Lehmer 3 -Mean Labeling of Some New Disconnected Graphs

T.S.Pavithra ${ }^{1}$, S.S.Sandhya ${ }^{2}$, S.Somasundaram ${ }^{3}$
${ }^{1}$ Assistant Professor in mathematics,St.John's College of arts and Science Ammandivilai-629204, Kanyakumari
${ }^{2}$ Assistant Professor in mathematics,SreeAyyappa College for Women Chunkankadai- 629003,Kanyakumari
${ }^{3}$ Professor in mathematics,ManonmaniamSundaranar University,Tirunelveli-627012

Abstract

A graph $G=(V, E)$ with P vertices and q edges is called Lehmer -3 mean graph ,if it is possible to label vertices $x \in V$ with distinct label $f(x)$ from $1,2,3, \ldots \ldots q+1$ in such a way that when each edge $e=u v$ is labeled with $f(e=u v)=\left\{\left.\frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}} \right\rvert\,\right.$ (or) $\left\lfloor\left.\frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}} \right\rvert\,\right.$, then the edge labels are distinct. In this case f is called Lehmer -3 mean labeling of G. In this paper we investigate Lehmer - 3 mean labeling of some standard graphs

Keywords: - Graph, Path, Cycle, Comb, Crown, Ladder.

I .INTRODUCTION

A graph considered here are finite undirected and simple. The vertex set and edge set of a graph are denoted by $\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G})$ respectively. For detailed survey Gallian survey [1] is refered and standerd terminologies and notations are followed from Harary [2]. We will find the brief summary of definitions and informations necessary for the present investigation.

Definition 1.1

A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with P vertices and q edges is called Lehmer -3 mean graph, if it is possible to label vertices $\mathrm{x} \in \mathrm{V}$ with distinct label $\mathrm{f}(\mathrm{x})$ from $1,2,3, \ldots \ldots \ldots \ldots . . \mathrm{q}+1$ in such a way that when each edge $\mathrm{e}=\mathrm{uv}$ is labeled with $\mathrm{f}(\mathrm{e}=\mathrm{uv})=\left\lceil\left.\frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}} \right\rvert\,\right.$ (or) $\left|\frac{f(u)^{3}+f(v)^{3}}{f(u)^{2}+f(v)^{2}}\right|$, then the edge labels are distinct. In this case f is called Lehmer -3 mean labeling of G .

Definition 1.2

A path P_{n} is obtained by joining u_{i} to the consecutive vertices u_{i+1} for $1 \leq i \leq n$

Definition 1.3

Comb is a graph obtained by joining a single pendant edge to each vertex of a path
Definition 1.4
A closed path is called a cycle of G.

Definition 1.5

Crown is a graph obtained by joining a single pendant edge to each vertex of a cycle
Definition 1.6
A product graph $\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}$ is called a planar grid $\mathrm{P}_{2} \times \mathrm{P}_{\mathrm{n}}$ is called a ladder.
Definition 1.7
$P_{n} \odot K_{1,2}$ is a graph obtained by attaching $K_{1,2}$ to each vertex of P_{n}
Definition 1.8
$P_{n} \odot K_{1,3}$ is a graph obtained from the path attaching $K_{1,3}$ to each of its vetices
Definition 1.9
$P_{n} \odot K_{3}$ is a graph connected by a complete graph K_{3} in its each vertex

II. Main Results
 Theorem:2.1

$\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{k}_{1}\right) \cup \mathrm{P}_{\mathrm{m}}$ is a Lehmer-3 mean graph.

Proof:

Let $\mathrm{C}_{\mathrm{n}} \odot \mathrm{k}_{1}$ be the crown with $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots . . \mathrm{u}_{\mathrm{n}}, \mathrm{v}_{1}$ as the cycle and v_{i} be the pendent vertices adjacent to $\mathrm{u}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$
Let $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots \ldots \mathrm{w}_{\mathrm{m}}$ be the path
Let G be the graph obtained by the union of $\left(C_{n} \odot k_{1}\right) \cup P_{m}$.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \ldots . . \mathrm{q}+1\}$ by
$\mathrm{f}(\mathrm{ui})=\mathrm{i} \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i} ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=2 \mathrm{n}+\mathrm{j} \quad ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
Then the distinct edge labels are $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=\mathrm{i} \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+1 \quad ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}} \mathrm{w}_{\mathrm{j}+1}\right)=2 \mathrm{n}+\mathrm{j} \quad ; 1 \leq \mathrm{j} \leq \mathrm{m}-1$
Thus $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup \mathrm{P}_{\mathrm{m}}$ forms Lehmer- 3 mean graph.

Example: 2.2

The Lehmer-3 mean graph of $\left(\mathrm{C}_{3} \odot \mathrm{k}_{1}\right) \cup \mathrm{P}_{4}$ is given below.

Figure-1

Theorem: 2.3
$\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{k}_{1}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1}\right)$ is a Lehmer-3 mean graph.

Proof:

Let G be the given graph.
$C_{n} \circ k_{1}$ is the crown with $u_{1}, u_{2}, \ldots \ldots . u_{n}, u_{1}$ as the cycle and v_{i} be the pendent vertices adjacent to $u_{i}, 1 \leq i \leq n$.
Let $\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1}$ be the comb with $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \mathrm{x}_{\mathrm{m}}$ as the vertices and y_{j} be the pendent vertices adjacent to $\mathrm{x}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \mathrm{m}$.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \ldots \ldots . \mathrm{q}+1\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i} \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i} \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=2 \mathrm{n}+(2 \mathrm{j}-1) \quad ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)=2 \mathrm{n}+(2 \mathrm{j}) \quad ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
Then the distinct edge labeling are $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=\mathrm{i} \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+1 \quad ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}+1}\right)=2 \mathrm{n}+2 \mathrm{j} \quad ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}-1$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}} \mathrm{y}_{\mathrm{j}}\right)=2 \mathrm{n}+(2 \mathrm{j}-1) \quad ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
Hence G forms a Lehmer-3 mean graph

Example:2.4

$\left(\mathrm{C}_{5} \odot \mathrm{k}_{1}\right) \cup\left(\mathrm{P}_{4} \odot \mathrm{~K}_{1}\right)$ is a Lehmer-3 mean graph.

Figure-2

Theorem:2.5

$\left(C_{n} \odot K_{1}\right) \cup C_{m}$ is a Lehmer - 3 mean graph.

Proof:

Let G be a graph obtained by $\left(C_{n} \odot K_{1}\right) \cup C_{m}$.

Let $\mathrm{C}_{\mathrm{n}} \mathrm{AK}_{1}$ be the crown with $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots . \mathrm{u}_{\mathrm{n}}$ as a cycle and v_{i} be the pendent vertices adjacent to $\mathrm{u}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
Let C_{m} be a cycle with $\mathrm{w}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \mathrm{m}$ as the vertices.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2 \ldots \ldots . \mathrm{q}+1\}$ by A
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1 \quad ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i} \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=2 \mathrm{n}+\mathrm{j} \quad ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
Thus the edge labels are distinct.
Hence $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup \mathrm{C}_{\mathrm{m}}$ is a Lehmer - 3 mean graph.

Example:2.6

$\left(\mathrm{C}_{5} \odot \mathrm{~K}_{1}\right) \cup \mathrm{C}_{6}$ is a Lehmer-3 mean graph.

Figure-3

Theorem:2.7

$\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,2}\right)$ be a Lehmer -3 mean graph.

Proof:

Let G be a graph obtained from the union of $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,2}\right)$.
Let $C_{n} \odot K_{1}$ be a crown with vertices $u_{1}, u_{2} \ldots . u_{n} ; v_{1}, v_{2} \ldots \ldots . . v_{n}$.
Let $\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,2}$ is a path attaching $\mathrm{K}_{1,2}$ with vertices $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots \ldots \ldots \mathrm{w}_{\mathrm{m}}: \mathrm{x}_{1}, \mathrm{X}_{2} \ldots \ldots . \mathrm{x}_{\mathrm{m}}$.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots . . \mathrm{q}+1\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1 \quad ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i} \quad ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=2 \mathrm{n}+(3 \mathrm{i}-2) ; 1 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=2 \mathrm{n}+(3 \mathrm{i}-1) \quad ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)=2 \mathrm{n}+3 \mathrm{i} \quad ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
Thus we obtained distinct edge labelings.
Hence $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,2}\right)$ is a Lehmer - 3 mean graph.

Example:2.8

$\left(\mathrm{C}_{4} \odot \mathrm{~K}_{1}\right) \cup\left(\mathrm{P}_{4} \odot \mathrm{~K}_{1,2}\right)$ is a Lehmer - 3 mean graph.

Figure-4

Theorem:2.9
$\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,3}\right)$ be a Lehmer - 3 mean graph.

Proof:

Let G be a graph obtained from $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,3}\right)$.
The vertices of $C_{n} \odot K_{1}$ be $u_{1}, u_{2} \ldots . . u_{n} ; v_{1}, v_{2} \ldots \ldots . . v_{n}$.
$\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,3}\right)$ be a graph with vertices $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots . . \mathrm{x}_{\mathrm{m}} ; \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \ldots . . \mathrm{y}_{\mathrm{m}} ; \mathrm{z}_{1}, \mathrm{z}_{2}, \ldots . \mathrm{z}_{\mathrm{m}}$.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \ldots \ldots \mathrm{q}+1\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1 \quad ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i} \quad ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=2 \mathrm{n}+(4 \mathrm{j}-3) \quad ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=2 \mathrm{n}+(4 \mathrm{j}-2) ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
$f\left(y_{j}\right)=2 n+(4 j-1) \quad ; \quad 1 \leq j \leq m$
$\mathrm{f}\left(\mathrm{z}_{\mathrm{j}}\right)=2 \mathrm{n}+(4 \mathrm{j}) \quad ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
Thus we get distinct edge labels.
Thus $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,3}\right)$ is a Lehmer - 3 mean graph.

Example:2.10

The Lehmer - 3 mean labeling of $\left(\mathrm{C}_{5} \odot \mathrm{~K}_{1}\right) \cup\left(\mathrm{P}_{3} \odot \mathrm{~K}_{1,3}\right)$ is given below

Theorem:2.11

$\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{3}\right)$ is a Lehmer- 3 mean graph

Proof:

Let G be a graph obtained by $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{3}\right)$
Let $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)$ be a graph with vertices $\mathrm{u}_{1}, \mathrm{u}_{2} \ldots . \mathrm{u}_{\mathrm{n}} ; \mathrm{v}_{1}, \mathrm{v}_{2} \ldots \ldots . . \mathrm{v}_{\mathrm{n}}$ respectively
Let $\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{3}\right)$ be a graph obtained by joining P_{m} with K_{3} with vertices $\mathrm{w}_{\mathrm{j},} \mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}} ; 1 \leq \mathrm{j} \leq \mathrm{m}$ respectively
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \ldots . . \mathrm{q}+1\}$ defined by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1 \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i} \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=2 \mathrm{n}+(4 \mathrm{j}-3) \quad ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=2 \mathrm{n}+(4 \mathrm{j}-2) ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)=2 \mathrm{n}+(4 \mathrm{j}-1) ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
Thus we get the distinct edge labeling
Hence $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{3}\right)$ is a Lehmer- 3 mean graph

Example: 2.12

The labeling pattern of $\left(\mathrm{C}_{4} \odot \mathrm{~K}_{1}\right) \cup\left(\mathrm{P}_{4} \odot \mathrm{~K}_{3}\right)$ is given below

Figure-6

Theorem:2.13
$\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{k}_{1}\right) \cup \mathrm{L}_{\mathrm{m}}$ is a Lehmer -3 mean graph.

Proof:

Let G be a graph obtained by $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{k}_{1}\right) \cup \mathrm{L}_{\mathrm{m}}$
Let $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{k}_{1}\right)$ be a graph with vertices $\mathrm{u}_{1}, \mathrm{u}_{2} \ldots . \mathrm{u}_{\mathrm{n}} ; \mathrm{v}_{1}, \mathrm{v}_{2} \ldots \ldots \ldots \mathrm{v}_{\mathrm{n}}$
Let L_{m} be a ladder with m vertices as $w_{1}, w_{2}, \ldots \ldots . . \mathrm{w}_{\mathrm{m}} ; \mathrm{x}_{1}, \mathrm{x}_{2} \ldots \ldots . \mathrm{x}_{\mathrm{m}}$.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \ldots . . \mathrm{q}+1\}$ defined by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1 \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i} \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{1}\right)=2 \mathrm{n}+1$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=2 \mathrm{n}+(3 \mathrm{j}-3) \quad ; 2 \leq \mathrm{j} \leq \mathrm{m}$
$f\left(x_{1}\right)=2 n+2$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=2 \mathrm{n}+(3 \mathrm{j}-2) \quad ; 2 \leq \mathrm{j} \leq \mathrm{m}$
Thus the distinct edge labels are obtained.
Hence $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{k}_{1}\right) \cup \mathrm{L}_{\mathrm{m}}$ is a Lehmer - 3 mean graph.

Example:2.14

The Lehmer - 3 mean labeling of $\left(\mathrm{C}_{4} \odot \mathrm{k}_{1}\right) \cup \mathrm{L}_{4}$. is given below.

Figure - 7

Theorem:2.15
$\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right) \cup \mathrm{P}_{\mathrm{m}}$ is a Lehmer - 3 mean graph.

Proof:

Let G be a graph obtained by $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right) \cup \mathrm{P}_{\mathrm{m}}$
Let $\left(C_{n} \odot K_{1,2}\right)$ is a graph with vertices $u_{1}, u_{2} \ldots . u_{n} ; v_{1}, v_{2} \ldots \ldots . . v_{n}$ and $w_{1}, w_{2}, \ldots \ldots . . w_{n} r$ respectively.
Let P_{m} be a path with m vertices $x_{1}, x_{2} \ldots \ldots . x_{m}$.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \ldots . \mathrm{q}+1\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3 \mathrm{i}-2 \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-1 \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i} \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=3 \mathrm{n}+\mathrm{j} \quad ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
The edge labelings are distinct.
Hence $\left(C_{n} \odot K_{1,2}\right) \cup P_{m}$ is a Lehmer - 3 mean graph.
Example:2.16
$\left(\mathrm{C}_{4} \odot \mathrm{~K}_{1,2}\right) \mathrm{U} \mathrm{P}_{5}$ is a Lehmer - 3 mean graph.

Figure - 8

Theorem:2.17

$\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1}\right)$ is a Lehmer- 3 mean graph
Proof:
Let G be a graph obtained by $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1}\right)$
Let $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right)$ be a graph with vertices $\mathrm{u}_{1}, \mathrm{u}_{2} \ldots . \mathrm{u}_{\mathrm{n}} ; \mathrm{v}_{1}, \mathrm{v}_{2} \ldots \ldots . . \mathrm{v}_{\mathrm{n}} ; \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots \ldots . . \mathrm{w}_{\mathrm{n}}$ respectively
Let $\left(P_{m} \odot K_{1}\right)$ be a comb with vertices $x_{1}, x_{2}, \ldots \ldots . x_{m}$ and $y_{1}, y_{2}, \ldots \ldots y_{m}$ respectively Define a function $f: V(G) \rightarrow$ $\{1,2, \ldots \ldots \ldots \mathrm{q}+1\}$ defined by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3 \mathrm{i}-2 \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-1 \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i} \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=3 \mathrm{n}+(2 \mathrm{j}-1) ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
$f\left(y_{j}\right)=3 n+2 j ; \quad 1 \leq j \leq m$
Thus the edge labelings are distinct
Hence $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1}\right)$ is a Lehmer- 3 mean graph.
Example: 2.18
$\left(\mathrm{C}_{6} \odot \mathrm{~K}_{1,2}\right) \cup\left(\mathrm{P}_{4} \odot \mathrm{~K}_{1}\right)$ is a Lehmer- 3 mean graph

Figure-9
Theorem:2.19
$\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,2}\right)$ be a Lehmer -3 mean graph.

Proof:

Let G be a graph obtained from the union of $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right)$ and ($\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,2}$).
Let $\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}$ be a graph with vertices $\mathrm{u}_{1}, \mathrm{u}_{2} \ldots . \mathrm{u}_{\mathrm{n}} ; \mathrm{v}_{1}, \mathrm{v}_{2} \ldots \ldots . \mathrm{v}_{\mathrm{n}}$ and $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots \ldots . . \mathrm{w}_{\mathrm{n}}$
Let $\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,2}\right) \quad$ be a graph with vertices $\mathrm{xj}, \mathrm{yj}, \mathrm{zj} ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \ldots . \mathrm{q}+1\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3 \mathrm{i}-2 \quad ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-1 \quad ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i} \quad ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$f\left(x_{j}\right)=3 n+(3 j-2) \quad ; \quad 1 \leq j \leq m$
$\mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)=3 \mathrm{n}+(3 \mathrm{j}-1) ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
$f\left(z_{j}\right)=3 n+3 j \quad ; 1 \leq j \leq m$.
we obtain distinct edge labelings.
Thus $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,2}\right)$ is a Lehmer -3 mean graph.

Example:2.20

$\left(\mathrm{C}_{5} \odot \mathrm{~K}_{1,2}\right) \cup\left(\mathrm{P}_{4} \odot \mathrm{~K}_{1,2}\right)$ is a Lehmer -3 mean graph.

Figure-10

Theorem:2.21
$\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,3}\right)$ is a Lehmer- 3 mean graph

Proof:

Let $\left(C_{n} \odot K_{1,2}\right) \cup\left(P_{m} \odot K_{1,3}\right)$ be a graph obtained from the union of $\left(C_{n} \odot K_{1,2}\right)$ and $\left(P_{m} \odot K_{1,3}\right)$
Let $u_{1}, u_{2} \ldots . . u_{n} ; v_{1}, v_{2} \ldots \ldots . . v_{n} ; w_{1}, w_{2}, \ldots \ldots . \mathrm{w}_{\mathrm{n}}$ be the vertices of $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right)$ and let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots . \mathrm{x}_{\mathrm{m}} ; \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots . \mathrm{y}_{\mathrm{m}}$; $\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots . . \mathrm{z}_{\mathrm{m}} ; \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots . \mathrm{t}_{\mathrm{m}}$ be the vertices of $\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,3}\right)$

Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \ldots . . \mathrm{q}+1\}$ defined by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3 \mathrm{i}-2 \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-1 \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i} \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=3 \mathrm{n}+(4 \mathrm{j}-3) ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)=3 \mathrm{n}+(4 \mathrm{j}-2) ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{z}_{\mathrm{j}}\right)=3 \mathrm{n}+(4 \mathrm{j}-1) ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{t}_{\mathrm{j}}\right)=3 \mathrm{n}+(4 \mathrm{j}) ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
Thus we obtain distinct edge labels
Hence $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,3}\right)$ is a Lehmer- 3 mean graph

Example:2.22

$\left(\mathrm{C}_{5} \odot \mathrm{~K}_{1,2}\right) \cup\left(\mathrm{P}_{4} \odot \mathrm{~K}_{1,3}\right)$ is a Lehmer- 3 mean graph

Figure-11

Theorem:2.23
$\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right) \mathrm{U}\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{3}\right)$ is a Lehmer- 3 mean graph

Proof:

Let $\left(C_{n} \odot K_{1,2}\right)$ be a graph with vertices $u_{1}, u_{2} \ldots . u_{n} ; v_{1}, v_{2} \ldots \ldots . . v_{n} ; w_{1}, w_{2}, \ldots \ldots . w_{n}$ respectively
Let $\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{3}\right)$ be a graph with vertices $\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}, \mathrm{Z}_{\mathrm{j}} ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$ respectively
Let G be a graph obtained from the union of $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right)$ and $\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{3}\right)$
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \ldots . . \mathrm{q}+1\}$ defined by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3 \mathrm{i}-2 \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-1 \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i} \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=3 \mathrm{n}+(4 \mathrm{j}-3) ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)=3 \mathrm{n}+(4 \mathrm{j}-2) ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{z}_{\mathrm{j}}\right)=3 \mathrm{n}+(4 \mathrm{j}-1) ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
Thus we get distinct edge labeling
Hence $\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1,2}\right) \cup\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{3}\right)$ is a Lehmer- 3 mean graph.

Example: 2.24

$\left(\mathrm{C}_{5} \odot \mathrm{~K}_{1,2}\right) \cup\left(\mathrm{P}_{4} \odot \mathrm{~K}_{3}\right)$ is a Lehmer- 3 mean graph

Figure-12

Theorem:2.25

$\left(C_{n} \odot K_{1,2}\right) \cup C_{m}$ is a Lehmer - 3 mean graph.

Proof:

Let G be a graph obtained from the union of $\left(C_{n} \odot K_{1,2}\right)$ and C_{m}
Let $\left(C_{n} \odot K_{1,2}\right)$ is a graph with vertices $u_{1}, u_{2} \ldots . u_{n} ; v_{1}, v_{2} \ldots \ldots . . v_{n}$ and $w_{1}, w_{2}, \ldots \ldots . . w_{n} r$ respectively.
Let C_{m} be a path with m vertices $x_{1}, x_{2} \ldots \ldots . x_{m}$.
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \ldots \mathrm{q}+1\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3 \mathrm{i}-2 \quad ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-1 \quad ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{i} \quad ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=3 \mathrm{n}+\mathrm{j} \quad ; \quad 1 \leq \mathrm{j} \leq \mathrm{m}$
Thus we obtain distinct edge labels.
Hence $\left(C_{n} \odot K_{1,2}\right) \cup C_{m}$ is a lehmer -3 mean graph.

Example:2.26

Lehmer-3 mean labeling of $\left(\mathrm{C}_{4} \odot \mathrm{~K}_{1,2}\right) \cup \mathrm{C}_{5}$ isgiven below

Figure-13

REFERENCES

[1] J.A Gallian 2010, A dynamic survey of graph labeling. The electronic journal of combinatorics 17 \# DS6
[2] Harary.F 1988 Graph theory, Narosa Publication House reading, New Delhi
[3]S Somasundram and R Ponraj 2003 Mean labeling of Graphs, National Academy of Science Letter Vol 26 (2013), p210-213
[4] S Somasundaram and R Ponraj and S SSandhya 'Harmonic mean labeling of graphs' communicated to journal of combinatorial mathematics and combinatorial computing.
[5]S.Somasundaram, S.S.Sandhya and T.S.Pavithra, "Lehmer-3 Mean `Labeling of graphs" communicated to International Journal of Mathematical Forum [6] S.SomasundaramS.S.Sandhya and T.S.Pavithra, "Some More Results On Lehmer-3 Mean Labeling of graphs" communicated to Global Journal of Theoretical and applied Mathematical Sciences. [7] S.Somasundaram, S.S.Sandhya and T.S.Pavithra, "Some Results on Lehmer-3 Mean `Labeling of graphs" communicated to Journal of Discrete Mathematics and Cryptography.
[8] Jeyasekaran.C, Sandhya.S.S and David Raj.C "Some Results on Super Harmonic Mean Graphs", International Journal of Mathematics Trends \& Technology, Vol 6 (3) (2014), 215-224
[9] S.S Sandhya, E. Ebin Raja Merly, B Shiny, " Super Geometric Mean labeling on Double Triangular Snakes" International Journal of Mathematics Trends \& Technology, Volume 17 Number 1 - Jan 2015

