732e-
003  

0.2643e-
008  

PUM  
 0.1295e-
004  

0.1317e-
009  

0.7767e-
005  

0.7901e-
010 

  UM  
0.

7364e-004 
0.5619e-
009  

0.4418e-
004  

 0.3371e-
009 
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