Notes on Jacobsthal and Jacobsthal-like Sequences

Lexter R. Natividad

College of Education, Central Luzon State University Science City of Munoz, Nueva Ecija, Philippines

Abstract — In this paper, new properties of Jacobsthal and Jacobsthal-like sequences were derived using the method in [1]. Formulas for finding the n^{th} term of these sequences and solving Jacobsthal mean were presented.

Keywords — Jacobsthal sequence, Jacobsthal-like sequence, induction, Jacobsthal mean, missing term

I. INTRODUCTION

Jacobsthal sequence is a recurrence relation with formula

$$J_n = J_{n-1} + 2J_{n-2}$$

with $J_0 = 0$ and $J_1 = 1$ as explained in [2]. This sequence is 0,1,1,3,5,11,21,43,85,171,...(OEIS A001045). This sequence is named after the German Mathematician Ernst Jacobsthal.

Horadam in [3] gave the generating function of this sequence as

$$J_n = \sum_{r=0}^{\frac{n-1}{2}} \binom{n-1-r}{r} 2^r$$

and its Binet form as

$$J_n = \frac{\alpha^n - \beta^n}{3} = \frac{1}{3} [2^n - (-1)^n].$$

In this paper, method of Natividad [1] was used to determine the nth term of Jacobsthal sequence and to solve the Jacobsthal mean.

II. MAIN RESULT

Theorem 2.1 For any real numbers J_a , J_b , and J_x , the formula for finding the first missing term (mean) of Jacobsthal and Jacobsthal-like sequence is

$$J_x = \frac{J_b - 2\left[\frac{2^n - (-1)^n}{3}\right]J_a}{\frac{2^{n+1} - (-1)^{n+1}}{3}}$$

where J_x is the first missing term of the sequence, J_a is the first term given, J_b is the last term, and n is the number of missing terms.

Proof. The formula for the first missing term of any Jacobsthal-like sequence can be found and derived using a recognizable pattern. The process of derivation is like in [1] and [4].

From the definition of Jacobsthal sequence, the general formula for J_x will make the calculation easy for the other missing terms. J_x can be solved for Jacobsthal or Jacobsthal-like sequence with

a. One missing term, the sequence is J_a , J_x , J_b

$$2J_a + J_x = J_b$$

then

$$J_x = J_b - 2J_a$$

b. Two missing terms, the sequence is J_a , J_x , J_{x+1} , J_b

$$2J_a + J_x = J_{x+1}$$
$$2J_x + J_{x+1} = J_b$$

then

$$J_x = \frac{J_b - 2J_a}{3}$$

c. Three missing terms, the sequence is J_a , J_x , J_{x+1} , J_{x+2} , J_b

$$2J_a + J_x = J_{x+1}$$

 $2J_x + J_{x+1} = J_{x+2}$
 $2J_{x+1} + J_{x+2} = J_b$

then

$$J_x = \frac{J_b - 6J_a}{5}$$

d. Four missing terms, the Jacobsthal like sequence is J_a , J_x , J_{x+1} , J_{x+2} , J_{x+3} , J_b

$$2J_{a} + J_{x} = J_{x+1}$$
$$2J_{x} + J_{x+1} = J_{x+2}$$
$$2J_{x+1} + J_{x+2} = J_{x+3}$$
$$2J_{x+2} + J_{x+3} = J_{b}$$

then

$$J_x = \frac{J_b - 10J_a}{11}$$

From the previous equations of J_x , the numerical coefficient of J_a in numerator and the denominator of the formulas were listed in Table 1.

Table	1.	Relati	onship of 1	of missing terms			
		with	numerator	r and	denominator	of	
		formulas.					

101	mulus.	
Number		
of		
Missing	Coefficient of	Coefficient of
Term	J_a in numerator	Denominator
1	2	1
2	2	3
3	6	5
4	10	11
•	•	•
•	•	•
•	•	•
	$[2^n - (-1)^n]$	2n+1 (1) $n+1$
	$2\left[\frac{2^{n}-(-1)^{n}}{2}\right]$	$2^{n+1} - (-1)^{n+1}$
n	2 3	3

From Table 1, the formula can be illustrated as

$$J_x = \frac{J_b - 2J_n J_a}{J_{n+1}}.$$

Using the definition of Jacobsthal sequence as

$$J_n = \left[\frac{2^n - (-1)^n}{3}\right]$$

and by substitution, the theorem is now proved. \square

Consequently, we can also find the explicit formula for the nth term of Jacobsthal or Jacobsthallike sequence using this method.

Definition 1.1 The sequence $K_1, K_2, ..., K_n$ in which $K_n = 2K_{n-2} + K_{n-1}$ is a Jacobsthal-like sequence.

Theorem 2.2 For any real numbers K_1 and K_2 , the formula for finding the n^{th} term of Jacobsthal-like sequence is

$$K_n = 2J_{n-2}K_1 + J_{n-1}K_2$$

where K_n is the n^{th} term of Jacobsthal-like sequence, K_1 is the first term, K_2 is the second term and J_{n-1} , J_{n-2} are the corresponding Jacobsthal numbers.

Proof. The numerical coefficients for the first two terms of the sequence were listed. Equations were solved for $3 \le n \le 6$ and the coefficients were tabulated like in [5] and [6].

Table 2. Coefficients of	K_1 and K_2 in each
equation.	

equation.					
N	K ₁	K_2			
3	2	1			
4	2	3			
5	6	5			
6	10	11			

It is interesting to note that the coefficient of K₁ corresponds to twice of the n-2th term of Jacobsthal sequence while K₂ corresponds to the n-1th term of the Jacobsthal sequence. So, we can conclude that the nth term (K_n) is equal to $2J_{n-2}K_1 + J_{n-1}K_2$ completing the proof. \Box

The formula can be validated in any values of n by using mathematical induction. The formula can be easily verified using n = 3, 4, 5 and so on. Let P(n) as

$$K_n = 2J_{n-2}K_1 + J_{n-1}K_2$$

then P(m) is

$$K_m = 2J_{m-2}K_1 + J_{m-1}K_2.$$

It also follows that P(m+1) is

 $K_{m+1} = 2J_{m-1}K_1 + J_m K_2.$

The assumption of P(m) must imply the truth of P(m+1) to verify the formula. In this process, we will add $2K_{m-1}$ to both sides of P(m). The equation will become

$$2K_{m-1} + K_m = 2J_{m-2}K_1 + J_{m-1}K_2 + 2K_{m-1}$$

But since $K_{m-1} = 2J_{m-3}K_1 + J_{m-2}K_2$ and $2K_{m-1} + K_m = K_{m+1}$,

$$K_{m+1} = 2J_{m-2}K_1 + J_{m-1}K_2 + 2(2J_{m-3}K_1 + J_{m-2}K_2)$$

 $K_{m+1} = 2J_{m-2}K_1 + J_{m-1}K_2 + 4J_{m-3}K_1 + 2J_{m-2}K_2$

 $K_{m+1} = 2(J_{m-2}K_1 + 2J_{m-3}K_1) + J_{m-1}K_2 + 2J_{m-2}K_2$

Further, $J_{m-2}K_1 + 2J_{m-3}K_1 = J_{m-1}K_1$ and $J_{m-1}K_2 + 2J_{m-2}K_2 = J_mK_2$ which makes our equation becomes

$$K_{m+1} = 2J_{m-1}K_1 + J_mK_2$$

The resulting equation is exactly our P(m+1), hence, the formula is valid for any value of n.

III.CONCLUSIONS

Explicit formulas for solving nth term of Jacobsthal sequence and finding Jacobsthal mean were presented in this paper. The method used in this paper may be extended to other recursive sequences

References

- L.R. Natividad. "Deriving Formula in solving Fibonaccilike sequences," *International Journal of Mathematics and Scientific Computing*, vol. 1(1), pp. 9-11, 2011.
- [2] Eric W. Weisstein. "Jacobsthal Number." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/JacobsthalNumber.html
- [3] A.F. Horadam. "Jacobsthal Representation Numbers," *Fibonacci Quarterly*, vol. 34, pp. 40-54, 1996.
- [4] L.R. Natividad. "On Solving Pell Means," International Journal of Mathematical Archive, vol. 2(12), pp. 2736-2739, 2011.
- [5] L.R. Natividad and P.B. Policarpio. "A Novel Formula in Solving Tribonacci-like Sequences," *General Mathematics Notes*, vol. 17(1), pp. 82-87, 2013.
- [6] L.R. Natividad. "On Solving Fibonacci-like Sequences of Fourth, Fifth, and Sixth Order," *International Journal of Mathematics and Scientific Computing*, vol. 3(2), pp. 38-40, 2013.