4-cordiality of Some New Path Related Graphs

N.B.Rathod ${ }^{\# 1}$, K.K.Kanani ${ }^{* 2}$
${ }^{1 \#}$ Research scholar, R.K.University, Rajkot-360020, Gujarat, India.
${ }^{2 *}$ Assistant Professor in Mathematics, Government Engineering College, Rajkot-360005, Gujarat, India..

Abstract

For an Abelian Group $<A$, * $>$ a graph $G=(V(G), E(G))$ is said to be A-cordial if there is a mapping $f: V(G) \rightarrow A$ which satisfies the conditions $\mid v_{f}$ $(a)-v_{f}(b) \mid \leq 1$ and $\left|e_{f}(a)-e_{f}(b)\right| \leq 1$, for all $a, b \in A$, when the edge $e=u v$ is labeled as $f(u) * f(v)$. Where $v_{f}(a)$ is the number of vertices with label a and $e_{f}(a)$ is the number of edges with label a. If we consider an Abelian Group $<A, *>=<Z_{k},+_{k}>$ then it is called k-cordial labeling. In this research paper we proved that Z- P_{n}, braid graph $B(n)$, triangular ladder $T L_{n}$ and irregular quadrilateral snake $I\left(Q S_{n}\right)$ are 4cordial for all n.

Keywords-A-cordial Labeling; Z-P P_{n}; Braid Graph $B(n) ; \quad$ Triangular Ladder $\quad T L_{n} ; \quad$ Irregular Quadrilateral Snake $I\left(Q S_{n}\right)$.
2010 Mathematics Subject Classification-05C78

I. INTRODUCTION

In this research paper we consider finite, connected, undirected and simple graphs. In the graph $G=(V(G), E(G))$ the cardinality of the vertex set is called order of G and the cardinality of the edge set is called the size of G. They are denoted by $|V(G)|$ and $|E(G)|$ respectively. In Graph Labeling we assign numerical values to vertices or edges or both subject to certain conditions.

Definition 1.1 Let $<A, *>$ be any Abelian group. A graph is said to be A-cordial if there is a mapping $f: V(G) \rightarrow A$
which satisfies the following two conditions when the edge $e=u v$ is labeled as $f(u) * f(v)$
(i) $\left|v_{f}(a)-v_{f}(b)\right| \leq 1 ; \quad$ for all $a, b \in A$,
(ii) $\left|e_{f}(a)-e_{f}(b)\right| \leq 1 ; \quad$ for all $a, b \in A$,

Where,
$v_{f}(a)=$ the number of vertices with label a;
$v_{f}(b)=$ the number of vertices with label b;
$e_{f}(a)=$ the number of edges with label a;
$e_{f}(b)=$ the number of edges with label b.
We note that if $A=<Z_{k},+_{k}>$ that is additive group of modulo k then the labeling is known as k cordial labeling.

Here, we consider $\left\langle Z_{4},+_{4}\right\rangle$ that is additive group of modulo 4 then the labeling is known as 4 cordial labeling.

The concept of A-cordial labeling was introduced by Hovey [3] and proved the following results:

- All the connected graphs are 3-cordial.
- All the trees are 3-cordial and 4-cordial.
- Cycles are k -cordial for all odd k .

Youssef[10] obtained the following results:

- $\quad C_{2 k}{ }^{+l}$ is not $(2 k+1)$-cordial for $k>1$.
- K_{n} is 4-cordial $\leftrightarrow n \leq 6$.
- $C_{n}{ }^{2}$ is 4-cordial $\leftrightarrow n \neq 2(\bmod 4)$.
- $K_{m, n}$ is 4-cordial $\leftrightarrow m$ or $n \not \equiv 2(\bmod 4)$.

Rathod and Kanani[4] proved the following results:

- All the wheels W_{n} are 4-cordial.
- All the fans f_{n} are 4-cordial.
- All the friendship graphs F_{n} are 4-cordial.
- All the gear graphs G_{n} are 4-cordial.
- All the double fans $D f_{n}$ are 4-cordial.
- All the helms H_{n} are 4-cordial.

Rathod and Kanani[5] also proved the following results:

- The middle graph $M\left(P_{n}\right)$ of path Pn is 4cordial.
- The total graph $T\left(P_{n}\right)$ of path Pn is 4-cordial.
- The splitting graph $S^{\prime}\left(P_{n}\right)$ of path is 4 cordial.
- The square graph $P_{n}{ }^{2}$ of path P_{n} is 4-cordial.
- The triangular snake $T S_{n}$ is 4-cordial.

In[6] Rathod and Kanani have derived the following results:

- The square graph of Path $P_{n}{ }^{2}$ is k-cordial.
- The pan graph $C_{n}{ }^{+l}$ is k-cordial for all even k and
$n=k+j, 0 \leq j \leq k-1$.
- The pan graph $C_{n}{ }^{+l}$ is k-cordial for all even k and
$n=2 t k+j$, where $\mathrm{t} \in \mathrm{NU}\{0\}$ and $0 \leq j \leq k-$ 1.
- The pan graph $C_{n}{ }^{+l}$ is k-cordial for all even k and

$$
n=2 t k+k+j, \text { where } \mathbf{t} \in \mathrm{N} \text { and } 0 \leq j \leq k-1 .
$$

We consider the following useful definitions to understand the results of this research paper.

Definition 1.2 The graph $Z-P_{n}$ is obtained from the pair of paths $P_{n}{ }^{\prime}$ and $P_{n}{ }^{\prime \prime}$. Let $v_{l}, v_{2}, \ldots, v_{n}$ be the vertices of path $P_{n}{ }^{\prime}$ and $u_{1}, u_{2}, \ldots, u_{n}$ are the vertices of path $P_{n}{ }^{\prime \prime}$. To find $Z-P_{n}$ join i ${ }^{\text {th }}$ vertex of path $P_{n}{ }^{\prime}$ with $(i+l)^{\text {th }}$ vertex of path P_{n} " for all $\quad l \leq i \leq n-1$.

Definition 1.3 The Braid Graph $B(n)$ is obtained from the pair of paths $P_{n}{ }^{\prime}$ and $P_{n}{ }^{\prime \prime}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of path $P_{n}{ }^{\prime}$ and $u_{1}, u_{2}, \ldots, u_{n}$ are the vertices of path $P_{n}{ }^{\prime \prime}$. To find braid graph join $i^{\text {th }}$ vertex of path $P_{n}{ }^{\prime}$ with $(i+1)^{\text {th }}$ vertex of path $P_{n}{ }^{\prime \prime}$ and $i^{\text {th }}$ vertex of path $P_{n}{ }^{\prime \prime}$ with $(i+2)^{\text {th }}$ vertex of path $P_{n}{ }^{\prime}$ with the new edges for all $l \leq i \leq n-2$.

Definition 1.4 The Triangular Ladder $T L_{n}$ is obtained from the ladder $L_{n}=P_{n} \times P_{2}(n \geq 2)$ by adding the edges $u_{i} v_{i+1}$ for all $l \leq i \leq n-1$, where the consecutive vertices of two copies of paths are v_{1}, v_{2}, \ldots, v_{n} and $u_{l}, u_{2}, \ldots, u_{n}$ and the edges are $u_{i} v_{i}$.

Definition 1.5 The Irregular Quadrilateral Snake $I\left(Q S_{n}\right)$ is obtained from the path P_{n}. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of path P_{n} and $v_{1}, v_{2}, \ldots, v_{n-2} \& \mathrm{w}_{1}, \mathrm{w}_{2}$, \ldots, w_{n-2} are the newly added vertices. To obtain irregular quadrilateral snake join the vertices $u_{i} v_{i}$, $w_{i} u_{i+2}$ and $v_{i} w_{i}$ for all $l \leq i \leq n-2$.

Here, all terminologies are considered from Gross and Yellen[2].

II. MAIN RESULTS

Theorem 2.1 The graph $Z-P_{n}$ is 4-cordial for all n.
Proof. Let $G=Z-P_{n}$ be the graph obtained from the pair of paths $P_{n}{ }^{\prime}$ and $P_{n}{ }^{\prime \prime}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of path $P_{n}{ }^{\prime}$ and $u_{1}, u_{2}, \ldots, u_{n}$ are the vertices of path $P_{n}{ }^{\prime \prime}$. To find $Z-P_{n}$ join $\mathrm{i}^{\text {th }}$ vertex of path $P_{n}{ }^{\prime}$ with $(i+1)^{t h}$ vertex of path $P_{n}{ }^{\prime \prime}$ for all $1 \leq i \leq n-1$. We note that $|V(G)|=2 n$ and $|E(G)|=3 n-3$.

Define 4-cordial labeling $f: V(G) \rightarrow Z_{4}$ as follows:

$$
\begin{aligned}
f\left(v_{i}\right)=0 ; & \\
f\left(v_{i}\right)=1 ; & i \equiv 4,7(\bmod 8) ; \\
f\left(v_{i}\right)=2 ; & i \equiv 2,5(\bmod 8) ; \\
f\left(v_{i}\right)=3 ; & i \equiv 0,3(\bmod 8) ; \\
f\left(u_{i}\right)=0 ; & i \equiv 4,7(\bmod 8) ; \\
f\left(u_{i}\right)=1 ; & i \equiv 2,5(\bmod 8) ; \\
f\left(u_{i}\right)=2 ; & i \equiv 0,3(\bmod 8) ;
\end{aligned}
$$

$f\left(u_{i}\right)=3 ; \quad i \equiv 1, \sigma(\bmod 8) ; \quad l \leq i \leq n$,
Let $n=8 p+q, \quad p, q \in N U\{0\}$.
TABLE 1

q	Vertex conditions	Edge conditions
0	$\begin{aligned} & v_{f}(0)=v_{f}(1)= \\ & v_{f}(2)=v_{f}(3) \end{aligned}$	$\begin{aligned} & e_{f}(0)=e_{f}(1)+1= \\ & e_{f}(2)+1=e_{f}(3)+1 \end{aligned}$
1	$\begin{aligned} & v_{f}(0)=v_{f}(1)+l= \\ & v_{f}(2)+l=v_{f}(3) \end{aligned}$	$\begin{gathered} e_{f}(0)=e_{f}(1)= \\ e_{f}(2)=e_{f}(3) \end{gathered}$
2	$\begin{aligned} & v_{f}(0)=v_{f}(1)= \\ & v_{f}(2)=v_{f}(3) \end{aligned}$	$\begin{aligned} & e_{f}(0)=e_{f}(1)= \\ & e_{f}(2)=e_{f}(3)+1 \end{aligned}$
3	$\begin{gathered} v_{f}(0)+1=v_{f}(1)+1= \\ v_{f}(2)=v_{f}(3) \end{gathered}$	$\begin{gathered} e_{f}(0)=e_{f}(1)= \\ e_{f}(2)+1=e_{f}(3)+1 \end{gathered}$
4	$\begin{aligned} & v_{f}(0)=v_{f}(1)= \\ & v_{f}(2)=v_{f}(3) \end{aligned}$	$\begin{aligned} & e_{f}(0)=e_{f}(1)+1= \\ & e_{f}(2)+1=e_{f}(3)+1 \end{aligned}$
5	$\begin{aligned} & v_{f}(0)+1=v_{f}(1)= \\ & v_{f}(2)=v_{f}(3)+1 \end{aligned}$	$\begin{gathered} e_{f}(0)=e_{f}(1)= \\ e_{f}(2)=e_{f}(3) \end{gathered}$
6	$\begin{aligned} & v_{f}(0)=v_{f}(1)= \\ & v_{f}(2)=v_{f}(3) \end{aligned}$	$\begin{aligned} & e_{f}(0)=e_{f}(1)= \\ & e_{f}(2)=e_{f}(3)+1 \end{aligned}$
7	$\begin{gathered} v_{f}(0)=v_{f}(1)= \\ v_{f}(2)+1=v_{f}(3)+1 \end{gathered}$	$\begin{gathered} e_{f}(0)=e_{f}(1)= \\ e_{f}(2)+1=e_{f}(3)+1 \end{gathered}$

From the Table 1 we can see that the labeling pattern defined above satisfies all the conditions of 4cordiality. Hence, the graph $Z-P_{n}$ is 4-cordial for all n.

Illustration 2.2 The graph $Z-P_{6}$ and its 4-cordial labeling is shown in Figure 1.

Fig. 14 -cordial labeling of $\mathrm{Z}-\mathrm{P}_{6}$
Theorem 2.3 The Braid graph $B(n)$ is 4-cordial for all n.

Proof. Let $G=B(n)$ be the braid graph obtained from the pair of paths $P_{n}{ }^{\prime}$ and $P_{n}{ }^{\prime \prime}$. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of path $P_{n}{ }^{\prime}$ and $v_{1}, v_{2}, \ldots, v_{n}$ are the vertices of path $P_{n}{ }^{\prime \prime}$. To find braid graph join $i^{\text {th }}$ vertex of path $P_{n}{ }^{\prime}$ with $(i+1)^{\text {th }}$ vertex of path $P_{n}{ }^{\prime \prime}$ and $i^{\text {th }}$ vertex of path $P_{n}{ }^{\prime \prime}$ with $(i+2)^{\text {th }}$ vertex of path $P_{n}{ }^{\prime}$ with the new edges for all $l \leq i \leq n-2$. We note that $|V(G)|=2 n$ and $|E(G)|=4 n-5$.

Define 4-cordial labeling $f: V(G) \rightarrow Z_{4}$ we consider the following two cases:

Case 1: If $n \leq 3$.
$f\left(u_{i}\right)=1 ; \quad i \equiv 2,3(\bmod 4) ;$
$f\left(u_{i}\right)=3 ; \quad i \equiv 1(\bmod 8) ; \quad 1 \leq i \leq 3$,
$f\left(v_{i}\right)=0 ; \quad i \equiv 1(\bmod 4) ;$
$f\left(v_{i}\right)=2 ; \quad i \equiv 2,3(\bmod 4) ; \quad 1 \leq i \leq 3$.

Case 2: If $n \geq 4$.
$f\left(u_{l}\right)=3$;
$f\left(u_{2}\right)=3$;
$f\left(u_{3}\right)=0$;
$f\left(u_{4}\right)=0$;
$f\left(u_{i}\right)=1 ; \quad i \equiv 1,3(\bmod 4) ;$
$f\left(u_{i}\right)=3 ; \quad i \equiv 0,2(\bmod 4) ; \quad 5 \leq i \leq n$,
$f\left(v_{i}\right)=1$;
$f\left(v_{i}\right)=1 ;$
$f\left(v_{i}\right)=2 ;$
$f\left(v_{i}\right)=2 ;$
$f\left(v_{i}\right)=0 ; \quad i \equiv 1,3(\bmod 4) ;$
$f\left(v_{i}\right)=2 ; \quad i \equiv 0,2(\bmod 4) ; \quad 5 \leq i \leq n$,
Let $n=4 p+q, \quad p, q \in N U_{\{0\}}$.
TABLE 2

q	Vertex conditions	Edge conditions
0,2	$v_{f}(0)=v_{f}(1)=$	$e_{f}(0)=e_{f}(1)=$
	$v_{f}(2)=v_{f}(3)$	$e_{f}(2)=e_{f}(3)+1$
1,3	$v_{f}(0)=v_{f}(1)=$	$e_{f}(0)=e_{f}(1)=$
	$v_{f}(2)+1=v_{f}(3)+1$	$e_{f}(2)=e_{f}(3)+1$

From the Table 2 we can see that the labeling pattern defined above satisfies all the conditions of 4cordiality. Hence, the braid graph $B(n)$ is 4 -cordial for all n.

Illustration 2.4 (a) The Braid graph $B(3)$ and its 4cordial labeling is shown in Figure 2.

Fig. 2 4-cordial labeling of Braid graph B(3)
(b) The Braid graph $B(7)$ and its 4-cordial labeling is shown in Figure 3.

Theorem 2.5 The Triangular Ladder $T L_{n}$ is 4-cordial for all n.

Proof. Let $G=T L_{n}$ be the triangular ladder obtained from the ladder $L_{n}=P_{n} \times P_{2}(n \geq 2)$ by adding the edges $u_{i} v_{i+l}$ for all $l \leq i \leq n-l$, where the consecutive vertices of two copies of paths are $v_{1}, v_{2}, \ldots, v_{n}$ and u_{l}, u_{2}, \ldots, u_{n} and the edges are $u_{i} v_{i}$. We note that $|V(G)|=$ $2 n$ and $|E(G)|=4 n-3$.

Define 4-cordial labeling $f: V(G) \rightarrow Z_{4}$ as follows:
$f\left(u_{i}\right)=1 ; \quad i \equiv 0,2(\bmod 4) ;$
$f\left(u_{i}\right)=3 ; \quad i \equiv 1,3(\bmod 8) ; \quad 1 \leq i \leq n$,
$f\left(v_{i}\right)=0 ; \quad i \equiv 0,2(\bmod 4) ;$
$f\left(v_{i}\right)=2 ; \quad i \equiv 1,3(\bmod 4) ; \quad l \leq i \leq n$,
Let $n=2 p+q, \quad p, q \in N U_{\{0\}}$.
TABLE 3

q	Vertex conditions	Edge conditions
0	$v_{f}(0)=v_{f}(1)=$	$e_{f}(0)+l=e_{f}(1)=$
	$v_{f}(2)=v_{f}(3)$	$e_{f}(2)+l=e_{f}(3)+1$
1	$v_{f}(0)+l=v_{f}(1)+1=$	$e_{f}(0)+l=e_{f}(1)=$
	$v_{f}(2)=v_{f}(3)$	$e_{f}(2)+1=e_{f}(3)+1$

From the Table 3 we can see that the labeling pattern defined above satisfies all the conditions of 4cordiality. Hence, triangular ladder $T L_{n}$ is 4 -cordial for all n.

Illustration 2.6 The Triangular Ladder $T L_{6}$ and its 4cordial labeling is shown in Figure 4.

Fig. 4 4-cordial labeling of Triangular Ladder TL_{6}
Theorem 2.7 The Irregular Quadrilateral Snake $I Q\left(S_{n}\right)$ is 4-cordial for all n.

Proof. Let $G=I Q\left(S_{n}\right)$ be the irregular quadrilateral snake of the path P_{n}. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of path P_{n} and $v_{l}, v_{2}, \ldots, v_{n-2} \& \mathrm{~W}_{l}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{n-2}$ are the newly added vertices. To find irregular quadrilateral snake join the vertices $u_{i} v_{i}, w_{i} u_{i+2}$ and $v_{i} w_{i}$ for all $l \leq i$ $\leq n-2$. We note that $|V(G)|=3 n-4$ and $|E(G)|=4 n$ -7.

Define 4-cordial labeling $f: V(G) \rightarrow Z_{4}$ as follows:

$f\left(u_{i}\right)=0 ;$		$i \equiv 0(\bmod 4) ;$	
$f\left(u_{i}\right)=1 ;$	$i \equiv 2(\bmod 4) ;$		
$f\left(u_{i}\right)=2 ;$	$i \equiv 3(\bmod 4) ;$		
$f\left(u_{i}\right)=3 ;$	$i \equiv 1(\bmod 4) ;$		$1 \leq i \leq n$,
$f\left(v_{i}\right)=0 ;$	$i \equiv 3(\bmod 4) ;$		
$f\left(v_{i}\right)=1 ;$	$i \equiv 1(\bmod 4) ;$		
$f\left(v_{i}\right)=2 ;$	$i \equiv 0,2(\bmod 4) ;$	$1 \leq i \leq n-2$,	
$f\left(w_{i}\right)=0 ;$	$i \equiv 1(\bmod 4) ;$		
$f\left(w_{i}\right)=1 ;$	$i \equiv 3(\bmod 4) ;$		
$f\left(w_{i}\right)=2 ;$	$i \equiv 0,2(\bmod 4) ;$	$1 \leq i \leq n-2$.	
Let $n=8 p+q$,	$p, q \in N U\{0\}$.		

TABLE 4

q	Vertex conditions	Edge conditions
0,4	$v_{f}(0)=v_{f}(1)=$	$e_{f}(0)+l=e_{f}(1)+1=$
	$v_{f}(2)=v_{f}(3)$	$e_{f}(2)+1=e_{f}(3)$
1,5	$v_{f}(0)=v_{f}(1)=$	$e_{f}(0)+1=e_{f}(1)+1=$
	$v_{f}(2)+1=v_{f}(3)$	$e_{f}(2)+1=e_{f}(3)$
2,6	$v_{f}(0)+l=v_{f}(1)=$	$e_{f}(0)=e_{f}(1)+l=$
	$v_{f}(2)+1=v_{f}(3)$	$e_{f}(2)+l=e_{f}(3)+1$
3,7	$v_{f}(0)+l=v_{f}(1)=$	$e_{f}(0)=e_{f}(1)+1=$
	$v_{f}(2)+1=v_{f}(3)+1$	$e_{f}(2)+1=e_{f}(3)+1$

From the Table 4 we can see that the labeling pattern defined above satisfies all the conditions of 4cordiality. Hence, irregular quadrilateral snake $\operatorname{IQ}\left(S_{n}\right)$ is 4-cordial for all n.

Illustration 2.8 The Irregular Quadrilateral Snake $I Q\left(S_{1 I}\right)$ and its 4-cordial labeling is shown in Figure5.

Fig. 5 4-cordial labeling of Irregular Quadrilateral Snake IQ(S S_{11})

III. Conclusions

Graph labeling technique is a wide area of research. In this research paper, we investigate some new results on 4-cordiality of graphs. For better understanding of labeling pattern, we have given some illustration. To investigate more graph families which admit k-cordial labeling is an open area of research.

REFERENCES

[1] J. A. Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 18(2015).
[2] J. Gross and J. Yellen, Handbook of graph theory, CRC Press(2004).
[3] M. Hovey, A-cordial graphs, Discrete Math., 93, 183194(1991).
[4] N. B. Rathod and K. K. Kanani, Some new 4-cordial graphs, J. Math.Comput. Sci., 4(5), 834-848(2014).
[5] N. B. Rathod and K. K. Kanani, 4-cordial labeling of standard graphs.Int. J. of Comb. Gr. Th. And Apps., 7(2), 7180(2014).
[6] N. B. Rathod and K. K. Kanani, Some Path Related 4-cordial Graphs.Int. J. of Math. and Soft Comp. 5(2), 21-27(2015).
[7] N. B. Rathod and K. K. Kanani, 4-cordial Labeling of Star, Book and Fan related Graphs. Proceedings of 8th National Level Science Symposium. (2), 38-42(2015).
[8] N. B. Rathod and K. K Kanani, k-cordiality of Path and Cycle Related Graphs. Int. J. of Math. and Comp. Appl. Res., 5(3), 81-92(2015).
[9] R. Tao, On k-cordiality of cycles, crowns and wheels, Systems Sci. Math.Sci., 11, 227-229(1998).
[10] M. Z. Youssef, On k-cordial labeling, Australas. J. Combin., 43, 31-37(2009).

