Common Weight Decompositions of Some Classes of Graphs

S. Meena ${ }^{1}$, G. Amuda* ${ }^{2}$
${ }^{1}$ Associate Professor and Head Department of Mathematics Government Arts College, C. Mutlur, Chidambaram, Tamil Nadu, India
${ }^{2}$ Lecturer in Mathematics Government College for women (A), Kumbakonam, Tamil Nadu, India.

Abstract

A difference labeling of a graph G is realized by assigning distinct integer values to its vertices and then associating with each edge uv the absolute difference of those values assigned to its end vertices. A decomposition of labeled graph into parts, each part containing the edge having a common- weight is called a common - weight decomposition. In this paper we investigate the existence of difference labeling of $P_{2 n}(+) N_{m}$, Braid graph, Mongolian Ger and Alternative Quadrilateral Snake.

KEYWORDS: Difference labeling, common weight decomposition.

1. INTRODUCTION

In this paper, we consider only finite simple undirected graph. In which G has vertex set $V=V(G)$ and edge set $E=E(G)$ the set of vertices adjacent to vertex u of G is denoted by $N=N(u)$. For the notation and terminology we referred to Bondy and Murthy [2].

A difference labeling of a graph G is realized by assigning distinct integer values to its vertices and then associating with each edge $u v$ the absolute difference of those values assigned to its end vertices. The concept of difference labelings was introduced by Bloom and Ruiz [1] and was further investigated by Arumugam and Meena [6]. Meena and Vaithilingam [7] have investigated the existence difference labelings whereas crown graph, grid graph, pyramid graph, fire cracker, banana trees, gear graph, ladder, fan graph, friendship graph, helm graph, wheel graph and $P_{2 n}(+) N_{m}$. In addition, various labelings graphs problem have been examined by Jeyanthi and Saratha Devi [8]; and Manisha [9].

Definition: 1.1. Let $G=(V, E)$ be a graph. A difference labeling of G is an injection f from V to the set of nonnegative integers with weight function f^{*} on E given by $f^{*}(u v)=|f(u)-f(v)|$ for every $u v$ edge in G.A graph with a difference labeling defined on it is called a labeled graph.

Definition: 1.2 A decomposition of labeled graph into parts, each part containing the edge having a commonweight is called a common - weight decomposition.

Definition: 1.3. A common weight decomposition of G in which each part contains m edges is called m - equitable.
Definition: 1.4. Specified Parts Decomposition Problem is a given graph G with edge set $E(G)$ and a collection of edge - disjoint linear forests $F_{1}, F, F_{3}, \ldots, F_{k}$ containing a total of $|E|$ edges, does there exists a common weight decomposition of G whose parts are respectively isomorphic to $F_{1}, F, F_{3}, \ldots, F_{k}$.

Definition: 1.4. Let $P_{2 n}(+) N_{m}$ be the graph with $p=2 n+m$ and $q=2(m+n)-1$ and vertex set $V\left(P_{2 n}(+) N_{m}\right)=\left\{u_{1}, u_{2} \ldots, u_{2 n}, v_{1}, v_{2} \ldots, v_{m}\right\}$. where $\mathrm{V}\left(P_{2 n}\right)=\left\{u_{1}, u_{2} \ldots, u_{2 n}\right\}$ and $\left.\mathrm{V}\left(N_{m}\right)\right)=\left\{v_{1}, v_{2} \ldots, v_{m}\right\}$ and the edge set $\mathrm{E}\left(P_{2 n}(+) N_{m}\right)=\mathrm{E}\left(P_{2 n}\right) \mathrm{U}\left\{\left(u_{1}, v_{1}\right)\left(u_{1}, v_{2}\right)\left(u_{1}, v_{3}\right), \ldots,\left(u_{1}, v_{m}\right),\left(u_{2 n}, v_{1}\right),\left(u_{2 n}, v_{2}\right), . .,\left(u_{2 n}, v_{m}\right)\right\}$.This graph has m cycles of length $2 n+1$ and many 4 -cycles.

Definition: 1.5. For each $n \geq 2$, the braid graph $B(n)$ is defind as follows, $V(B(n))=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right\}$ and
$\left.E(B(n))=\left\{x_{i} x_{i+1} \mid 1 \leq i \leq n-1\right\}\right\} U\left\{y_{i} y_{i+1} \mid 1 \leq i \leq n-1\right\} U\left\{\left(x_{i,} y_{i}\right) \mid 1 \leq i \leq n\right\}$.

Definition: 1.6. For any integers $m>2$ and $n>1$, the Mongolian Ger is the graph $\mathrm{M}(m, n)$ with vertex set $\mathrm{V}(M(m, n))=\left\{u, x_{11}, x_{12}, \ldots, x_{1 m}, x_{21}, x_{22}, \ldots, x_{2 m}, \ldots, x_{n 1}, x_{n 2}, \ldots, x_{n m}\right\}$ and edge set $\mathrm{E}(M(m, n))=\left\{\left(u, x_{1 i}\right): i=\right.$ $1,2, \ldots, m\} \cup\left\{\left(x_{\mathrm{ij},} x_{\mathrm{ij}+1}\right): \quad i=1,2, \ldots, n, j=1,2, \ldots, m\right\} \cup\left\{\left(x_{\mathrm{ij}}, x_{\mathrm{i}+1 \mathrm{j}}\right): i=1,2, \ldots, n-1, j=1,2, \ldots, m\right\}$. The graph $M(m, n)$ has $p=m n+1$ and $q=2 m n$.

Definition: 1.7. An Alternative Quadrilateral Snake $\mathrm{A}\left(Q S_{n}\right)$ is obtained from a path $u_{1}, u_{2} \ldots, u_{n}$ by joining $u_{i} u_{i+1}$ (alternatively) to new vertices v_{i} and v_{i+1} and then joining $v_{i} v_{i+1}$. That is every alternative edge of a path is replaced by a cycle $C_{4, r}$.

2. MAIN RESULTS

Theorem: 2.1. There exists a labeling which realizes a common weight decomposition of the graph $P_{2 n}(+) N_{m}$ for $m=2 n-1$ into $m-1$ copies of $2 P_{2}$, a copy of P_{3} and a copy $P_{2 n}$.

Proof:
Let $G=P_{2 n}(+) N_{m}$ be the graph with $p=2 n+m$ and $q=2(m+n)-1$ with vertex set
$V\left(P_{2 n}(+) N_{m}\right)=\left\{u_{1}, u_{2} \ldots, u_{2 n}, v_{1}, v_{2} \ldots, v_{m}\right\}$. where $\mathrm{V}\left(P_{2 n}\right)=\left\{u_{1}, u_{2} \ldots, u_{2 n}\right\}$ and $\left.\mathrm{V}\left(N_{m}\right)\right)=\left\{v_{1}, v_{2} \ldots, v_{m}\right\}$, and the edge set $\mathrm{E}\left(P_{2 n}(+) N_{m}\right)=\mathrm{E}\left(P_{2 n}\right) \mathrm{U}\left\{\left(u_{1}, v_{1}\right)\left(u_{1}, v_{2}\right)\left(u_{1}, v_{3}\right), . .,\left(u_{1}, v_{m}\right),\left(u_{2 n}, v_{1}\right),\left(u_{2 n}, v_{2}\right), . .,\left(u_{2 n}, v_{m}\right)\right\}$.

Define a vertex labeling $f: V G) \rightarrow\{0,1,2, \ldots, 2 n+m-1\}$ as follows

$$
\begin{array}{ll}
f\left(\mathrm{u}_{\mathrm{i}}\right)=2 i-2, & 1 \leq i \leq 2 n \\
f\left(\mathrm{v}_{\mathrm{j}}\right)=2 i-1, & 1 \leq i \leq m
\end{array}
$$

Then the set of edges S_{1}, S_{2}, S_{3} forms a common weight decomposition of $P_{2 n}(+) N_{m}$ graph into ($m-1$) copies of $2 P_{2}$, a copy of P_{3} and a copy $P_{2 n}$.

Where

$$
\begin{array}{ll}
S_{1}=\left\{u_{1} v_{i}, u_{2 n} v_{m-(i-1)}\right\} & \text { for } i \neq n \\
S_{2}=\left\{u_{1} v_{n} u_{2 n}\right\} & \\
S_{3}=\left\{u_{1}, u_{2} \ldots, u_{2 n}\right\} &
\end{array}
$$

Theorem: 2.2. There exists a labeling which realizes a common weight decomposition of the Braid graph into two maximum matching and a copy of $2 P_{n}$ for $n \geq 2$.

Proof:

Let $\mathrm{G}=B_{n}$ be the graph with vertex set $\mathrm{V}\left(B_{n}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right\}$ and the edge set $\left.\mathrm{E}\left(B_{n}\right)=\left\{x_{i} x_{i+1} \mid 1 \leq i \leq n-1\right\}\right\} \cup\left\{y_{i} y_{i+1} \mid 1 \leq i \leq n-1\right\} \mathrm{U}\left\{\left(x_{i} y_{i}\right) \mid 1 \leq i \leq n\right\}$ be the edge set of the graph.

$$
\text { Here }\left|V\left(B_{\mathrm{n}}\right)\right|=2 n \text { and }\left|E\left(B_{n}\right)\right|=4(n-1)
$$

Define a vertex labeling $f: V(G) \rightarrow\{0,1,2, \ldots, 2 n-1\}$ as follows

$$
\begin{array}{ll}
f\left(x_{i}\right)=2 i-2, & 1 \leq i \leq n \\
f\left(y_{i}\right)=2 i-1, & 1 \leq i \leq n
\end{array}
$$

Then the set of edges S_{1}, S_{2}, S_{3} forms a common weight decomposition of Braid graph $B(n)$ into two maximum matchings and a copy of $2 P_{n}$

Where

$$
\begin{aligned}
& S_{1}=\left\{x_{i} y_{i+1} / 1 \leq i \leq n-1\right\} \\
& S_{2}=\left\{y_{i} x_{i+1} / 1 \leq i \leq n-1\right\} \\
& S_{3}=\left\{x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right\}
\end{aligned}
$$

Theorem: 2.3. There exists a labeling which realizes a common weight decomposition of the Mongolian Ger graph $M(m, n)$ into m copies of P_{n}, n copies of P_{m}, a copy of $n P_{2}$ and m copies of P_{2}.

Proof:

Let G be a Mangolian Ger. For any integers $m>2$ and $n>1$, the Mongolian Ger is the graph $M(m, n)$ with vertex set $\mathrm{V}(M(m, n))=\left\{u, x_{11}, x_{12}, \ldots, x_{1 m} x_{21}, x_{22}, \ldots, x_{2 m}, \ldots, x_{n 1}, x_{n 2}, \ldots, x_{n m}\right\}$ and the edge set $\quad \mathrm{E}(M(m, n))=$ $\left\{\left(u, x_{1 \mathrm{i}}\right): \quad i=1,2, \ldots, m\right\} \cup\left\{\left(x_{\mathrm{ij}}, x_{\mathrm{ij}+1}\right): i=1,2, \ldots, n, j=1,2, \ldots, m\right\} \cup\left\{\left(x_{\mathrm{ij}}, x_{\mathrm{i}+1 \mathrm{j}}\right): i=1,2, \ldots, n-1, j=\right.$ $1,2, \ldots, m\}$. The graph $M(m, n)$ has $\mathrm{p}=m n+1$ and $\quad q=2 m n$.

Define the vertex labeling $f: V(G) \rightarrow\{0,1, \ldots m n+1\}$ as follows,

$$
\begin{array}{ll}
f(u)=0 & \\
f\left(x_{1 j}\right)=2 j-1, & \text { for } 1 \leq j \leq m \\
f\left(x_{\mathrm{ij}}\right)=(2 j-1)+(2 i-2) m, & \text { for } 1 \leq j \leq m \text { and } 1 \leq i \leq n
\end{array}
$$

Then the set of edges $S_{1}, S_{2}, S_{3}, S_{4}$ forms a common- weight decomposition of the Mangolian Ger $M(m, n)$ decomposed into m copies of P_{n}, n copies of P_{m}, a copy of $n P_{2}$ and m copies of P_{2}.

$$
\text { Where } \begin{aligned}
S_{1} & =\left\{\mathrm{x}_{1 \mathrm{j}} x_{2 j} \ldots x_{n j} / 1 \leq j \leq m\right\} \\
& S_{2}=\left\{x_{i 1} x_{i 2} \ldots x_{i m} / 1 \leq i \leq n\right\} \\
& S_{3}=\left\{\mathrm{x}_{\mathrm{i} 1} \mathrm{x}_{\mathrm{im}} \mid 1 \leq i \leq n\right\} \\
S_{4} & =\left\{u x_{11}, u x_{12}, \ldots u x_{1 m}\right\}
\end{aligned}
$$

Theorem: 2.4. There exists a labeling which realizes a common weight decomposition of the Alternative Quadrilateral Snake $A\left(Q S_{n}\right)$ for $n \geq 2$ and n is even into a perfect matching, a copy of $P_{n} \cup(n / 2) P_{2}$.

Proof:
Let $G=A\left(Q S_{\mathrm{n}}\right)$ be the graph with vertex set $\mathrm{V}(\mathrm{G})=\left\{u_{1}, u_{2} \ldots, u_{n}, v_{1}, v_{2} \ldots, v_{n}\right\}$ and the edge set $\left.\mathrm{E}(\mathrm{G})=\left\{u_{i} u_{i+1} \mid 1 \leq i \leq n-1\right\}\right\} \mathrm{U}\left\{v_{2 i-1} v_{2 i} \left\lvert\, 1 \leq i \leq \frac{n}{2}\right.\right\} \mathrm{U}\left\{\left(u_{i}, v_{i}\right) \mid 1 \leq i \leq n\right\}$.

Define a vertex labeling $f: V(G) \rightarrow\{0,1, \ldots, 2 n-1\}$ as follows

$$
\begin{array}{ll}
f\left(u_{i}\right)=i-1, & 1 \leq i \leq n \\
f\left(v_{i}\right)=i-1+n, & 1 \leq i \leq n
\end{array}
$$

Then the set of edges S_{1}, S_{2}, forms a common weight decomposition of Alternative Quadrilateral Snake $A\left(Q S_{n}\right)$ for $n \geq 2$ and n is even into a perfect matchings, a copy of $P_{n} \cup\left(\frac{n}{2}\right) P_{2}$.

Where $S_{1}=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} \mid 1 \leq i \leq n\right\}$

$$
S_{2}=\left\{u_{1} u_{2} \ldots u_{n}\right\} \cup\left\{v_{2 i-1} \cup v_{2 i} \left\lvert\, 1 \leq i \leq \frac{n}{2}\right.\right\}
$$

Theorem: 2.5. There exists a labeling which realizes a common weight decomposition of the Alternative Quadrilateral Snake $A\left(Q S_{n}\right)$ for n is even, $n \geq 2$ into two perfect matchings and a copy of.$\left(\frac{n}{2}-1\right) P_{2}$.

Proof:

Let $G=A\left(Q S_{\mathrm{n}}\right)$ be the graph with vertex set $\mathrm{V}(\mathrm{G})=\left\{u_{1}, u_{2} \ldots, u_{n}, v_{1}, v_{2} \ldots, v_{n}\right\}$ and the edge set $\left.\mathrm{E}(\mathrm{G})=\left\{u_{i} u_{i+1} \mid 1 \leq i \leq n-1\right\}\right\} \mathrm{U}\left\{v_{2 i-1} v_{2 i} \left\lvert\, 1 \leq i \leq \frac{n}{2}\right.\right\} \mathrm{U}\left\{\left(u_{i,} v_{i}\right) \mid 1 \leq i \leq n\right\}$.

Define a vertex labeling $f: V(G)) \rightarrow\{0,1, \ldots, 2 n-1\}$ as follows

$$
\begin{aligned}
& f\left(u_{1}\right)=0 \\
& f\left(u_{i}\right)=i, \quad \text { if } i \text { is odd, } i=2 m+1 \text { when } m \text { is odd, } \quad 3 \leq i \leq n-1 \\
& f\left(u_{i}\right)=i-1, \text { if } i \text { is odd, } 5 \leq i \leq n-1, \quad i=2 m+1 \text { where } m \text { is even } \\
& f\left(u_{i}\right)=i-1, \text { if } \mathrm{i} \text { is even, } 2 \leq i \leq n, \quad i=2 m \text { where } m \text { is odd } \\
& f\left(u_{i}\right)=i-2, \quad \text { if } i \text { is even, } 4 \leq i \leq n, \quad i=2 m \text { where } m \text { is even } \\
& f\left(v_{i}\right)=f\left(u_{i}\right)+n, \quad 1 \leq i \leq n
\end{aligned}
$$

Then the set of edges S_{1}, S_{2}, S_{3}, forms a common weight decomposition of Alternative Quadrilateral Snake $A\left(Q s_{n}\right)$ into two perfect matchings and a copy of.$\left(\frac{n}{2}-1\right) P_{2}$.

Where $S_{1}=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} \mid 1 \leq i \leq n\right\}$

$$
\begin{aligned}
& S_{2}=\left\{u_{i} u_{i+1}, v_{i} v_{i+1} \mid 1 \leq i \leq n-1, i \text { is odd }\right\} \\
& S_{3}=\left\{u_{i} u_{i+1} \mid 2 \leq i \leq n-2, i \text { is even }\right\}
\end{aligned}
$$

3. CONCLUSION

In this paper we investigate the existence of difference labelings for some classes of graphs. The specified parts decomposition problem can be investigated for other classes of graphs.

ACKNOWLEDGEMENT

The author is grateful to my guide and thanks to Manonmaniam Sundaranar University for providing facilities. I wish to express my deep sense of gratitude to Dr. M. Karuppaiyan my husband for their immense help in my studies.

REFERENCES

[1]. G.S. Bloom, and S. Ruiz. "Decompositions into Linear Forests and Difference Labelings of Graphs", Discrete Applied Mathematics, vol. 49, pp. 61-75, 1994.
[2]. J.A. Bondy, and U.S.R. Murthy. "Graph Theory and Applications" (North-Holland). New York 1976.
[3]. J.A. Gallian. "A Dynamic Survey Of Graph Labeling", The Electronic Journal of Combinations 16 \# DS6, 2009.
[4]. F. Harary. "Graph Theory Addition" Wesley, Reaching Mass 1969.
[5]. N. Hartsfield, and G. Ringel. "Pearls in Graph Theory", Academic press 1994.
[6]. S. Meena, and S. Arumugam. "Studies of Graph Theory Factorizations and Decompositions of Graphs", Ph.D Thesis Manonmaniam Sundaranar University, 1999.
[7]. K. Vaithilingam, and S. Meena. "Labelings of Graph", Ph.D Thesis Thiruvalluvar University, 2014.
[8]. P. Jeyanthi and T. Saratha Devi "On Edge Pair Sum Labeling of Graphs", International Journal of Mathematics Trends and Technology, vol. 7, No. 2, March-2014.
[9]. Manisha M. Archarya. "Even Vertex Graceful Labeling for Two Graphs" International Journal of Mathematics Trends and Technology, vol. 9, No. 3, May-2014.

