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Introduction: Fixed point theory is an 

important branch of the functional analysis. In 1989 

Bakhtin[1] worked on the contraction mapping 

principle in almost metric space. In 1993 Czerwik 

[5] extended the result of contraction mapping in b-

metric space. Czerwik[5]   presented various 

problems of the convergence of measurable 

function with respect to measure in b-metric space. 

Since then, the fixed point theory of the variational 

principle for single valued and multivalued 

operators in b-metric space was used by many 

authors Mehmat Kir [9], Boriceanu [4], M Bota [3] 

and Pacurar [10] presented generalization of 

Banach [2] fixed point theorem in b-metric space.  

In 1986 G. Jungck [7] defined compatible mapping. 

In 1993 G Jungck et.al [8] extended compatible 

mapping by introducing a compatible mapping of 

type (A).  

In this paper, we extended common fixed point 

theorem in b-metric space for two mapping using 

compatible mapping of type (A).  

Definition 1.1.  Let  be a non-empty set and 

  be a given real number. A function  

  is called a b- metric provided 

that for all  

1) if and only if  , 

2) , 

3)  

A pair   is called a b-metric space. It is 

clear that definition of   b-metric space is an 

extension of usual metric space.  

Some examples of b-metric spaces are given 

below: 

Example 1.2.  By [9]   The set  (with 0 < p < 

1),  

 where , 

together with the function 

,  

 

where  is a b-metric 

space. By an elementary calculation we obtain that    

 

Example 1.3. By [9] Let   and  

 

 

and   

then 

 for all 

  

if then the triangle inequality does not 

hold. 

Definition 1.4.  Let     be  a  b-metric   space 

.Then  a  sequence      in   X  is   called a  
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Cauchy  sequence  if  and  only  if  for  all        

there   exist    such that for each   

  we  have  . 

 

Definition 1.6.  Let    be a b-metric space 

then a sequence   in X is called convergent   

sequence if and only if there exists     such 

that for all there exists     such 

that for all   we have .  

Thus b- metric   space is complete if every Cauchy 

sequence convergent.  

  

Definition 1.7.  In 1993, G.Jungck, Y.J.Cho and 

P.P.Murthy [15] established new concept of 

compatible mappings i.e. compatible mapping of 

type (A) .Two self maps S and T of a metric space 

(X ,d)  are said to be compatible of type (A)  if 

 

                             and    

 

   whenever { } is a sequence in X such that  

 , 

  for     some t ∈ X.  

THEOREM-2.1 : Let  be a complete b-

metric space with constant and  and  are 

two self mappings such that  

(i) , 

(ii) One of  or  be continuous, 

(iii) is compatible of type (A), 

(iv)  

where    then  and  

have a unique common fixed point. 

Proof: Let    .As  then 

there exist  and  in X such that 

   

  ,       

Now by equation (iv), 

, 

  {  

              , 

 {

 

           + , 

 {  

     + , 

 {  

       

+ , 

Case –I :  If suppose 

> , 

  

 

  

, 

, 

 
Case –I :  If suppose 

  > , 
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,    

,   

 
By equation (2.2) and (2.3), 

Let  

Therefore  

Since and   , 

 ,   

 , 

, 

: 

:  . 

Now we show that  is a Cauchy 

sequence. Let  with   

, 

, 

, 

,

, 

when we take  we arrive at 

 

Hence is a Cauchy sequence. 

In view of completeness of the space, sequence 

converges to some  in  

Since  is a subsequence of . Therefore it also 

converges to  

Since  such that     . 

Now, we shall prove   then 

 
S is continuous and S, T are compatible of type A 

such that  

, ,  

                                                   

          

 

  +  , 

Taking as  

 
 }   + , 

, 

  

This is contradiction. Therefore  

Now, 

 

                

+  , 

S is continuous and S, T are compatible of type A 

such that 

 

 

+  , 

   

            

       This is contradiction. Therefore 

Hence  is the common fixed point of   

and   

       Uniqueness:  Let  and be two common 

fixed points of  and  , so   and 

 , then we have     
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, 

                        

 , 

                       , 

                       i.e.   

Hence   is the unique common fixed point of   

and . 

Corollary 2.2:   Let  be a complete b-metric 

space with constant and  and  are two 

self mappings such that  

(i) , 

(ii) One of  or  be continuous, 

(iii) is compatible of type (A), 

(iv) 
 

where    then  and  

have a unique common fixed point. 

Corollary 2.3: Let  be a complete b-metric 

space with constant and  and  are two 

self mappings such that  

1) , 

2) One of  or  be continuous, 

3) is compatible of type (A), 

4) 
 

Where and   ,  

  then  and  have a unique common 

fixed point. 
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