# 4-cordiality of Some New Path Related Graphs

N.B.Rathod<sup>#1</sup>, K.K.Kanani<sup>\*2</sup>

<sup>1#</sup> Research scholar, R.K.University, Rajkot-360020, Gujarat, India. <sup>2\*</sup> Assistant Professor in Mathematics, Government Engineering College, Rajkot-360005, Gujarat, India.

**Abstract**—For an Abelian Group < A, \* > a graph G = (V(G), E(G)) is said to be A-cordial if there is a mapping  $f:V(G) \rightarrow A$  which satisfies the conditions  $|v_f(a)-v_f(b)| \le 1$  and  $|e_f(a)-e_f(b)| \le 1$ , for all  $a,b \in A$ , when the edge e=uv is labeled as f(u)\*f(v). Where  $v_f(a)$  is the number of vertices with label a and  $e_f(a)$  is the number of edges with label a. If we consider an Abelian Group  $< A, * > = < Z_k, +_k >$  then it is called k-cordial labeling. In this research paper we proved that Z-P<sub>n</sub>, braid graph B(n), triangular ladder TL<sub>n</sub> and irregular quadrilateral snake  $I(QS_n)$  are 4-cordial for all n.

**Keywords**—*A*-cordial Labeling; Z- $P_n$ ; Braid Graph B(n); Triangular Ladder  $TL_n$ ; Irregular Quadrilateral Snake  $I(QS_n)$ .

## 2010 Mathematics Subject Classification—05C78

# I. INTRODUCTION

In this research paper we consider finite, connected, undirected and simple graphs. In the graph G=(V(G),E(G)) the cardinality of the vertex set is called order of *G* and the cardinality of the edge set is called the size of *G*. They are denoted by |V(G)| and |E(G)| respectively. In *Graph Labeling* we assign numerical values to vertices or edges or both subject to certain conditions.

**Definition 1.1** Let  $\langle A, * \rangle$  be any Abelian group. A graph is said to be A-*cordial* if there is a mapping  $f: V(G) \rightarrow A$ 

which satisfies the following two conditions when the edge e=uv is labeled as f(u)\*f(v)

(*i*)  $|v_f(a)-v_f(b)| \le l$ ; for all  $a, b \in A$ , (*ii*)  $|e_f(a)-e_f(b)| \le l$ ; for all  $a, b \in A$ , Where,

- $v_f(a)$ =the number of vertices with label *a*;
- $v_f(b)$ =the number of vertices with label *b*;

 $e_f(a)$ =the number of edges with label a;

 $e_f(b)$ =the number of edges with label b.

We note that if  $A = \langle Z_k, +_k \rangle$  that is additive group of modulo *k* then the labeling is known as kcordial labeling. Here, we consider  $\langle Z_4, +_4 \rangle$  that is additive group of modulo 4 then the labeling is known as 4-cordial labeling.

The concept of A-cordial labeling was introduced by Hovey [3] and proved the following results:

- All the connected graphs are 3-cordial.
- All the trees are 3-cordial and 4-cordial.
- Cycles are k-cordial for all odd k.

Youssef[10] obtained the following results:

- $C_{2k}^{+1}$  is not (2k + 1)-cordial for k > 1.
- $K_n$  is 4-cordial  $\leftrightarrow n \leq 6$ .
- $C_n^2$  is 4-cordial  $\leftrightarrow n \not\equiv 2 \pmod{4}$ .
- $K_{m,n}$  is 4-cordial  $\leftrightarrow m \text{ or } n \neq 2 \pmod{4}$ .

Rathod and Kanani[4] proved the following results:

- All the wheels  $W_n$  are 4-cordial.
- All the fans  $f_n$  are 4-cordial.
- All the friendship graphs  $F_n$  are 4-cordial.
- All the gear graphs  $G_n$  are 4-cordial.
- All the double fans  $Df_n$  are 4-cordial.
- All the helms  $H_n$  are 4-cordial.

Rathod and Kanani[5] also proved the following results:

- The middle graph  $M(P_n)$  of path Pn is 4-cordial.
- The total graph  $T(P_n)$  of path Pn is 4-cordial.
- The splitting graph *S*'(*P<sub>n</sub>*) of path is 4-cordial.
- The square graph  $P_n^2$  of path  $P_n$  is 4-cordial.
- The triangular snake  $TS_n$  is 4-cordial.

In[6] Rathod and Kanani have derived the following results:

- The square graph of Path  $P_n^2$  is k-cordial.
- The pan graph  $C_n^{+1}$  is k-cordial for all even k and

 $n = k + j, \ 0 \le j \le k - 1.$ 

• The pan graph  $C_n^{+1}$  is k-cordial for all even k and

n = 2tk + j, where t $\in$ NU{0} and  $0 \le j \le k - 1$ .

• The pan graph  $C_n^{+1}$  is k-cordial for all even k and

n = 2tk + k + j, where t  $\in$  N and  $0 \le j \le k - 1$ .

We consider the following useful definitions to understand the results of this research paper.

**Definition 1.2** The graph *Z*-*P<sub>n</sub>* is obtained from the pair of paths  $P_n'$  and  $P_n''$ . Let  $v_1, v_2, ..., v_n$  be the vertices of path  $P_n'$  and  $u_1, u_2, ..., u_n$  are the vertices of path  $P_n''$ . To find *Z*-*P<sub>n</sub>* join i<sup>th</sup> vertex of path  $P_n'$  with  $(i + 1)^{th}$  vertex of path  $P_n''$  for all  $1 \le i \le n - 1$ .

**Definition 1.3** The Braid Graph B(n) is obtained from the pair of paths  $P_n'$  and  $P_n''$ . Let  $v_1, v_2, ..., v_n$  be the vertices of path  $P_n'$  and  $u_1, u_2, ..., u_n$  are the vertices of path  $P_n''$ . To find braid graph join  $i^{th}$ vertex of path  $P_n''$  with  $(i+1)^{th}$  vertex of path  $P_n''$  and  $i^{th}$  vertex of path  $P_n''$  with  $(i+2)^{th}$  vertex of path  $P_n''$ with the new edges for all  $1 \le i \le n$  -2.

**Definition 1.4** The *Triangular Ladder TL<sub>n</sub>* is obtained from the ladder  $L_n = P_n \times P_2$   $(n \ge 2)$  by adding the edges  $u_i v_{i+1}$  for all  $1 \le i \le n-1$ , where the consecutive vertices of two copies of paths are  $v_1$ ,  $v_2$ , ...,  $v_n$  and  $u_1$ ,  $u_2$ , ...,  $u_n$  and the edges are  $u_i v_i$ .

**Definition 1.5** The *Irregular Quadrilateral Snake*  $I(QS_n)$  is obtained from the path  $P_n$ . Let  $u_1, u_2, ..., u_n$  be the vertices of path  $P_n$  and  $v_1, v_2, ..., v_{n-2} \& w_1, w_2$ , ...,  $w_{n-2}$  are the newly added vertices. To obtain irregular quadrilateral snake join the vertices  $u_iv_i$ ,  $w_iu_{i+2}$  and  $v_iw_i$  for all  $1 \le i \le n - 2$ .

Here, all terminologies are considered from Gross and Yellen[2].

#### **II. MAIN RESULTS**

**Theorem 2.1** The graph Z- $P_n$  is 4-cordial for all n.

**Proof.** Let  $G=Z-P_n$  be the graph obtained from the pair of paths  $P_n'$  and  $P_n''$ . Let  $v_1, v_2, ..., v_n$  be the vertices of path  $P_n'$  and  $u_1, u_2, ..., u_n$  are the vertices of path  $P_n''$ . To find  $Z-P_n$  join i<sup>th</sup> vertex of path  $P_n'$  with  $(i + 1)^{th}$  vertex of path  $P_n''$  for all  $1 \le i \le n - 1$ . We note that |V(G)| = 2n and |E(G)| = 3n - 3.

Define 4-cordial labeling  $f: V(G) \rightarrow Z_4$  as follows:

| $f(v_i) = 0;$ | $i \equiv 1$ , $6(mod8)$ ; |                     |
|---------------|----------------------------|---------------------|
| $f(v_i) = 1;$ | $i \equiv 4, 7(mod8);$     |                     |
| $f(v_i) = 2;$ | $i \equiv 2, 5 (mod 8);$   |                     |
| $f(v_i) = 3;$ | $i \equiv 0, 3 (mod8);$    | $1 \leq i \leq n$ , |
| $f(u_i)=0;$   | $i \equiv 4$ , 7(mod8);    |                     |
| $f(u_i) = 1;$ | $i \equiv 2, 5 (mod 8);$   |                     |
| $f(u_i)=2;$   | $i \equiv 0, 3 (mod 8);$   |                     |
|               |                            |                     |

$$f(u_i) = 3; \qquad i \equiv 1, \ 6(mod8); \qquad 1 \le i \le n,$$

Let n = 8p + q,  $p, q \in NU\{0\}$ .

| TABLE | 1 |
|-------|---|
|-------|---|

| q | Vertex conditions           | Edge conditions           |  |  |  |
|---|-----------------------------|---------------------------|--|--|--|
| 0 | $v_f(0) = v_f(1) =$         | $e_f(0) = e_f(1) + 1 =$   |  |  |  |
|   | $v_f(2) = v_f(3)$           | $e_f(2) + 1 = e_f(3) + 1$ |  |  |  |
| 1 | $v_f(0) = v_f(1) + 1 =$     | $e_f(0) = e_f(1) =$       |  |  |  |
|   | $v_f(2) + 1 = v_f(3)$       | $e_f(2) = e_f(3)$         |  |  |  |
| 2 | $v_f(0) = v_f(1) =$         | $e_f(0) = e_f(1) =$       |  |  |  |
|   | $v_f(2) = v_f(3)$           | $e_f(2) = e_f(3) + 1$     |  |  |  |
| 3 | $v_f(0) + 1 = v_f(1) + 1 =$ | $e_f(0) = e_f(1) =$       |  |  |  |
|   | $v_f(2) = v_f(3)$           | $e_f(2) + 1 = e_f(3) + 1$ |  |  |  |
| 4 | $v_f(0) = v_f(1) =$         | $e_f(0) = e_f(1) + 1 =$   |  |  |  |
|   | $v_f(2) = v_f(3)$           | $e_f(2) + 1 = e_f(3) + 1$ |  |  |  |
| 5 | $v_f(0) + 1 = v_f(1) =$     | $e_f(0) = e_f(1) =$       |  |  |  |
|   | $v_f(2) = v_f(3) + 1$       | $e_f(2) = e_f(3)$         |  |  |  |
| 6 | $v_f(0) = v_f(1) =$         | $e_f(0) = e_f(1) =$       |  |  |  |
|   | $v_f(2) = v_f(3)$           | $e_f(2) = e_f(3) + 1$     |  |  |  |
| 7 | $v_f(0) = v_f(1) =$         | $e_f(0) = e_f(1) =$       |  |  |  |
|   | $v_f(2) + 1 = v_f(3) + 1$   | $e_f(2) + 1 = e_f(3) + 1$ |  |  |  |

From the Table 1 we can see that the labeling pattern defined above satisfies all the conditions of 4-cordiality. Hence, the graph Z- $P_n$  is 4-cordial for all n.

**Illustration 2.2** The graph Z- $P_6$  and its 4-cordial labeling is shown in *Figure 1*.



Fig. 1 4-cordial labeling of Z-P<sub>6</sub>

**Theorem 2.3** The Braid graph B(n) is 4-cordial for all n.

**Proof.** Let G = B(n) be the braid graph obtained from the pair of paths  $P_n'$  and  $P_n''$ . Let  $u_1, u_2, ..., u_n$  be the vertices of path  $P_n'$  and  $v_1, v_2, ..., v_n$  are the vertices of path  $P_n''$ . To find braid graph join  $i^{th}$  vertex of path  $P_n'$ with  $(i+1)^{th}$  vertex of path  $P_n''$  and  $i^{th}$  vertex of path  $P_n''$  with  $(i+2)^{th}$  vertex of path  $P_n''$  with the new edges for all  $1 \le i \le n$  -2. We note that |V(G)| = 2n and |E(G)| = 4n -5.

Define 4-cordial labeling  $f: V(G) \rightarrow Z_4$  we consider the following two cases:

<u>Case 1</u>: If  $n \leq 3$ .

| $f(u_i) = 1;$ | $i \equiv 2, 3 (mod4);$ |                     |
|---------------|-------------------------|---------------------|
| $f(u_i)=3;$   | $i \equiv 1 \pmod{8};$  | $1 \leq i \leq 3$ , |
| $f(v_i) = 0;$ | $i \equiv 1 (mod4);$    |                     |
| $f(v_i) = 2;$ | $i \equiv 2, 3 (mod4);$ | $1 \leq i \leq 3$ . |

#### <u>Case 2</u>: If *n* ≥4.

| $f(u_1)=3;$   |                          |                     |
|---------------|--------------------------|---------------------|
| $f(u_2)=3;$   |                          |                     |
| $f(u_3)=0;$   |                          |                     |
| $f(u_4) = 0;$ |                          |                     |
| $f(u_i) = 1;$ | $i \equiv 1, 3 (mod4);$  |                     |
| $f(u_i) = 3;$ | $i \equiv 0,2 \pmod{4};$ | $5 \leq i \leq n$ , |
| $f(v_i) = 1;$ |                          |                     |
| $f(v_i) = 1;$ |                          |                     |
| $f(v_i) = 2;$ |                          |                     |
| $f(v_i) = 2;$ |                          |                     |
| $f(v_i) = 0;$ | $i \equiv 1,3 (mod4);$   |                     |
| $f(v_i) = 2;$ | $i \equiv 0,2 \pmod{4};$ | $5 \leq i \leq n$ , |
| · · · · ·     |                          |                     |

Let n = 4p + q,  $p, q \in NU\{0\}$ .

TABLE 2

| q   | Vertex conditions                                | Edge conditions                              |
|-----|--------------------------------------------------|----------------------------------------------|
| 0,2 | $v_f(0) = v_f(1) =$<br>$v_f(2) = v_f(3)$         | $e_f(0) = e_f(1) =$<br>$e_f(2) = e_f(3) + 1$ |
| 1,3 | $v_f(0) = v_f(1) =$<br>$v_f(2) + 1 = v_f(3) + 1$ | $e_f(0) = e_f(1) =$<br>$e_f(2) = e_f(3) + 1$ |

From the Table 2 we can see that the labeling pattern defined above satisfies all the conditions of 4-cordiality. Hence, the braid graph B(n) is 4-cordial for all n.

**Illustration 2.4** (a) The Braid graph B(3) and its 4-cordial labeling is shown in *Figure 2*.



Fig. 2 4-cordial labeling of Braid graph B(3)

(b) The Braid graph *B*(7) and its 4-cordial labeling is shown in *Figure 3*.



Fig. 3 4-cordial labeling of Braid graph B(7)

**Theorem 2.5** The Triangular Ladder  $TL_n$  is 4-cordial for all n.

**Proof.** Let  $G = TL_n$  be the triangular ladder obtained from the ladder  $L_n = P_n \times P_2$   $(n \ge 2)$  by adding the edges  $u_i v_{i+1}$  for all  $1 \le i \le n-1$ , where the consecutive vertices of two copies of paths are  $v_1, v_2, ..., v_n$  and  $u_i$ ,  $u_2, ..., u_n$  and the edges are  $u_i v_i$ . We note that |V(G)| = 2n and |E(G)| = 4n -3.

Define 4-cordial labeling  $f: V(G) \rightarrow Z_4$  as follows:

| $f(u_i) = 1;$ | $i \equiv 0, 2(mod4);$  |                     |
|---------------|-------------------------|---------------------|
| $f(u_i)=3;$   | $i \equiv 1,3 (mod8);$  | $1 \leq i \leq n$ , |
| $f(v_i) = 0;$ | $i \equiv 0,2(mod4);$   |                     |
| $f(v_i)=2;$   | $i \equiv 1, 3 (mod4);$ | $1 \leq i \leq n$ , |

Let n = 2p + q,  $p, q \in NU\{0\}$ .

**TABLE 3** 

| 11222 0 |                             |                           |
|---------|-----------------------------|---------------------------|
| q       | Vertex conditions           | Edge conditions           |
| 0       | $v_f(0) = v_f(1) =$         | $e_f(0) + 1 = e_f(1) =$   |
|         | $v_f(2) = v_f(3)$           | $e_f(2) + l = e_f(3) + l$ |
| 1       | $v_f(0) + 1 = v_f(1) + 1 =$ | $e_f(0) + l = e_f(1) =$   |
|         | $v_f(2) = v_f(3)$           | $e_f(2) + 1 = e_f(3) + 1$ |

From the Table 3 we can see that the labeling pattern defined above satisfies all the conditions of 4-cordiality. Hence, triangular ladder  $TL_n$  is 4-cordial for all n.

**Illustration 2.6** The Triangular Ladder  $TL_6$  and its 4-cordial labeling is shown in *Figure 4*.



Fig. 4 4-cordial labeling of Triangular Ladder TL<sub>6</sub>

**Theorem 2.7** The Irregular Quadrilateral Snake  $IQ(S_n)$  is 4-cordial for all *n*.

**Proof.** Let  $G = IQ(S_n)$  be the irregular quadrilateral snake of the path  $P_n$ . Let  $u_1, u_2, ..., u_n$  be the vertices of path  $P_n$  and  $v_1, v_2, ..., v_{n-2}$  &  $w_1, w_2, ..., w_{n-2}$  are the newly added vertices. To find irregular quadrilateral snake join the vertices  $u_iv_i$ ,  $w_iu_{i+2}$  and  $v_iw_i$  for all  $1 \le i \le n - 2$ . We note that |V(G)| = 3n-4 and |E(G)| = 4n -7.

Define 4-cordial labeling  $f: V(G) \rightarrow Z_4$  as follows:

| $f(u_i) = 0;$ | $i \equiv 0 (mod4);$   |                       |
|---------------|------------------------|-----------------------|
| $f(u_i)=1;$   | $i \equiv 2(mod4);$    |                       |
| $f(u_i)=2;$   | $i \equiv 3(mod4);$    |                       |
| $f(u_i) = 3;$ | $i \equiv 1 (mod4);$   | $1 \leq i \leq n$ ,   |
| $f(v_i) = 0;$ | $i \equiv 3(mod4);$    |                       |
| $f(v_i) = 1;$ | $i \equiv 1 (mod4);$   |                       |
| $f(v_i) = 2;$ | $i \equiv 0, 2(mod4);$ | $1 \le i \le n-2$ ,   |
| $f(w_i) = 0;$ | $i \equiv 1(mod4);$    |                       |
| $f(w_i) = 1;$ | $i \equiv 3(mod4);$    |                       |
| $f(w_i) = 2;$ | $i \equiv 0, 2(mod4);$ | $1 \leq i \leq n-2$ . |

| Let $n = 8p + q$ , | $p, q \in \mathbb{NU}\{0\}.$ |
|--------------------|------------------------------|
|--------------------|------------------------------|

| TADLE 4 |                           |                             |
|---------|---------------------------|-----------------------------|
| q       | Vertex conditions         | Edge conditions             |
| 0,4     | $v_f(0) = v_f(1) =$       | $e_f(0) + 1 = e_f(1) + 1 =$ |
|         | $v_f(2) = v_f(3)$         | $e_f(2) + 1 = e_f(3)$       |
| 1,5     | $v_f(0) = v_f(1) =$       | $e_f(0)+1 = e_f(1)+1 =$     |
|         | $v_f(2) + 1 = v_f(3)$     | $e_f(2) + 1 = e_f(3)$       |
| 2,6     | $v_f(0) + 1 = v_f(1) =$   | $e_f(0) = e_f(1) + 1 =$     |
|         | $v_f(2) + 1 = v_f(3)$     | $e_f(2) + 1 = e_f(3) + 1$   |
| 3,7     | $v_f(0) + 1 = v_f(1) =$   | $e_f(0) = e_f(1) + 1 =$     |
|         | $v_f(2) + 1 = v_f(3) + 1$ | $e_f(2) + 1 = e_f(3) + 1$   |

TABLE 4

From the Table 4 we can see that the labeling pattern defined above satisfies all the conditions of 4-cordiality. Hence, irregular quadrilateral snake  $IQ(S_n)$  is 4-cordial for all n.

**Illustration 2.8** The Irregular Quadrilateral Snake  $IQ(S_{11})$  and its 4-cordial labeling is shown in *Figure 5*.



Fig. 5 4-cordial labeling of Irregular Quadrilateral Snake IQ(S<sub>11</sub>)

### **III.** CONCLUSIONS

Graph labeling technique is a wide area of research. In this research paper, we investigate some new results on 4-cordiality of graphs. For better understanding of labeling pattern, we have given some illustration. To investigate more graph families which admit k-cordial labeling is an open area of research.

#### REFERENCES

- [1] J. A. Gallian, A dynamic survey of graph labeling, The
- Electronics Journal of Combinatorics, 18(2015). [2] J. Gross and J. Yellen, Handbook of graph theory, CRC
- Press(2004).
  [3] M. Hovey, A-cordial graphs, Discrete Math., 93, 183-194(1991).
- [4] N. B. Rathod and K. K. Kanani, Some new 4-cordial graphs, J. Math.Comput. Sci., 4(5), 834-848(2014).
- [5] N. B. Rathod and K. K. Kanani, 4-cordial labeling of standard graphs.Int. J. of Comb. Gr. Th. And Apps., 7(2), 71-80(2014).
- [6] N. B. Rathod and K. K. Kanani, Some Path Related 4-cordial Graphs.Int. J. of Math. and Soft Comp. 5(2), 21 - 27(2015).
- [7] N. B. Rathod and K. K. Kanani, 4-cordial Labeling of Star, Book and Fan related Graphs. Proceedings of 8th National Level Science Symposium. (2), 38-42(2015).
- [8] N. B. Rathod and K. K Kanani, k-cordiality of Path and Cycle Related Graphs. Int. J. of Math. and Comp. Appl. Res., 5(3), 81-92(2015).
- [9] R. Tao, On k-cordiality of cycles, crowns and wheels, Systems Sci. Math.Sci., 11, 227-229(1998).
- [10] M. Z. Youssef, On k-cordial labeling, Australas. J. Combin., 43, 31-37(2009).