Notes on Jacobsthal and Jacobsthal-like Sequences

Lexter R. Natividad
College of Education, Central Luzon State University Science City of Munoz, Nueva Ecija, Philippines

Abstract - In this paper, new properties of Jacobsthal and Jacobsthal-like sequences were derived using the method in [1]. Formulas for finding the $n^{\text {th }}$ term of these sequences and solving Jacobsthal mean were presented.

Keywords - Jacobsthal sequence, Jacobsthal-like sequence, induction, Jacobsthal mean, missing term

I. Introduction

Jacobsthal sequence is a recurrence relation with formula

$$
J_{n}=J_{n-1}+2 J_{n-2}
$$

with $J_{0}=0$ and $J_{1}=1$ as explained in [2]. This sequence is $0,1,1,3,5,11,21,43,85,171, \ldots$ (OEIS A001045). This sequence is named after the German Mathematician Ernst Jacobsthal.

Horadam in [3] gave the generating function of this sequence as

$$
J_{n}=\sum_{r=0}^{\frac{n-1}{2}}\binom{n-1-r}{r} 2^{r}
$$

and its Binet form as

$$
J_{n}=\frac{\alpha^{n}-\beta^{n}}{3}=\frac{1}{3}\left[2^{n}-(-1)^{n}\right] .
$$

In this paper, method of Natividad [1] was used to determine the $\mathrm{n}^{\text {th }}$ term of Jacobsthal sequence and to solve the Jacobsthal mean.

II. Main Result

Theorem 2.1 For any real numbers J_{a}, J_{b}, and J_{x}, the formula for finding the first missing term (mean) of Jacobsthal and Jacobsthal-like sequence is

$$
J_{x}=\frac{J_{b}-2\left[\frac{2^{n}-(-1)^{n}}{3}\right] J_{a}}{\frac{2^{n+1}-(-1)^{n+1}}{3}}
$$

where J_{x} is the first missing term of the sequence, J_{a} is the first term given, J_{b} is the last term, and n is the number of missing terms.

Proof. The formula for the first missing term of any Jacobsthal-like sequence can be found and derived using a recognizable pattern. The process of derivation is like in [1] and [4].

From the definition of Jacobsthal sequence, the general formula for J_{x} will make the calculation easy for the other missing terms. J_{x} can be solved for Jacobsthal or Jacobsthal-like sequence with
a. One missing term, the sequence is J_{a}, J_{x}, J_{b}

$$
2 J_{a}+J_{x}=J_{b}
$$

then

$$
J_{x}=J_{b}-2 J_{a}
$$

b. Two missing terms, the sequence is $J_{a}, J_{x}, J_{x+1}, J_{b}$

$$
\begin{aligned}
& 2 J_{a}+J_{x}=J_{x+1} \\
& 2 J_{x}+J_{x+1}=J_{b}
\end{aligned}
$$

then

$$
J_{x}=\frac{J_{b}-2 J_{a}}{3}
$$

c. Three missing terms, the sequence is $J_{a}, J_{x}, J_{x+1}, J_{x+2}, J_{b}$

$$
\begin{gathered}
2 J_{a}+J_{x}=J_{x+1} \\
2 J_{x}+J_{x+1}=J_{x+2} \\
2 J_{x+1}+J_{x+2}=J_{b}
\end{gathered}
$$

then

$$
J_{x}=\frac{J_{b}-6 J_{a}}{5}
$$

d. Four missing terms, the Jacobsthal like sequence is $J_{a}, J_{x}, J_{x+1}, J_{x+2}, J_{x+3}, J_{b}$

$$
\begin{gathered}
2 J_{a}+J_{x}=J_{x+1} \\
2 J_{x}+J_{x+1}=J_{x+2} \\
2 J_{x+1}+J_{x+2}=J_{x+3} \\
2 J_{x+2}+J_{x+3}=J_{b}
\end{gathered}
$$

then

$$
J_{x}=\frac{J_{b}-10 J_{a}}{11}
$$

From the previous equations of J_{x}, the numerical coefficient of J_{a} in numerator and the denominator of the formulas were listed in Table 1.

Table 1. Relationship of number of missing terms with numerator and denominator of formulas.

Number of Missing Term	Coefficient J_{a} in numerator	of Coefficient Denominator
1	2	1
2	2	3
3	6	5
4	10	11
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	$\frac{2^{n+1}-(-1)^{n+1}}{3}$
n	$2\left[\frac{2^{n}-(-1)^{n}}{3}\right]$	

From Table 1, the formula can be illustrated as

$$
J_{x}=\frac{J_{b}-2 J_{n} J_{a}}{J_{n+1}}
$$

Using the definition of Jacobsthal sequence as

$$
J_{n}=\left[\frac{2^{n}-(-1)^{n}}{3}\right]
$$

and by substitution, the theorem is now proved.

Consequently, we can also find the explicit formula for the $\mathrm{n}^{\text {th }}$ term of Jacobsthal or Jacobsthallike sequence using this method.

Definition 1.1 The sequence $K_{1}, K_{2}, \ldots, K_{n}$ in which $K_{n}=2 K_{n-2}+K_{n-1}$ is a Jacobsthal-like sequence.

Theorem 2.2 For any real numbers K_{1} and K_{2}, the formula for finding the $n^{\text {th }}$ term of Jacobsthal-like sequence is

$$
K_{n}=2 J_{n-2} K_{1}+J_{n-1} K_{2}
$$

where K_{n} is the $n^{\text {th }}$ term of Jacobsthal-like sequence, K_{1} is the first term, K_{2} is the second term and J_{n-1}, J_{n-2} are the corresponding Jacobsthal numbers.

Proof. The numerical coefficients for the first two terms of the sequence were listed. Equations were solved for $3 \leq n \leq 6$ and the coefficients were tabulated like in [5] and [6].

Table 2. Coefficients of K_{1} and K_{2} in each equation.

N	K_{1}	$\mathrm{~K}_{2}$
3	2	1
4	2	3
5	6	5
6	10	11

It is interesting to note that the coefficient of K_{1} corresponds to twice of the $n-2^{\text {th }}$ term of Jacobsthal sequence while K_{2} corresponds to the n $1^{\text {th }}$ term of the Jacobsthal sequence. So, we can conclude that the $\mathrm{n}^{\text {th }}$ term $\left(\mathrm{K}_{\mathrm{n}}\right)$ is equal to $2 J_{n-2} K_{1}+$ $J_{n-1} K_{2}$ completing the proof.

The formula can be validated in any values of n by using mathematical induction. The formula can be easily verified using $n=3,4,5$ and so on. Let $\mathrm{P}(\mathrm{n})$ as

$$
K_{n}=2 J_{n-2} K_{1}+J_{n-1} K_{2}
$$

then $P(m)$ is

$$
K_{m}=2 J_{m-2} K_{1}+J_{m-1} K_{2}
$$

It also follows that $\mathrm{P}(\mathrm{m}+1)$ is

$$
K_{m+1}=2 J_{m-1} K_{1}+J_{m} K_{2}
$$

The assumption of $\mathrm{P}(\mathrm{m})$ must imply the truth of $\mathrm{P}(\mathrm{m}+1)$ to verify the formula. In this process, we will add $2 K_{m-1}$ to both sides of $\mathrm{P}(\mathrm{m})$. The equation will become

$$
2 K_{m-1}+K_{m}=2 J_{m-2} K_{1}+J_{m-1} K_{2}+2 K_{m-1}
$$

But since $K_{m-1}=2 J_{m-3} K_{1}+J_{m-2} K_{2}$ and $2 K_{m-1}+K_{m}=K_{m+1}$,

$$
\begin{gathered}
K_{m+1}=2 J_{m-2} K_{1}+J_{m-1} K_{2} \\
+2\left(2 J_{m-3} K_{1}+J_{m-2} K_{2}\right) \\
K_{m+1}=2 J_{m-2} K_{1}+J_{m-1} K_{2}+4 J_{m-3} K_{1}+2 J_{m-2} K_{2} \\
K_{m+1}=2\left(J_{m-2} K_{1}+2 J_{m-3} K_{1}\right)+J_{m-1} K_{2}+2 J_{m-2} K_{2} \\
\text { Further, } J_{m-2} K_{1}+2 J_{m-3} K_{1}=J_{m-1} K_{1} \text { and } \\
J_{m-1} K_{2}+2 J_{m-2} K_{2}=J_{m} K_{2} \quad \text { which makes our }
\end{gathered}
$$ equation becomes

$$
K_{m+1}=2 J_{m-1} K_{1}+J_{m} K_{2}
$$

The resulting equation is exactly our $\mathrm{P}(\mathrm{m}+1)$, hence, the formula is valid for any value of n.

III.CONCLUSIONS

Explicit formulas for solving $\mathrm{n}^{\text {th }}$ term of Jacobsthal sequence and finding Jacobsthal mean were presented in this paper. The method used in this paper may be extended to other recursive sequences

References

[1] L.R. Natividad. "Deriving Formula in solving Fibonaccilike sequences," International Journal of Mathematics and Scientific Computing, vol. 1(1), pp. 9-11, 2011.
[2] Eric W. Weisstein. "Jacobsthal Number." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/JacobsthalNumber.html
[3] A.F. Horadam. "Jacobsthal Representation Numbers," Fibonacci Quarterly, vol. 34, pp. 40-54, 1996.
[4] L.R. Natividad. "On Solving Pell Means," International Journal of Mathematical Archive, vol. 2(12), pp. 27362739, 2011.
[5] L.R. Natividad and P.B. Policarpio. "A Novel Formula in Solving Tribonacci-like Sequences," General Mathematics Notes, vol. 17(1), pp. 82-87, 2013.
[6] L.R. Natividad. "On Solving Fibonacci-like Sequences of Fourth, Fifth, and Sixth Order," International Journal of Mathematics and Scientific Computing, vol. 3(2), pp. 38-40, 2013.

