A Study of W_{4} Semi-Symmetric Generalized Sasakian-Space-Form

Abhishek Singh
Assistant Professor, Department of Mathematics, Babu Banarasi Das University, Lucknow, U.P, India,

Abstract

In this paper, we study W_{4} semi-symmetric generalized Sasakian-space-form. The Ricci-tensor, the Ricci-operator and the scalar curvature are also found in a W_{4} semi-symmetric generalized Sasakian-space-form.

Keywords: Sasakian-space-form, W_{4} curvature tensor, Ricci-tensor, Ricci-operator and scalar curvature.

I. Introduction

Generalized Sasakian-space-form was introduced by Alegre et al. [1] and studied the notion of generalized Sasakian-space-form. A generalized Sasakian-space-form is an almost contact metric manifold (M, φ, ξ, η, g) whose curvature tensor is given by

$$
\begin{align*}
R(X, Y) Z= & f_{1}[g(Y, Z) X-g(X, Z) Y] \\
& +f_{2}[g(X, \varphi Z) \varphi Y-g(Y, \varphi Z) \varphi X+2 g(X, \varphi Y) \varphi Z] \\
& +f_{3}[\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \\
& +g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi] \tag{1.1}
\end{align*}
$$

where f_{1}, f_{2} and f_{3} are differentiable functions on M and X, Y, Z are vector fields on M. We shall write generalized Sasakian-space-form as $M\left(f_{1}, f_{2}, f_{3}\right)$ in such case. This kind of manifold looks as a natural generalization of Sasakian-space-form $M(c)$, which can be obtain as a particular case of generalized Sasakian-space-form by taking $f_{1}=\frac{c+3}{4}$ and $f_{2}=f_{3}=\frac{c-1}{4}$, where c denotes the constant φ - sectional curvature. Moreover, Kenmotsu space forms, cosympletic space form, are also particular cases of generalized Sasakian-space-form $M\left(f_{1}, f_{2}, f_{3}\right)$. Contact metric and trans-Sasakian generalized Sasakian-spaceforms are also studied by Alegre and Carriazo [2]. Conformally flat and locally symmetric generalized Sasakian-space-form is studied by Kim [4] in his paper.
In this present paper W_{4} semi-symmetric generalized Sasakian-space form has been studied studied. G. P. Pokhariyal [5] introduced the notion of W_{4} curvature tensor. A $(2 n+1)$-dimensional Riemannian M is W_{4} flat if $W_{4}=0$, where W_{4} curvature tensor is defined as

$$
\begin{equation*}
W_{4}(X, Y) Z=R(X, Y) Z+\frac{1}{2 n}[g(X, Z) Q Y-g(X, Y) Q Z] \tag{1.2}
\end{equation*}
$$

where Q is the field of symmetric endomorphism corresponding to the Ricci tensor S i.e. $g(Q X, Y)=S(X, Y)$.

If a Riemannian manifold satisfies $R(X, Y) W_{4}=0$, where W_{4} is a W_{4} curvature tensor, then the manifold is said to be W_{4} semi-symmetric manifold.

II. Preliminaries

We recall some definitions and basic formulas in this section which will use later. For this, we recommend the reference [3]. A $(2 n+1)$ - dimensional Riemannian manifold (M, g) is said to be an almost contact metric manifold if there exist a $(1,1)$ tensor field φ, a unique global non-vanishing structural vector field ξ (called the vector field) and a $1-$ form η such that

$$
\begin{align*}
& \varphi^{2} X=-X+\eta(X) \xi, \quad \varphi \xi=0, \quad \eta(\xi)=1 \tag{2.1}\\
& d \eta(X, \xi)=0, \quad g(X, \xi)=\eta(X) \tag{2.2}\\
& g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.3}\\
& d \eta(X, Y)=g(X, \varphi Y), \quad \eta \circ \varphi=0 \tag{2.4}
\end{align*}
$$

Such a manifold is called contact manifold if $\eta \wedge(d \eta)^{n} \neq 0$, where n is $n^{\text {th }}$ exterior power. For contact manifold we also have $d \eta=\Phi$, where $\Phi(X, Y)=g(\varphi X, Y)$ is called fundamental $2-$ form on M. If ξ is killing vector field, then M is said to be K - contact manifold. The almost contact metric structure (φ, ξ, η, g) on M is said to be normal if

$$
\begin{equation*}
[\varphi, \varphi](X, Y)+2 d \eta(X, Y) \xi=0 \tag{2.5}
\end{equation*}
$$

for all vector field X, Y on M, where $[\varphi, \varphi]$ denotes the Nijenhuis tensor of φ given by

$$
\begin{equation*}
[\varphi, \varphi](X, Y)=\varphi^{2}[X, Y]+[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y] \tag{2.6}
\end{equation*}
$$

An almost contact metric manifold M is said to be η - Einstein if its Ricci-tensor S is of the form

$$
\begin{equation*}
S(X, Y)=c g(X, Y)+d \eta(X) \eta(Y) \tag{2.7}
\end{equation*}
$$

where c and d are smooth functions on M. A η - Einstein manifold becomes Einstein if $d=0$.

If $\left\{e_{1}, e_{2}, \ldots \ldots, e_{2 n}, \xi\right\}$ is a local orthonormal basis of vector fields in an almost contact metric manifold M of dimension $(2 n+1)$, then $\left\{\varphi e_{1}, \varphi e_{2}, \ldots \ldots, \varphi e_{2 n}, \xi\right\}$ is also a local orthonormal basis. It is easy to verify that

$$
\begin{align*}
& \sum_{i=1}^{2 n} g\left(e_{i}, e_{i}\right)=\sum_{i=1}^{2 n} g\left(\varphi e_{i}, \varphi e_{i}\right)=2 n \tag{2.8}\\
& \begin{aligned}
\sum_{i=1}^{2 n} g\left(e_{i}, Y\right) S\left(X, e_{i}\right) & =\sum_{i=1}^{2 n} g\left(\varphi e_{i}, Y\right) S\left(X, \varphi e_{i}\right) \\
& =S(X, Y)-S(X, \xi) \eta(Y)
\end{aligned}
\end{align*}
$$

for all $X, Y \in T(M)$. In view of (2.4) and (2.9) and we have

$$
\begin{align*}
\sum_{i=1}^{2 n} g\left(e_{i}, \varphi Y\right) S\left(\varphi X, e_{i}\right) & =\sum_{i=1}^{2 n} g\left(\varphi e_{i}, \varphi Y\right) S\left(\varphi X, \varphi e_{i}\right) \\
& =S(\varphi X, \varphi Y) \tag{2.10}
\end{align*}
$$

III. Some results on generalized Sasakian-space -form

For a generalized Sasakian-space-form $M\left(f_{1}, f_{2}, f_{3}\right)$ of dimension $(2 n+1)$, we have

$$
\begin{align*}
& R(X, Y) \xi=\left(f_{1}-f_{3}\right)[\eta(Y) X-\eta(X) Y], \tag{3.1}\\
& S(X, Y)=\left(2 n f_{1}+3 f_{2}-f_{3}\right) g(X, Y) \\
& -\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \eta(Y) . \tag{3.2}
\end{align*}
$$

F (3.1), we get

$$
\begin{gather*}
R(X, \xi) \xi=\left(f_{1}-f_{3}\right)[X-\eta(X) \xi] \tag{3.3}\\
R(X, \xi) Y=\left(f_{1}-f_{3}\right)(\eta(Y) X-g(X, Y) \xi) \tag{3.4}\\
Q(X)=\left(2 n f_{1}+3 f_{2}-f_{3}\right) X-\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \xi . \tag{3.5}\\
r=2 n(2 n+1) f_{1}+6 n f_{2}-4 n f_{3} \tag{3.6}
\end{gather*}
$$

where Q denotes Ricci operator and r is said to be scalar curvature of $M\left(f_{1}, f_{2}, f_{3}\right)$. From (3.2) and (3.5), we get

$$
\begin{equation*}
S(X, \xi)=2 n\left(f_{1}-f_{3}\right) \eta(X) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
Q \xi=2 n\left(f_{1}-f_{3}\right) \xi \tag{3.8}
\end{equation*}
$$

from (3.7), we have

$$
\begin{align*}
\sum_{i=1}^{2 n} S\left(e_{i}, e_{i}\right) & =\sum_{i=1}^{2 n} S\left(\varphi e_{i}, \varphi e_{i}\right) \\
& =r-2 n\left(f_{1}-f_{3}\right) \tag{3.9}
\end{align*}
$$

where r is scalar curvature. In a generalized Sasakian-space-form $M\left(f_{1}, f_{2}, f_{3}\right)$, we have

$$
\begin{align*}
R(X, \xi, \xi, Y) & =R(\xi, X, Y, \xi) \tag{3.10}\\
& =\left(f_{1}-f_{3}\right) g(\varphi X, \varphi Y)
\end{align*}
$$

and

$$
\begin{align*}
\sum_{i=1}^{2 n} R\left(e_{i}, X, Y, e_{i}\right) & =\sum_{i=1}^{2 n} R\left(\varphi e_{i}, X, Y, \varphi e_{i}\right) \\
& =S(X, Y)-\left(f_{1}-f_{3}\right) g(\varphi X, \varphi Y) \tag{3.11}
\end{align*}
$$

for all $X, Y \in T(M)$.

IV. \mathbf{W}_{4} semi-symmetric generalized Sasakian- space-form

Let $M\left(f_{1}, f_{2}, f_{3}\right)$ be a $(2 n+1)$ - dimensional generalized Sasakian-space-form. We obtain from equation (1.2) by using equations (2.2), (3.1) and (3.7)

$$
\begin{equation*}
\eta\left(W_{4}(X, Y) Z\right)\left(f_{1}-f_{3}\right)[\eta(X) g(Y, Z)-\eta(Z) g(X, Y)] . \tag{4.1}
\end{equation*}
$$

On taking $Y=\xi$ in the equation (4.1), we get

$$
\begin{equation*}
\eta\left(W_{4}(X, \xi) Z\right)=0 \tag{4.2}
\end{equation*}
$$

The condition of quasi-conformally semi-symmetric manifold is

$$
\begin{equation*}
R(X, Y) \cdot W_{4}=0 \tag{4.3}
\end{equation*}
$$

In virtue of above equation, we get

$$
\begin{align*}
& R(X, Y) W_{4}(U, V) W-W_{4}(R(X, Y) U, V) W \\
& -W_{4}(U, R(X, Y) V) W-W_{4}(U, V) R(X, Y) W=0 \tag{4.4}
\end{align*}
$$

Operating η both side and putting $X=\xi$ in (4.4), we have

$$
\begin{align*}
& g\left(R(\xi, Y) W_{4}(U, V) W, \xi\right)-g\left(W_{4}(R(\xi, Y) U, V) W, \xi\right) \tag{4.5}\\
& -g\left(W_{4}(U, R(\xi, Y) V) W, \xi\right)-g\left(W_{4}(U, V) R(\xi, Y) W, \xi\right)=0
\end{align*}
$$

Using (2.3), (3.4) and (3.10) in above equation, we get

$$
\begin{align*}
& \left(f_{1}-f_{3}\right)\left[W_{4}(U, V, W, Y)-\eta(Y) \eta\left(W_{4}(U, V) W\right)\right. \\
& +\eta(U) \eta\left(W_{4}(Y, V) W\right)+\eta(V) \eta\left(W_{4}(U, Y) W\right. \\
& \eta(W) \eta\left(W_{4}(U, V) Y\right)-g(Y, U) \eta\left(W_{4}(\xi, V) W\right) \\
& \left.-g(Y, V) \eta\left(W_{4}(U, \xi) W\right)-g(Y, W) \eta\left(W_{4}(U, V) \xi\right)\right]=0 \tag{4.6}
\end{align*}
$$

The above equation states that either $f_{1}=f_{3}$ or

$$
\begin{align*}
& W_{4}(U, V, W, Y)-\eta(V) \eta\left(W_{4}(U, V) W\right) \\
& +\eta(U) \eta\left(W_{4}(Y, V) W\right)+\eta(V) \eta\left(W_{4}(U, Y) W\right) \\
& +\eta(W) \eta\left(W_{4}(U, V) Y\right)-g(Y, U) \eta\left(W_{4}(\xi, V) W\right) \\
& -g(Y, V) \eta\left(W_{4}(U, \xi) W\right)-g(Y, W) \eta\left(W_{4}(U, V) \xi\right)=0 \tag{4.7}
\end{align*}
$$

If $f_{1} \neq f_{3}$, then equation (4.7) must be true. Now we proceed under the assumption that $f_{1} \neq f_{3}$. Putting $U=Y$ in (4.7) and using equations (4.1) and (4.2), we get

$$
\begin{align*}
& W_{4}(U, V, W, Y)+\eta(V) \eta\left(W_{4}(Y, Y) W\right) \\
& +\eta(W) \eta\left(W_{4}(Y, V) Y\right)-g(Y, Y) \eta\left(W_{4}(\xi, V) W\right) \\
& -g(Y, W) \eta\left(W_{4}(Y, V) \xi\right)=0 \tag{4.8}
\end{align*}
$$

Let $\left\{e_{1}, e_{2}, \ldots \ldots, e_{2 n}, e_{2 n+1} \xi\right\}$ is a local orthonormal basis of vector fields in $M\left(f_{1}, f_{2}, f_{3}\right)$, Putting $Y=e_{i}$ in the above equation and taking the summation over $1 \leq i \leq 2 n+1$, we get

$$
\begin{align*}
& \sum_{i=1}^{2 n+1} W_{4}\left(e_{i}, V, W, e_{i}\right)+\eta(V) \sum_{i=1}^{2 n+1} \eta\left(W_{4}\left(e_{i}, e_{i}\right) W\right) \\
& +\eta(W) \sum_{i=1}^{2 n+1} \eta\left(W_{4}\left(e_{i}, V\right) e_{i}\right)-(2 n+1) \eta\left(W_{4}(\xi, V) W\right) \\
& -\sum_{i=1}^{2 n+1} g\left(e_{i}, W\right) \eta\left(W_{4}\left(e_{i}, V\right) \xi\right)=0 . \tag{4.9}
\end{align*}
$$

Now using the equations (1.2), (2.1), (2.2), (2.8), (2.9), (3.11) and (4.1), we get

$$
\begin{equation*}
S(V, W)=2 n\left(f_{1}-f_{3}\right) g(V, W) \tag{4.10}
\end{equation*}
$$

On taking $W=\xi$ in the equation (4.10), we get

$$
\begin{equation*}
Q V=2 n\left(f_{1}-f_{3}\right) V \tag{4.11}
\end{equation*}
$$

and on taking $V=W=\xi$ in the equation(4.10), we get

$$
\begin{equation*}
r=2 n(2 n+1)\left(f_{1}-f_{3}\right) \tag{4.12}
\end{equation*}
$$

Theorem 4.1 The Ricci-tensor S and the Ricci-operator Q and the scalar curvature r of a W_{4} semisymmetric generalized Sasakian-space-form are given by the equations (4.10), (4.11) and (4.12) respectively.

Acknowledgment

The author is thankful to Professor Ram Nivas, Department of Mathematics and Astronomy, University of Lucknow, providing suggestions for the improvement of this paper.

References

[1] P. Alegre, D. E. Blair, and A. Carriiazo, Generalized Sasakian Space Form, Israel J. Math. 14 (2004) 157-183.
[2] P. Alegre and A. Carriiazo, Structures on Generalized Sasakian-space-form, Diff. Geo. and its Application, Vol. 26(6)(2008) 656666.
[3] D. E. Blair, Riemannian Geometry of Contact and Symplectic manifolds, Birkhauser Boston, (2002).
[4] U. K. Kim, Conformally flat Generalized Sasakian-space-forms and locally symmetric Generalized Sasakian-space-forms, Note di Mathematica 26(1)(2006) 55-67.
[5] G. P. Pokhariyal, Curvature tensors and their relative significance III, Yokohama Math. J., 20(1973) 115-119.

