SOME PROPERTIES OF S- α ANTI FUZZY SEMIGROUPS

R. \mathbf{GOWRI}^1 and **T.** $\mathbf{RAJESWARI}^2$

¹ Department of Mathematics, Government College for Women(Autonomous), Kumbakonam, India

² Research Scholar, Department of Mathematics, Government College for Women(Autonomous), Kumbakonam, India

Abstract

The notion of S- α anti conjugate fuzzy semigroups is introduced and order of an S- α anti fuzzy semigroup is defined. Quotient of S- α anti fuzzy cosets of an S- α anti fuzzy normal subsemigroup is defined and some of its properties are proved. It is also studied about the image and inverse image of S- α anti fuzzy semigroup under S-semigroup anti homomorphism.

Mathematical Subject Classification: 03E72, 08A72, 20N25. Keywords: S-Semigroup, Anti fuzzy group, S-anti fuzzy group, α -anti fuzzy set, α -anti

fuzzy group, S- α anti fuzzy semigroup, S- α anti fuzzy normal subsemigroup.

1 Introduction and Preliminaries

Zadeh introduced the concept of fuzzy set in 1965 [1]. Fuzzy subgroup was defined by Rosenfeld [2] and it was generalized by Anthony and Sherwood [4]. W.B.Vasantha Kandhasami studied about Smarandache fuzzy semigroups [8]. P.K.Sharma introduced the concept of α fuzzy set, α -fuzzy group, α -fuzzy coset, α -fuzzy normal subgroup and analyzed about their properties[12]. Gowri.R and Rajeswari.T introduced the concept of S- α anti fuzzy semigroup and S- α anti fuzzy normal subsemigroup and obtained their properties [14]. In this paper order of an S- α anti fuzzy semigroup, S- α anti conjugate fuzzy semigroups, Quotient of S- α anti fuzzy cosets of an S- α anti fuzzy normal subsemigroup are defined and discussed their characterisations.

Definition 1.1 Let X be a non empty set. A fuzzy subset A of X is a function $A: X \to [0, 1]$.

Definition 1.2 A fuzzy subset A of a group G is called an **anti fuzzy subgroup** of G if (i) $A(xy) \le max\{A(x), A(y)\}$ (ii) $A(x^{-1}) = A(x)$, for all $x, y \in G$.

Definition 1.3 A semigroup S is said to be a **Smarandache-semigroup** (*S*-semigroup) if there exists a proper subset P of S which is a group under the same binary operation in S.

Result 1.4 [10] If $A: G \to [0, 1]$ is an anti fuzzy subgroup of a group G, then (i) $A(x) \ge A(e)$, where e is the identity element of G. (ii) $A(xy^{-1}) = A(e) \Rightarrow A(x) = A(y)$, for all $x, y \in G$.

Definition 1.5 Let *S* be an *S*-semigroup. A fuzzy subset *A* of *S* is said to be a **Smaran-dache anti fuzzy semigroup (***S***-anti fuzzy semigroup)** if $A: S \to [0,1]$ is such that *A* is restricted to atleast one proper subset *P* of *S* which is a group and the restriction map $A_P: P \to [0,1]$ is an anti fuzzy group.

Definition 1.6 Let A be a fuzzy subset of a group G. Let $\alpha \in [0, 1]$. Then α -anti fuzzy subset of G(with respect to a fuzzy set A), denoted by A_{α} , is defined as $A_{\alpha}(x) = max\{A(x), 1-\alpha\}$, for all $x \in G$.

Definition 1.7 Let A be a fuzzy subset of a group G and $\alpha \in [0,1]$. Then A is called an α -anti fuzzy subgroup of G if A_{α} is an anti fuzzy group.

Definition 1.8 Let f be a mapping from a set G_1 into a set G_2 . Let A and B be fuzzy subsets of G_1 and G_2 respectively. Then f(A) and $f^{-1}(B)$ are respectively the image of fuzzy set A and the inverse image of fuzzy set B, defined as

subsets of G_1 and G_2 respectively. Then f(A) and f''(B) to fuzzy set A and the inverse image of fuzzy set B, defined as $f(A)(y) = \begin{cases} Sup\{A(x)/x \in f^{-1}(y)\}, & if f^{-1}(y) \neq \Phi\\ 0, & if f^{-1}(y) = \Phi, y \in G_2 \end{cases}$ and $f^{-1}(B)(x) = B(f(x))$, for every $x \in G_1$.

Remark 1.9 [12] (i) Clearly $f(A)(f(x)) \ge A(x)$, for every element $x \in G_1$. (ii) If f is a bijective map, then f(A)(f(x)) = A(x), for every $x \in G_1$. (iii) Let $f: X \to Y$ be a mapping and A and B be two fuzzy subsets of X and Y respectively. Then (a) $f^{-1}(B_{\alpha}) = (f^{-1}(B))_{\alpha}$ and (b) $f(A_{\alpha}) = (f(A))_{\alpha}$.

Definition 1.10 Let G be an S-semigroup. Let A be a fuzzy subset of G and let $\alpha \in [0,1]$. A is called a **Smarandache** - α anti fuzzy semigroup (S- α anti fuzzy semigroup) if there exists a proper subset P of G which is a group and the restriction of A to $P(A_P : P \to [0,1])$ is such that $A_{P_{\alpha}}$ is an anti fuzzy group. That is, (i) $A_{P_{\alpha}}(xy) \leq max\{A_{P_{\alpha}}(x), A_{P_{\alpha}}(y)\}$

(i) $A_{P_{\alpha}}(xy) \leq \max\{A_{P_{\alpha}}(x), A_{P_{\alpha}}(y)\}$ (ii) $A_{P_{\alpha}}(x^{-1}) = A_{P_{\alpha}}(x)$, for all $x, y \in P$.

Definition 1.11 Let G be an S-semigroup and $\alpha \in [0, 1]$. Let A be an S- α anti fuzzy semigroup of G relative to a group P in G and let $x \in P$.

A smarandache- α anti fuzzy right coset (S- α anti fuzzy right coset) of A in G, denoted by $A_{P_{\alpha}}x$, is defined as

 $(A_{P_{\alpha}}x)(g) = max\{A_P(gx^{-1}), 1-\alpha\}, \text{ for all } g \in P.$

Definition 1.12 Let G be an S-semigroup and $\alpha \in [0, 1]$. Let A be an S- α anti fuzzy semigroup of G relative to a group P in G and let $x \in P$.

A smarandache- α anti fuzzy left coset (S- α anti fuzzy left coset) of A in G, denoted by $xA_{P_{\alpha}}$, is defined as $(xA_{P_{\alpha}})(g) = max\{A_P(x^{-1}g), 1-\alpha\}$, for all $g \in P$.

Definition 1.13 Let G be an S-semigroup and $\alpha \in [0, 1]$. An S- α anti fuzzy semigroup A of G relative to a group P in G is said to be a Smarandache- α anti fuzzy normal subsemigroup (S- α anti fuzzy normal subsemigroup) of G if $xA_{P_{\alpha}} = A_{P_{\alpha}}x$, for all $x \in P$.

Result 1.14 [14] Let A be an S- α anti fuzzy normal subsemigroup of an S-semigroup G relative to a group P in G. Define a set $G_{A_{P_{\alpha}}} = \{x \in P/A_{P_{\alpha}}(x) = A_{P_{\alpha}}(e), e \text{ is the identity of P}\}$. Then $G_{A_{P_{\alpha}}}$ is a normal subgroup of P.

Result 1.15 [14] Let A be an S- α anti fuzzy normal subsemigroup of an S-semigroup G relative to a group P in G. Then for all $x, y \in P$ (i) $xA_{P_{\alpha}} = yA_{P_{\alpha}} \Leftrightarrow x^{-1}y \in G_{A_{P_{\alpha}}}$ (ii) $A_{P_{\alpha}}x = A_{P_{\alpha}}y \Leftrightarrow xy^{-1} \in G_{A_{P_{\alpha}}}$.

Definition 1.16 Let S and S' be any two S-semigroups. A map $\phi : S \to S'$ is said to be an S-semigroup homomorphism if ϕ is restricted to subgroups $A \subset S$ and $A' \subset S'$ such that $g : A \to A'$, which is defined as $g(x) = \phi(x)$,

 $x \in A,$ is a group homomorphism and ϕ is said to be an S-semigroup isomorphism if g is also bijective.

Result 1.17 [14] Let A be an S- α anti fuzzy semigroup of an S-semigroup G relative to a group P in G. Then the following conditions are equivalent for all $x, y \in P$ (i)A is an S- α anti fuzzy normal subsemigroup. (ii) $A_{P_{\alpha}}(xyx^{-1}) \ge A_{P_{\alpha}}(y)$ (iii) $A_{P_{\alpha}}(xyx^{-1}) = A_{P_{\alpha}}(y)$ (iv) $A_{P_{\alpha}}(xy) = A_{P_{\alpha}}(yx)$ (v) $xA_{P_{\alpha}}x^{-1} = A_{P_{\alpha}}$ (vi) $A_{P_{\alpha}}(y^{-1}xy) = A_{P_{\alpha}}(x)$.

2 Properties of S- α anti fuzzy semigroup

In this section $S \cdot \alpha$ anti conjugate fuzzy semigroups, quotient of $S \cdot \alpha$ anti fuzzy cosets of an $S \cdot \alpha$ anti fuzzy normal subsemigroup are defined and their properties are analyzed. Throughout this section α will always denote a member of [0, 1].

Definition 2.1 Let A be an S- α anti fuzzy semigroup of an S-semigroup G relative to a group P in G. Define $H = \{x \in P/A_{P_{\alpha}}(x) = A_{P_{\alpha}}(e), e \text{ is the identity of } P\}$. Then the order of A, denoted by O(A), is defined as O(A) = O(H).

Example 2.2 Consider S(3) which is an S-semigroup. Let $A: S(3) \to [0,1]$ be defined as

$$A(x) = \begin{cases} 0.45, & if \ x = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \\ 0.5, & if \ x = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \\ 0.8, & otherwise \end{cases}$$

Let $P = \begin{cases} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \end{cases}$. and $\alpha = 0.4$.
Then A is an S - α anti fuzzy semigroup of $S(3)$ relative to P .
If $x = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \in P$ then $A_{P_{\alpha}} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = 0.6 = A_{P_{\alpha}} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$.
Therefore, if $H = \{x \in P/A_{P_{\alpha}}(x) = A_{P_{\alpha}}(e), e \text{ is the identity element of } P\}$, then $H = \begin{cases} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \end{cases}$.
Therefore $O(H) = 2$ and hence $O(A) = 2$.

Definition 2.3 Let A and B be two S- α anti fuzzy semigroups of an S-semigroup G relative to the same group P in G. A and B are said to be **Smarandache**- α **anti conjugate fuzzy semigroups** (S- α **anti conjugate fuzzy semigroups**) of G relative to P if there exists $g \in P$ such that $A_{P_{\alpha}}(x) = B_{P_{\alpha}}(g^{-1}xg)$, for all $x \in P$.

Example 2.4 Consider S(3) which is an S-semigroup. Let $A: S(3) \to [0,1]$ be defined as

$$A(x) = \begin{cases} 0.45, & if \ x = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) and \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) \\ 0.65, & if \ x = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) and \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) \\ 0.75, & otherwise \\ and \ B : S(3) \to [0,1] \text{ be defined as} \\ 0.45, & if \ x = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) and \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) \\ 0.65, & if \ x = \left(\begin{array}{ccc} 2 & 3 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) and \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) \\ 0.85, & otherwise \\ \text{Let } P = \left\{\begin{array}{ccc} \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) \right\} \text{ and } \alpha = 0.6. \end{cases}$$

ISSN: 2231-5373

http://www.ijmttjournal.org

Then A and B are S- α anti fuzzy semigroups. Let $g = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in P$.

If $x = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \in P$ then $A_{P_{\alpha}}(x) = 0.65 = B_{P_{\alpha}}(g^{-1}xg)$. Similarly $A_{P_{\alpha}}(x) = B_{P_{\alpha}}(g^{-1}xg)$, for all $x \in P$.

Therefore A and B are $S - \alpha$ anti conjugate fuzzy semigroups of S(3) ralative to P.

Remark 2.5 If A and B are two $S \cdot \alpha$ anti fuzzy semigroups of an S-semigroup G relative to the same group P in G, then it is easy to see that $A_{P\alpha}(gxg^{-1}) = B_{P\alpha}(x) \Leftrightarrow A_{P\alpha}(x) =$ $B_{P\alpha}(g^{-1}xg)$, for all $x \in P$. Therefore A and B are S- α anti conjugate fuzzy semigroups of G relative to P iff $A_{P\alpha}(gxg^{-1}) = B_{P\alpha}(x)$.

Theorem 2.6 If A and B are $S \cdot \alpha$ anti conjugate fuzzy semigroups of an S-semigroup G relative to a group P in G, then O(A) = O(B).

Proof: Since A and B are $S \cdot \alpha$ anti conjugate fuzzy semigroups of G relative to P, there exists $g \in G$ such that $A_{P_{\alpha}}(x) = B_{P_{\alpha}}(g^{-1}xg)$, for all $x \in P$. We define $H = \{x \in P/A_{P_{\alpha}}(x) = A_{P_{\alpha}}(e)\}$ and $K = \{x \in P/B_{P_{\alpha}}(x) = B_{P_{\alpha}}(e)\}$, where e is the identity element of P. If $x, y \in H$ then $A_{P_{\alpha}}(xy) \leq max\{A_{P_{\alpha}}(x), A_{P_{\alpha}}(y)\} = A_{P_{\alpha}}(e)$ and hence $A_{P_{\alpha}}(xy) = A_{P_{\alpha}}(e)$.

Therefore $xy \in H$. If $x \in H$ then $x^{-1} \in P$. Now $A_{P_{\alpha}}(x^{-1}) = A_{P_{\alpha}}(x) = A_{P_{\alpha}}(e)$ which implies $x^{-1} \in H$. Therefore H is a subgroup of P. Similarly K is also a subgroup of P. To prove O(A) = O(B), by the definition of order, it is enough to prove that O(H) = O(K). Let x be an arbitrary element in H. Therefore there exists $g \in P$ such that $B_{P_{\alpha}}(g^{-1}xg) =$ $A_{P_{\alpha}}(x) = B_{P_{\alpha}}(g^{-1}eg) = B_{P_{\alpha}}(e)$. This implies $g^{-1}xg \in K$ and hence $x \in gKg^{-1}$. Therefore $H \subset gKg^{-1}$. Now let $x \in K$. By assumption there exists the same $g \in P$ such that $A_P(qxq^{-1}) = B_P(x) = A_P(q^{-1}eg) = A_P(e)$. Therefore $qxq^{-1} \in H$ which implies

 $\begin{array}{l} H \subset gRg^{-1} : \text{How let } x \in R, \quad by \text{ assumption there cause the balls } g \in I \text{ balls have} \\ A_{P_{\alpha}}(gxg^{-1}) = B_{P_{\alpha}}(x) = A_{P_{\alpha}}(g^{-1}eg) = A_{P_{\alpha}}(e). \text{ Therefore } gxg^{-1} \in H \text{ which implies} \\ x \in g^{-1}Hg. \text{ Thus } K \subset g^{-1}Hg \Rightarrow gK \subset Hg. \text{ Also } H \subset gKg^{-1} \Rightarrow Hg \subset gK. \text{ Therefore} \\ Hg = gK \text{ which implies } H = gKg^{-1} \text{ and hence } O(H) = O(gKg^{-1}). \text{ Since } K \text{ is a subgroup} \\ \text{of } P \text{ contained in } G, \text{ we have } O(xKx^{-1}) = O(K), \text{ for all } x \in P. \text{ Therefore } O(K) = O(gKg^{-1}) = O(H). \text{ Hence the theorem.} \end{array}$

Theorem 2.7 Let A be an $S \cdot \alpha$ anti fuzzy normal subsemigroup of an S-semigroup G relative to a group P in G. Let $G/A_{P_{\alpha}}$ denote the collection of all $S \cdot \alpha$ anti fuzzy cosets of A in G relative to P. If $A_{P_{\alpha}} x \bigotimes A_{P_{\alpha}} y = A_{P_{\alpha}} xy, x, y \in P$ then \bigotimes is a well defined binary operation on $G/A_{P_{\alpha}}$.

Proof: Since A is an S- α anti fuzzy normal subsemigroup of G relative to P, $xA_{P_{\alpha}} = A_{P_{\alpha}}x$, for all $x \in P$. Also $G/A_{P_{\alpha}} = \{A_{P_{\alpha}}x/x \in P\}$. Let $A_{P_{\alpha}}x = A_{P_{\alpha}}x'$ and $A_{P_{\alpha}}y = A_{P_{\alpha}}y'$ where $x, y, x', y' \in P$. If $g \in P$ then

$$(A_{P_{\alpha}}xy)(g) = max\{A_{P}(g(xy)^{-1}), 1-\alpha\} = max\{A_{P}((gy^{-1})x^{-1}), 1-\alpha\} = (A_{P_{\alpha}}x)(gy^{-1}) = (A_{P_{\alpha}}x')(gy^{-1}) = (x'A_{P_{\alpha}})(gy^{-1}) = max\{A_{P}((x'^{-1}g)y^{-1}), 1-\alpha\} = (A_{P_{\alpha}}y)(x'^{-1}g) = (y'A_{P_{\alpha}})(x'^{-1}g) = max\{A_{P}((y'^{-1}x'^{-1})g), 1-\alpha\} = (x'y'A_{P_{\alpha}})(g) = (A_{P_{\alpha}}x'y')(g).$$

http://www.ijmttjournal.org

Hence
$$A_{P_{\alpha}}xy = A_{P_{\alpha}}x'y'$$
.

Therefore \bigotimes is a well defined binary operation on $G/A_{P_{\alpha}}$.

Theorem 2.8 The set $G/A_{P_{\alpha}}$ of all S- α anti fuzzy cosets of an S- α anti fuzzy normal subsemigroup A of an S-semigroup G relative to a group P in G is a group under the binary operation \bigotimes defined in theorem 2.7.

Proof: By using the binary operation \bigotimes , it can be easily proved that the identity element of $G/A_{P_{\alpha}}$ is $A_{P_{\alpha}}e$ where e is the identity element of the group P and the inverse of an element $A_{P_{\alpha}}x$ in $G/A_{P_{\alpha}}$ is $A_{P_{\alpha}}x^{-1}$ where $x \in P$.

Definition 2.9 Let A be an
$$S$$
- α anti fuzzy normal subsemigroup of an

S-semigroup G relative to a group P in G. Then the set $G/A_{P_{\alpha}}$ of all S- α anti fuzzy cosets of A in G relative to P is a group and is called a factor group or quotient group of G by $A_{P_{\alpha}}$.

Example 2.10 Consider G = S(3) which is an S-semigroup. Let $A: S(3) \rightarrow [0,1]$ be defined as

$$A(x) = \begin{cases} 0.4, & if \ x = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} and \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \\ 0.5, & if \ x = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} and \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \\ 0.6, & otherwise \end{cases}$$

Let $P = \begin{cases} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \end{cases}$ and $\alpha = 0.6.$
For $x = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, an S - α anti fuzzy right coset of A in G is given by
 $(A_{P_{\alpha}}x)(g) = \begin{cases} 0.5, \quad if \ g = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \\ 0.4, \quad if \ g = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix} \end{cases}$

Clearly A is an S- α anti fuzzy normal subsemigroup of G and $G/A_{P_{\alpha}} = \{A_{P_{\alpha}}x/x \in P\}$. It can be easily verified that $G/A_{P_{\alpha}}$ is a group under the binary operation \bigotimes defined in theorem 2.7.

Theorem 2.11 Let G be an S-semigroup and A be an $S-\alpha$ anti fuzzy normal subsemigroup of G relative to a group P in G. Then the mapping

 $f:P\to G/A_{P_\alpha}$ defined by $f(x)=A_{P_\alpha}x$ is an onto homomorphism with $kerf=G_{A_{P_\alpha}}.$

Proof: Let $x, y \in P$. Then $f(xy) = A_{P_{\alpha}}xy = (A_{P_{\alpha}}x) \bigotimes (A_{P_{\alpha}}y) = f(x) \bigotimes f(y)$ and hence f is a homomorphism. By definition of f, it is obvious that f is surjective. Now $Kerf = \{x \in P/f(x) = A_{P_{\alpha}}e\} = \{x \in P/xe^{-1} \in G_{A_{P_{\alpha}}}\}$ [by theorem 1.15]= $\{x \in P/x \in G_{A_{P_{\alpha}}}\} = G_{A_{P_{\alpha}}}$. \Box

Theorem 2.12 Let A be an S- α anti fuzzy normal subsemigroup of an S-semigroup G relative to a group P in G. Then the group $G/A_{P_{\alpha}}$ is isomorphic to the quotient group $P/G_{A_{P_{\alpha}}}$.

Proof: We know that $G/A_{P_{\alpha}} = \{A_{P_{\alpha}}x/x \in P\}$ and $G_{A_{P_{\alpha}}} = \{x \in P/A_{P_{\alpha}}(x) = A_{P_{\alpha}}(e), e \text{ is the identity of } P\}$. Since $G_{A_{P_{\alpha}}}$ is a normal subgroup of P [by theorem 1.14], $P/G_{A_{P_{\alpha}}}$ is a quotient group.

Let $\psi : G/A_{P_{\alpha}} \to P/G_{A_{P_{\alpha}}}$ be defined as $\psi(A_{P_{\alpha}}x) = (G_{A_{P_{\alpha}}})x, x \in P$. If $x, y \in P$, then $\psi(A_{P_{\alpha}}x \bigotimes A_{P_{\alpha}}y) = \psi(A_{P_{\alpha}}xy) = (G_{A_{P_{\alpha}}})xy = (G_{A_{P_{\alpha}}}x)(G_{A_{P_{\alpha}}}y)$

 $= \psi(A_{P_{\alpha}}x)\psi(A_{P_{\alpha}}y)$ and hence ψ is a homomorphism. Now, if $\psi(A_{P_{\alpha}}x) = \psi(A_{P_{\alpha}}y)$ then $xy^{-1} \in G_{A_{P_{\alpha}}}$ which implies that $A_{P_{\alpha}}x = A_{P_{\alpha}}y$ [by theorem 1.15]. Therefore ψ is injective. By the definition of ψ , it is easy to see that ψ is onto. Therefore $G/A_{P_{\alpha}}$ is isomorphic to $P/G_{A_{P_{\alpha}}}$.

Remark 2.13 If A is an S- α anti fuzzy semigroup of an S-semigroup G relative to a group P in G, then clearly $A_{P_{\alpha}}(x) = A_{\alpha}(x)$, for all $x \in P$.

Theorem 2.14 Let G_1 and G_2 be two S-semigroups and let $f: G_1 \to G_2$ be an S-semigroup homomorphism. If B is S- α anti fuzzy semigroup of G_2 relative to the restricted group in G_2 with respect to f, then $f^{-1}(B)$ is also S- α anti fuzzy semigroup of G_1 .

Proof: Since $f: G_1 \to G_2$ is an S-semigroup homomorphism, f is restricted to subgroups $P \subset G_1$ and $Q \subset G_2$ such that $\phi: P \to Q$, which is defined as

 $\phi(x) = f(x), x \in P$, is a group homomorphism. By assumption, B is an S- α anti fuzzy semigroup of G_2 relative to Q. Therefore $B_{Q_{\alpha}}$ is an anti fuzzy group. By definition of inverse image, $f^{-1}(B)(x) = B(f(x)), x \in G_1$. Let $x, y \in P$.

$$\begin{split} (i)(f^{-1}(B))_{P_{\alpha}}(xy) &= (f^{-1}(B))_{\alpha}(xy)[\text{by remark 2.13}] \\ &= (f^{-1}(B_{\alpha}))(xy)[\text{by remark 1.9}] \\ &= B_{\alpha}(f(xy)) \\ &= B_{\alpha}(\phi(xy)) \\ &= B_{\alpha}(\phi(x)\phi(y)) \\ &= B_{\alpha}(\phi(x)\phi(y)) \\ &\leq \max\{B_{Q_{\alpha}}(\phi(x)), B_{Q_{\alpha}}(\phi(y))\} \\ &= \max\{B_{\alpha}(f(x)), B_{\alpha}(f(y))\} \\ &= \max\{B_{\alpha}(f(x)), B_{\alpha}(f(y))\} \\ &= \max\{(f^{-1}(B))_{\alpha}(x), (f^{-1}(B))_{\alpha}(y)\} \\ (ii)(f^{-1}(B))_{P_{\alpha}}(x^{-1}) &= f^{-1}(B_{\alpha})(x^{-1}) \\ &= B_{\alpha}(f(x^{-1})) \\ &= B_{\alpha}(\phi(x)^{-1}) \\ &= B_{\alpha}(\phi(x)^{-1}) \\ &= B_{\alpha}(\phi(x)^{-1}) \\ &= B_{\alpha}(\phi(x)) \\ &= B_{\alpha}(f(x)) \\ &= (f^{-1}(B))_{\alpha}(x) \\ Therefore \ (f^{-1}(B))_{P_{\alpha}}(x^{-1}) &= (f^{-1}(B))_{\alpha}(x). \end{split}$$

By (i) and (ii) $f^{-1}(B)$ is an S- α anti fuzzy semigroup of G_1 relative to P.

Theorem 2.15 Let G_1 and G_2 be two S-semigroups and let $f: G_1 \to G_2$ be an S-semigroup homomorphism. If B is an S- α anti fuzzy normal subsemigroup of G_2 relative to the restricted group in G_2 with respect to f, then $f^{-1}(B)$ is S- α anti fuzzy normal subsemigroup of G_1 .

Proof: As in theorem 2.14, $\phi : P \to Q$, which is defined as $\phi(x) = f(x)$, $x \in P$, is a group homomorphism. By assumption B is an S- α anti fuzzy normal subsemigroup of G_2 relative to Q. Therefore by result [1.17] $B_{Q_\alpha}(xy) = B_{Q_\alpha}(yx), x, y \in Q$.

http://www.ijmttjournal.org

Let $x, y \in P$. Now $(f^{-1}(B))_{P_{\alpha}}(xy) = f^{-1}(B_{\alpha})(xy) = B_{\alpha}(f(xy)) = B_{\alpha}(\phi(xy))$ = $B_{Q_{\alpha}}(\phi(x)\phi(y)) = B_{Q_{\alpha}}(\phi(y)\phi(x)) = B_{Q_{\alpha}}(\phi(yx)) = B_{Q_{\alpha}}(f(yx)) = B_{\alpha}(f(yx))$. Hence $(f^{-1}(B))_{P_{\alpha}}(xy) = (f^{-1}(B))_{P_{\alpha}}(yx)$. Therefore $f^{-1}(B)$ is an S- α anti fuzzy normal subsemigroup of G_1 .

Theorem 2.16 Let G_1 and G_2 be two S-semigroups and let $f: G_1 \to G_2$ be an S-semigroup isomorphism. If A is an S- α anti fuzzy semigroup of G_1 relative to the restricted group in G_1 with respect to f, then f(A) is an S- α anti fuzzy semigroup of G_2 .

Proof: Since $f : G_1 \to G_2$ be an S-semigroup isomorphism, f is restricted to subgroups $P \subset G_1$ and $Q \subset G_2$ such that $\phi : P \to Q$, which is defined as

 $\phi(x) = f(x), x \in P$, is a group isomorphism. By assumption A is an S- α anti fuzzy semigroup of G_1 relative to P. Therefore $A_{P_{\alpha}}$ is an anti fuzzy group. By definition of image, $\int Sup\{A(x)/x \in f^{-1}(y)\}, \quad if f^{-1}(y) \neq \Phi$

$$f(A)(y) = \begin{cases} Sup\{A(x)/x \in f^{-1}(y)\}, & if f^{-1}(y) \neq \Phi \\ 0, & if f^{-1}(y) = \Phi, y \in G_2 \\ \text{Let } y_1, y_2 \in Q. & \text{Since } \phi \text{ is bijective there exist unique elements } x_1, x_2 \in P \text{ such that } \phi(x_1) = y_1 \text{ and } \phi(x_2) = y_2. \end{cases}$$

$$\begin{aligned} (i)(f(A))_{Q_{\alpha}}(y_{1}y_{2}) &= (f(A))_{\alpha}(y_{1}y_{2}) \\ &= \max\{f(A)(\phi(x_{1})\phi(x_{2}), 1-\alpha\} \\ &= \max\{f(A)(f(x_{1}x_{2})), 1-\alpha\} \\ &= \max\{A(x_{1}x_{2}), 1-\alpha\} \\ &= A_{P_{\alpha}}(x_{1}x_{2}) \\ &\leq \max\{A_{P_{\alpha}}(x_{1}), A_{P_{\alpha}}(x_{2})\} \\ &= \max\{\sup\{A_{\alpha}(x_{1})/f(x_{1}) = y_{1}\}, \\ &\sup\{A_{\alpha}(x_{2})/f(x_{2}) = y_{2}\}\} \\ &= \max\{f(A_{\alpha})(y_{1}), f(A_{\alpha})(y_{2})\}. \end{aligned}$$

 $\begin{array}{l} \text{Thus } (f(A))_{Q_{\alpha}}(y_{1}y_{2}) \leq max\{(f(A))_{Q_{\alpha}}(y_{1}), (f(A))_{Q_{\alpha}}(y_{2})\}.\\ (\text{ii) Since } \phi \text{ is a homomorphism, } \phi(x_{1}) = y_{1} \Rightarrow \phi(x_{1}^{-1}) = y_{1}^{-1}.\\ \text{Now, } (f(A))_{Q_{\alpha}}(y_{1}^{-1}) = (f(A))_{\alpha}(y_{1}^{-1}) = max\{f(A)(y_{1}^{-1}), 1-\alpha\}\\ = max\{f(A)\phi(x_{1}^{-1}), 1-\alpha\} = max\{f(A)f(x_{1}^{-1}), 1-\alpha\}\\ = max\{A(x_{1}^{-1}), 1-\alpha\} = A_{P_{\alpha}}(x_{1}^{-1}) = A_{P_{\alpha}}(x_{1}) = \sup\{A_{P_{\alpha}}(x_{1})/f(x_{1}) = y_{1}\} = (f(A))_{Q_{\alpha}}(y_{1}).\\ \text{By (i) and (ii) } f(A) \text{ is an } S - \alpha \text{ anti fuzzy semigroup of } G_{2}. \end{array}$

Theorem 2.17 Let G_1 and G_2 be two S-semigroups and let $f: G_1 \to G_2$ be S-semigroup isomorphism. If A is an S- α anti fuzzy normal subsemigroup of G_1 relative to the restricted group in G_1 with respect to f, then f(A) is an S- α anti fuzzy normal subsemigroup of G_2 .

Proof: As in theorem 2.16 $\phi: P \to Q$, which is defined as $\phi(x) = f(x), x \in P$, is an isomorphism and $A_{P_{\alpha}}(x_1x_2) = A_{P_{\alpha}}(x_2x_1)$, for all $x_1, x_2 \in P$ by result 1.17. Let $y_1, y_2 \in Q$. Since ϕ is bijective there exist unique elements $x_2, x_2 \in P$ such that $\phi(x_1) = y_1$ and $\phi(x_2) = y_2$. Now $(f(A))_{Q_{\alpha}}(y_1y_2) = max\{f(A)(\phi(x_1)\phi(x_2)), 1 - \alpha\} = max\{f(A)f(x_1x_2), 1 - \alpha\} = max\{A(x_1x_2), 1 - \alpha\} = A_{P_{\alpha}}(x_1x_2)$ which leads to $(f(A))_{Q_{\alpha}}(y_1y_2) = (f(A))_{Q_{\alpha}}(y_2y_1)$. Thus f(A) is an S- α anti fuzzy normal subsemigroup of G_2 .

References

- [1] Zadeh L. A., "Fuzzy sets", Information and Control, 8, 338-353, 1965.
- [2] Rosenfeld A., "Fuzzy groups", Journal of Mathematical analysis and application, 35, 512-517, 1971.
- [3] Anthony J. M. and Sherwood H., "Fuzzy groups redefined", J. Math. Anal. Appl., 69, 124-130, 1979.
- [4] Anthony J. M. and Sherwood H., "A characterization of fuzzy subgroups", *Fuzzy Sets and Systems*, 7, 297-305, 1987.
- [5] Mashour A. S., Ghanim M. H., Sidky F.I., "Normal Fuzzy Subgroups", Ser. Math., 20(2), 53-59, 1990.
- [6] Malik D. S., Mordeson J. N. and Nair P. S., "Fuzzy Normal Subgroups in Fuzzy groups", J. korean Math. Soc., 29(1), 1-8, 1992.
- [7] Rajeshkumar, "Fuzzy Algebra", University of Delhi Publication Division, 1993.
- [8] Vasantha Kandhasamy W. B., "Smarandache Fuzzy Algebra", American Research Press, Rehoboth, 2003.
- [9] Liu Y. L., "Quotient groups induced by fuzzy subgroups", Quasigroups and Related Systems, 11, 71-78, 2004.
- [10] Sharma P. K., "α-Anti Fuzzy subgroups", International Review of Fuzzy Mathematics, 7(2), 47-58, 2012.
- [11] Massa'deh M. O., "On Fuzzy subgroups with operators", Asian Journal of Mathematics and Statistics, 5(4), 163-166, 2012.
- [12] Sharma P. K., "α-Fuzzy subgroups", International Journal of fuzzy Mathematics and systems, 3(1), 47-59, 2013.
- [13] Gowri. R and Rajeswari. T, "S-α fuzzy semigroups", International J. of Math. Sci. and Engg. Appls., Vol.9 No.1, 307-318, March 2015,.
- [14] Gowri. R and Rajeswari. T, "S-α anti fuzzy semigroups", International Journal of Engineering Science and Innovative Technology, Volume 4, Issue 6, 108-118, Nov 2015.