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Abstract: In this paper, the Galerkin method is used to 
numerically solve the exterior boundary value 
problem for the Radiosity equation for a spherical 
shape, specifically the Spherical Rhombus. The 
Radiosity equation is a mathematical model for the 
brightness of a collection of one or more surfaces 
when their reflectivity and emissivity are given. On 
planet Mars the surface emissivity is closely related to 
its surface temperature. The Radiosity of a surface is 
the rate at which the energy leaves that surface; it 
includes the energy emitted by a surface as well as the 
energy reflected from other surfaces. 
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I. INTRODUCTION 
The mathematical model for the brightness of a 

collection of surfaces when their reflectivity and 
emissivity are known is given by the Radiosity 
Equation,  

SPPEdSQPVQPGQupPu QS  ),(),(),()()()(




   
in an exterior domain.  This is a Fredholm integral 
equation of the second kind. Common methods such 
as the Adomian Decomposition Method and the 
Modified Decomposition Method do not work as a 
method of solution as this is a nonlinear singular 
Fredholm Equation of the second kind. Here u(P) is 
the Radiosity or simply the brightness at P and 
emissivity is given by E(P) and the reflectivity ρ(P) is 
between zero and one. The assumption on the surfaces 
is that they are Lambertian diffuse reflectors. 

Atkinson and Chien [3] did study the Radiosity 
equation for occluded surfaces using the Collocation 
method. Voigt, Hanssen and Weichmann [11] solved 
the Radiosity equation by an adaptive Finite Element 
Method and linked it to heat conduction.  In 2006 
Atkinson had numerical results on the planar 
Radiosity equation and on a matrix-vector 
multiplication method [3].  

The Spherical Rhombus and the Spherical Cone are 
shapes that are controlled by two parameters. There 
are some numerical issues in this type of an analysis; 
because of the singularity in the Kernel of the integral 

equation. The Kernel G which is bounded when the 
surface is smooth is given 
by |)(|/]coscos[),( 2QPQPG Qp   where

p is the angle between pn and (Q - P). The formula 
for the Spherical Rhombus shape is given by: 

      )( cos sin  5.0sin  5.0 cos x    
      )(5.05.0    sin  sin cos  siny    

)( cos  z                                         
and the formula for the Spherical Cone shape is given 
by: 

      )(5.0   cos   sin  sin cosx     
  )(   sin siny    

)()5.0(   cos  sinz     
where β varies from zero to π while µ will vary from 
zero to 2π. The Radiosity equation, which is a 
mathematical model for the brightness of a collection 
of one or more surfaces when their reflectivity and 
emissivity are given, is used in many diffusion 
problems. One practical value of all these 
computations can be with the inside lighting 
(brightness) of a space craft that one day might land 
on planet Mars. We researched the feasibility of 
obtaining good convergence results for the Spherical 
Rhombus and the Spherical Cone surfaces for the 
Dirichlet boundary condition. It is our view that 
smaller reflectivity values would reduce 
computational costs associated with obtaining 
Galerkin coefficients. Also as the Mars atmosphere is 
less volatile and less diverse than the Earth's 
atmosphere, constant emissivity functions would be 
more appropriate for testing. We used the Green's 
theorem to solve the integral equation on the boundary 
of the surface for the Dirichlet problem. Previously, 
multiple surfaces were used to test this method for the 
Dirichlet condition, such as the sphere, the ellipsoid, 
and the oval of Cassini (Warnapala, 2013) [12]. The 
shapes we are working on are slowly reaching a more 
realistic shape that is simply connected and bounded 
and can be a part of a space craft that is suitable for 
the brightness that exits on planet Mars. The Exterior 
Boundary problem for all these surfaces will be solved 
using the Gaussian Quadrature Method, where 
rotations of the coordinates would be used to 
minimize the inherent singularity that is present in the 
fundamental solution of the Radiosity equation. The 
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Boundary condition will only take into account the 
reflection and absorption of the incoming light waves. 
The assumption on the surfaces is that they are 
Lambertian diffuse reflectors. Brightness of these 
surfaces are the same regardless of the observer's 
angle of view, thus they obey the Lambert's Cosine 
Law or are isotopic. 

II. PRELIMINARY THEORETICAL BACKGROUND 

S is a closed bounded surface in ℜ³ and it belongs 
to the class of C².  D₊ denotes the exterior of S. Then 
the Radiosity Equation from computer graphics is 
given by 

SPPEdSQPVQPGQuppPu S Q  ),(),(),()()()(


 (2.1) 
with E a given emissivity function. E is l times 
continuously differentiable and the Ith order 
derivatives of the surface representations are also 
Holder continuous with exponent λ. The function 
spaces we are working with are L²(S) and C(S), the 
square-integrable Lebesgue measurable functions and 
the continuous functions on S, respectively. 
 
A.  Formulation of the Integral of the Second Kind 

 
The boundary value problem was reformulated as 

an integral equation. 

 .||     where
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The kernel ),( QPG  is given by 
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Here  Pn is the inner unit normal to S at ,P  and 
1),( QPV   (assumption is that the points P and Q  

are in a straight line and does not intersect the surface 
at any other point), an unclouded surface. 
Here ,m

nY mmn ,...  denote the bas is functions that 
are the linearly independent spherical harmonics of 
order m given by 
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The integral equation is given by  
 where 

 (2.5)  

By the assumptions on ),( QPG the kernel 
Q

QP


 ),(  is 

bounded on SS  , and is compact from 

)(SC to )(SC and )(2 SL  to ).(2 SL   
 
B.  Basis Functions 

The Legendre basis 
function ),(cos np ),cos()(cos  mpm

n    

,1),sin()(cos nmmpm
n  are spherical 

harmonics of degree .n  For ,0 Nn  the total 
number of basic functions 
is 2)1()(  NNd and

).()1()1()( 22 tPttp ndt
dmm

n m

mm

 If ),(, uC l   the
n there is a sequence of spherical polynomials NT of 
degree N for which ,   lN

C
NT .1N The 

spherical polynomials are dense in both )(UC  and 
).(2 UL  Let nP denote the partial sum of the Laplace 

series of  restricted to terms of 
degree .N On NPUL ),(2 is orthogonal 

and .12 NP On ,)(),( 8 NPUC NN   wit
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III. THE GALERKIN METHOD 

 
The variable of integration in (2.6) was changed 

converting it to a new integral equation defined on the 
unit sphere U.  The Galerkin method was applied to 
this new equation, using spherical polynomials to 
define the approximating subspaces. 

,: 11 SUm onto
 where m is at least differentiable, 

for which the following properties are satisfied. 
 

)(, SCE l   and ,1 lCS 2( CS  for )0l  
implies       
 (3.1) 

    
 (3.2) 
 
By changing the variable of integration in (2.6) we 
obtained the new equation over U. 

    
 (3.3) 
where  
 
The notation ^ denotes the change of variable from S 
to U, as in (3.2).  The operator   exists and is 
bounded on )(UC and ).(2 UL The dimension of the 
approximating subspace of spherical polynomials of 
degree N is d    :)1( 2N  and we let  dhh ,...1   
denote the basis of spherical harmonics Galerkin's 
method for solving (3.3) is given by 
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    (3.4) 
The solution is given by  
 

  (3.5) 
The convergence of Nu  to u  in )(2 SL  is 
straightforward. 
 
A.  Calculation of the Galerkin Coefficients 
 

The coefficients  are fourfold integrals 
with a singular integrand.  To calculate we first 
rotated the surface S such that  is not a singular point 
internal to the integration 
region       .2,2,0,0   Because the Galerkin 
coefficients depends only on the surface S 
we calculated them separately for .maxNN    
 
IV. EMISSIVITY AND REFLECTIVITY ON 

PLANET MARS 
 

To construct the inside part of a space craft with the 
correct brightness, it is important to discuss the 
reflectivity and emissivity from what we know of the 
atmosphere on Mars. Compared with Earth, Mars has 
lower surface temperatures and much lower 
atmospheric absorption and radiation and also has 
higher surface emissivity. The atmospheric emission 
from oxygen and water vapor is almost negligible due 
to very low atmospheric density and optical depth. 
There are three types of radio noise emissions on 
Mars. Martian surface emissivity is closely related to 
physical temperature and materials on Mars. The air 
on Mars is quite dry and effects from rain can be 
neglected. The mass density on Mars is 61 times than 
that of Earth due to low pressure. Mars has a large 
surface emissivity due to the land surfaces having 
lower dielectric constants. No water surface has been 
detected on Mars. The soil's moisture and surface 
roughness also affect the emissivity. Lower material 
densities have lower reflectivity. Emissions include 
cosmic and galactic noise. Both surface reflectivity 

and emissivity have a radio frequency dependence and 
the emissivity coefficient increases as radio frequency 
increases. All in all, on average, Earth has lower value 
of emissivity and reflectivity. But rocks on Mars 
usually have lower emissivity. Mars has higher 
average surface emissivity due to the roughness of soil 
and rocks on the surface. Surface emissivity (E) is 
related to reflectivity an  1E , which means the 
sum of emissivity and reflectivity is 1. 

 
V. NUMERICAL RESULTS 

 
The true solution we tested is given by 

  Thus we assumed  
NINTI = 16 are interior nodes needed for calculating 

, NINTE = 8 are the exterior nodes needed for 
calculating ( . NDEG = 5 is the degree of the 
approximate spherical harmonics, the number d of 
basis functions equals to (NDEG + 1)2. 

 
Fig. 1:  Let S be a Spherical Rhombus 

 

Distance 

rho 

(500, 200, 300) (50, 200, 300) (500, 20, 300) (500, 200, 30) (-4000, -5000, -6000) 

0.08 4.838E-03 4.838E-03 4.837E-03 4.838E-03 4.837E-03 

0.002 1.204E-04 1.200E-04 1.198E-04 1.203E-04 1.199E-04 

0.0005 2.967E-05 2.931E-05 2.907E-05 2.961E-05 2.914E-05 

0.00001 3.698E-08 3.224E-07 5.685E-07 2.645E-08 4.957E-07 

0.00005 2.456E-06 2.097E-06 1.861E-06 2.393E-06 1.924E-06 

5.00E-6 2.654E-07 6.248E-07 8.709E-07 3.289E-07 7.981E-07 

1.00E-7 5.618E-07 9.212E-07 1.167E-06 6.252E-07 1.094E-06 

1.00E-10 5.678E-07 9.272E-07 1.173E-06 6.313E-07 1.100E-06 
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Table 1:  Convergence results for small reflectivity rho values according to the distance of the light wave from 
the outer boundary of the surface. This can depict one of the two following cases: The Rhombus design of an 
inside room of a space craft with an outer light source or it could be a stationary part of the craft that has already 
landed on planet Mars, in this case the light waves will originate from the atmosphere of the planet.

As one can see from the above table the direction of the light waves do not impact the convergence results.  
Further low reflectivity values give excellent results while slightly larger values give reasonable results.  If we 
had increased the integration nodes we might have obtained better results for slightly larger reflectivity values as 
well. 

 
 

 
Fig. 2  Let S be a Spherical Cone 

 
 
 
 
 

  
Table 2:  The reflectivity values (rho) vs the distance from the light source.

 

 Distance 

rho      

 (500, 200, 300) (50, 200, 300) (500, 20, 300) (500, 200, 30) (-4000, -5000, -6000) 

0.08 4.839E-03 4.840E-03 4.840E-03 4.847E-03 4.840E-03 

0.002 1.215E-04 1.223E-04 1.220E-04 1.192E-04 1.228E-04 

0.0005 3.078E-05 3.159E-05 3.129E-05 2.850E-05 3.204E-05 

0.00001 1.142E-06 1.955E-06 1.657E-06 1.136E-06 2.401E-06 

0.00005 3.561E-06 4.374E-06 4.076E-06 1.283E-06 4.821E-06 

5.00E-6 8.394E-07 1.653E-06 1.354E-06 1.428E-06 2.099E-06 

1.00E-7 5.430E-07 1.356E-06 1.058E-06 1.734E-06 1.802E-06 

1.00E-10 5.369E-07 1.350E-06 1.052E-06 1.740E-06 1.796E-06 
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In the spherical cone case the smaller reflectivity values do not necessarily mean better convergence, the best 
convergence results were obtained when  the reflectivity was 0001.0 for all waves regardless of direction. From 
the above tables it is evident that smaller reflectivity values give better convergence results compared to slightly 
larger values. We can also see from the above table that when you decrease the reflectivity, the accuracy 
improves.  Inside of space crafts are built with some form of aluminum or carbon fiber both of which have low 
reflectivity values. Low reflectivity produces high emissivity. 

 
 

Graph 1: The absolute error is not similar for all reflectivity values regardless of the direction of the light source 
 

From the above graph for the Spherical Rhombus, 
we see that for the points away from the boundary 
there is much greater accuracy than for points near the 
boundary.  This is because the integrand is more 
singular at points near the boundary.     
   This is due to the following fact: the kernel function 
involves 1/r2 which is much more oscillatory when r 
becomes large. Therefore in this case we must 
increase the integration nodes to achieve the same 
accuracy. NINTE < NINITI, because the integrand of 

 is smoother than the integrand of  .  Also 
NINTE  ≥ (NDEG + 1). 
 

VI. FUTURE RESEARCH AND FINAL CONCLUSIONS 
 

For all calculations we used Fortran 77. We 
conclude that the error is affected by the boundary S, 
boundary data, emissivity and reflectivity  If we want 
to obtain more accuracy, we must increase the number 
of integration nodes for calculating the Galerkin 
coefficients . The cost of calculating the 
Galerkin coefficients is high. When NINTI or NINTE 
are doubled, the CPU time increases by four times. 

In order to eliminate more interior Neumann 
eigenvalues we need a more powerful computer which 
would decrease the CPU time considerably. For the 
shapes tested the convergence results were quite good, 
for varied values of reflectivity. In the future we plan 
to investigate the Neumann and Robin boundary value 
problems where the kernels will be much less 
smoother. Further we made the assumption that the 
incoming waves are constant or that Emissivity is 

constant. In the future we plan to change the true 
solution to functions such as )sin(  or );sin( the light 
waves that are periodic in nature. Solutions to the 
Radiosity equation are relevant to agencies such as 
NASA because of their use in energy balancing 
relationships in isothermal and non-isothermal 
surfaces and space. The Radiosity equation is 
generally an energy balanced equation for discrete 
surfaces. Prescribing the values of a given emissivity 
and reflectivity function on the boundary of the 
obstacle physically corresponds to prescribing the 
brightness of the light wave. Currently no numerical 
results or analytical results are available for the 
Spherical Rhombus or Spherical Cone. 
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