Certain finite double integrals involving the hypergeometric function

 and Aleph-functionFrédéric Ayant
*Teacher in High School , France

Dinesh Kumar
Department of Mathematics and Statistics
Jai Narain Vyas university
JODHPUR-342005, INDIA

Abstract : The aim of this document is to evaluate four finite double integrals involving the product of two hypergeometric functions and the Alephfunction. At the end of this paper, we evaluate few particular cases.

2010 Mathematics Subject Classification: 33C05, 33C45, 33C60, 33C65.
Key words : Double finite integral , hypergeometric function, Aleph-function.

1 Introduction and notations

The Aleph- function, introduced by Südland [8] et al , however the notation and complete definition is presented here in the following manner in terms of the Mellin-Barnes type integral :
$\aleph(z)=\aleph_{p_{i}, q_{i}, c_{i} ; r}^{m, \mathfrak{n}}\left(\begin{array}{l|l}\mathrm{z} & \begin{array}{c}\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \\ \left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}\end{array}\end{array}\right)$
$=\frac{1}{2 \pi \omega} \int_{L} \Omega_{p_{i}, q_{i}, c_{i} ; r}^{m, n}(s) z^{-s} \mathrm{~d} s$
for all z different to 0 and

$$
\begin{equation*}
\Omega_{p_{i}, q_{i}, c_{i} ; r}^{m, \mathfrak{n}}(s)=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}+\beta_{j} s\right) \prod_{j=1}^{\mathfrak{n}} \Gamma\left(1-a_{j}-A_{j} s\right)}{\sum_{i=1}^{r} c_{i} \prod_{j=\mathfrak{n}+1}^{p_{i}} \Gamma\left(a_{j i}+A_{j i} s\right) \prod_{j=m+1}^{q_{i}} \Gamma\left(1-b_{j i}-B_{j i} s\right)} \tag{1.2}
\end{equation*}
$$

With
$|\arg z|<\frac{1}{2} \pi \Omega \quad$ Where $\Omega=\sum_{j=1}^{m} \beta_{j}+\sum_{j=1}^{\mathfrak{n}} \alpha_{j}-c_{i}\left(\sum_{j=m+1}^{q_{i}} \beta_{j i}+\sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}\right)>0$ with $i=1, \cdots, r$
For convergence conditions and other details of Aleph-function, see Südland et al [8].
We shall use notation the following :
$A=\left(a_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r}$ and $B=\left(b_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}$
For more details ,see D.Kumar et all [3].

2 Hypergeometric function

We have the following results , see Rathie et al [7]
$\int_{0}^{1} x^{\rho-1}(1-x)^{\rho}[1+a x+(1-b)]^{-2 \rho-1}{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta+2}{2} ; \frac{x(1+a)}{1+a x+b(1-x)}\right] \mathrm{d} x$
$=2^{\alpha+\beta-2 \rho} \frac{\Gamma\left(\rho-\frac{\alpha}{2}-\frac{\beta}{2}\right) \Gamma\left(\frac{\alpha+\beta+2}{2}\right) \Gamma(\rho)}{(\alpha-\beta)(1+a)^{\rho}(1+b)^{\rho} \Gamma(\alpha) \Gamma(\beta)}$
$\times\left[\frac{2 \rho-\alpha+\beta) \Gamma\left(\frac{\alpha}{2}+\frac{1}{2}\right) \Gamma\left(\frac{\beta}{2}\right)}{\Gamma\left(\rho-\frac{\alpha}{2}-1\right) \Gamma\left(\rho-\frac{\beta}{2}+\frac{1}{2}\right)}-\frac{(2 \rho-\alpha+\beta) \Gamma\left(\frac{\alpha}{2}+\frac{1}{2}\right) \Gamma\left(\frac{\beta}{2}\right)}{\Gamma\left(\rho-\frac{\alpha}{2}+1\right) \Gamma\left(\rho-\frac{\beta}{2}+\frac{1}{2}\right)}\right]$
Where $\operatorname{Re}(\rho)>0, \operatorname{Re}(2 \rho-\alpha-\beta)>0, a$ and b are constants, such the expression
$1+a x+b(1-x)$ is not zero.
$\int_{0}^{1} x^{\rho-1}(1-x)^{\rho}[1+a x+b(1-x)]^{-2 \rho+1}{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta}{2} ; \left.\frac{x(1+a)}{1+a x+b(1-x)} \right\rvert\, \mathrm{d} x\right.$
$=2^{\alpha+\beta-2 \rho-1} \frac{\Gamma\left(\rho-\frac{\alpha}{2}-\frac{\beta}{2}-1\right) \Gamma\left(\frac{\alpha+\beta}{2}\right) \Gamma(\rho-1)}{(1+a)^{\rho}(1+b)^{\rho} \Gamma(\alpha) \Gamma(\beta)}$
$\times\left[\frac{(2 \rho-\alpha+\beta-2) \Gamma\left(\frac{\alpha}{2}+\frac{1}{2}\right) \Gamma\left(\frac{\beta}{2}\right)}{\Gamma\left(\rho-\frac{\alpha}{2}\right) \Gamma\left(\rho-\frac{\beta}{2}-\frac{1}{2}\right)}+\frac{(2 \rho+\alpha-\beta) \Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta+1}{2}\right)}{\Gamma\left(\rho-\frac{\beta}{2}\right) \Gamma\left(\rho-\frac{\alpha}{2}-\frac{1}{2}\right)}\right]$
Where $\operatorname{Re}(\rho)>0, \operatorname{Re}(2 \rho-\alpha-\beta)>0, a$ and b are constants, such the expression $1+a x+b(1-x)$ is not zero.
$\int_{0}^{\pi / 2} e^{i(2 w+1) \pi \theta}(\sin \theta)^{w-1}(\cos \theta)^{w-1}{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}+2}{2} ; e^{i \theta} \cos \theta\right] \mathrm{d} \theta$
$=\frac{e^{i \pi(w+1) / 2} \Gamma(w) \Gamma\left(w-\frac{\alpha^{\prime}-\beta^{\prime}}{2}\right) \Gamma\left(\frac{\alpha^{\prime}-\beta^{\prime}}{2}+1\right)}{2^{2 w-\alpha^{\prime}-\beta^{\prime}+2} \Gamma\left(\alpha^{\prime}-\beta^{\prime}\right) \Gamma\left(\alpha^{\prime}\right) \Gamma\left(\beta^{\prime}\right)}$
$\times\left[\frac{\left(2 w-\alpha^{\prime}-\beta^{\prime}\right) \Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}}{2}\right)}{\Gamma\left(w-\frac{\alpha^{\prime}}{2}+1\right) \Gamma\left(w-\frac{\beta^{\prime}-1}{2}\right)}-\frac{\left(2 w+\alpha^{\prime}-\beta^{\prime}\right) \Gamma\left(\frac{\alpha^{\prime}}{2}\right) \Gamma\left(\frac{\beta^{\prime}+1}{2}\right)}{\Gamma\left(w-\frac{\beta^{\prime}}{2}+1\right) \Gamma\left(w-\frac{\alpha^{\prime}-1}{2}\right)}\right]$
where $\operatorname{Re}(w)>0$ and $\operatorname{Re}\left(2 w-\alpha^{\prime}-\beta^{\prime}\right)>0$
$\int_{0}^{\pi / 2} e^{i(2 w+1) \pi \theta}(\sin \theta)^{w-1}(\cos \theta)^{w-1}{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}}{2} ; e^{i \theta} \cos \theta\right] \mathrm{d} \theta$
$=\frac{e^{i \pi(w+1) / 2} \Gamma(w-1) \Gamma\left(w-\frac{\alpha^{\prime}-\beta^{\prime}}{2}-1\right) \Gamma\left(\frac{\alpha^{\prime}+\beta^{\prime}}{2}\right)}{2^{2 w-\alpha^{\prime}-\beta^{\prime}} \Gamma\left(\alpha^{\prime}\right) \Gamma\left(\beta^{\prime}\right)}$
$\times\left[\frac{\left(2 w-\alpha^{\prime}-\beta^{\prime}-2\right) \Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}}{2}\right)}{\Gamma\left(w-\frac{\alpha^{\prime}}{2}\right) \Gamma\left(w-\frac{\beta^{\prime}+1}{2}\right)}-\frac{\left(2 w+\alpha^{\prime}-\beta^{\prime}-2\right) \Gamma\left(\frac{\alpha^{\prime}}{2}\right) \Gamma\left(\frac{\beta^{\prime}+1}{2}\right)}{\Gamma\left(w-\frac{\beta^{\prime}}{2}\right) \Gamma\left(w-\frac{\alpha^{\prime}+1}{2}\right)}\right]$.
where $\operatorname{Re}(w)>0$ and $\operatorname{Re}\left(2 w-\alpha^{\prime}-\beta^{\prime}\right)>0$

3 Finite double integrals

We evaluate the following four finite double integrals involving hypergeometric functions and Aleph-function.

$$
\begin{align*}
& \text { a) } \int_{0}^{1} \int_{0}^{\pi / 2} x^{\rho-1}(1-x)^{\rho}[1+a x+(1-b)]^{-2 \rho-1}{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta+2}{2} ; \frac{x(1+a)}{1+a x+b(1-x)}\right] \\
& e^{i(2 w+1) \pi \theta}(\sin \theta)^{w-1}(\cos \theta)^{w-1}{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}+2}{2} ; e^{i \theta} \cos \theta\right] \\
& \times \aleph_{p_{i}, q_{i}, c_{i} ; r}^{m, n}\left(z x^{\rho_{1}}(1-x)^{\rho_{1}}[1+a x+b(1-x)]^{-2 \rho_{1}} e^{2 i \theta w_{1}}(\sin \theta)^{w_{1}}(\cos \theta)^{w_{1}} \left\lvert\, \begin{array}{c}
\mathrm{A} \\
\mathrm{~B}
\end{array}\right.\right) \mathrm{d} \theta \mathrm{~d} x \\
& =\frac{2^{\alpha+\beta-2 \rho-2} \Gamma\left(\frac{\alpha+\beta+2}{2}\right)}{\Gamma(\alpha) \Gamma(\beta)(\alpha-\beta)(1+a)^{\rho}(1+b)^{\rho}}\left[\Gamma\left(\frac{\alpha+1}{2}\right) \Gamma\left(\frac{\beta}{2}\right) \aleph_{1}(z)-\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta+1}{2}\right) \aleph_{2}(z)\right] \\
& \times \frac{e^{i \pi(w+1) / 2} \Gamma\left(\frac{\alpha^{\prime}+\beta^{\prime}+2}{2}\right)}{2^{2 w-\alpha^{\prime}-\beta^{\prime}} \Gamma\left(\alpha^{\prime}-\beta^{\prime}\right) \Gamma\left(\alpha^{\prime}\right) \Gamma\left(\beta^{\prime}\right)}\left[\Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}}{2}\right) \aleph_{3}(z)-\Gamma\left(\frac{\alpha^{\prime}}{2}\right) \Gamma\left(\frac{\beta^{\prime}+1}{2}\right) \aleph_{4}(z)\right] \tag{3.1}
\end{align*}
$$

where

$$
\begin{aligned}
& \aleph_{1}(z)=\aleph_{p_{i}+3, q_{i}+3, c_{i} ; r}^{m, \mathfrak{n}+3}\left(\frac{z 2^{-2 \rho_{1}-2}}{(1+a)^{\rho_{1}}(1+b)^{\rho_{1}}} \left\lvert\, \begin{array}{c}
\mathrm{A},\left(\alpha-\beta-2 \rho, 2 \rho_{1}\right),\left(1-\rho, \rho_{1}\right) \\
\mathrm{B},\left(1-2 \rho+\alpha+\beta, 2 \rho_{1}\right),\left(\alpha / 2-\rho, \rho_{1}\right) \\
,\left(1+(\alpha+\beta) / 2-\rho, \rho_{1}\right) \\
\quad,\left((\beta+1) / 2-\rho, \rho_{1}\right)
\end{array}\right.\right)
\end{aligned}
$$

$$
\aleph_{2}(z)=\aleph_{p_{i}+3, q_{i}+3, c_{i} ; r}^{m, \mathfrak{n}+3}\left(\frac{z 2^{-2 \rho_{1}-2}}{(1+a)^{\rho_{1}}(1+b)^{\rho_{1}}} \left\lvert\, \begin{array}{c}
\mathrm{A},\left(-\alpha+\beta-2 \rho, 2 \rho_{1}\right),\left(1-\rho, \rho_{1}\right) \\
\mathrm{B},\left(1-2 \rho-\alpha+\beta, 2 \rho_{1}\right),\left((\alpha+1) / 2-\rho, \rho_{1}\right)
\end{array}\right.\right.
$$

$$
\left.\begin{array}{c}
\left(1+(\alpha+\beta) / 2-\rho, \rho_{1}\right) \tag{3.3}\\
,\left(\beta / 2-\rho, \rho_{1}\right)
\end{array}\right)
$$

$\aleph_{3}(z)=\aleph_{p_{i}+3, q_{i}+3, c_{i} ; r}^{m, \mathfrak{n}+3}\left(\frac{z e^{i \pi w_{1} / 2}}{4^{w_{1}}} \left\lvert\, \begin{array}{c}\mathrm{A},\left(\alpha^{\prime}-\beta^{\prime}-2 w, w_{1}\right),\left(1-w, w_{1}\right) \\ \mathrm{B},\left(1-2 \mathrm{w}+\alpha^{\prime}+\beta^{\prime}, w_{1}\right),\left(\alpha^{\prime} / 2-w, w_{1}\right)\end{array}\right.\right.$

$$
\aleph_{3}(z)=\aleph_{p_{i}+3, q_{i}+3, c_{i} ; r}^{m, \mathfrak{n}+3}\left(\frac{z e^{i \pi w_{1} / 2}}{4^{w_{1}}} \left\lvert\, \begin{array}{c}
\mathrm{A},\left(\alpha^{\prime}-\beta^{\prime}-2 w, w_{1}\right),\left(1-w, w_{1}\right) \\
\mathrm{B},\left(1-2 \mathrm{w}+\alpha^{\prime}+\beta^{\prime}, w_{1}\right),\left(\alpha^{\prime} / 2-w, w_{1}\right)
\end{array}\right.\right.
$$

$$
\left.\begin{array}{c}
,\left(1+\left(\alpha^{\prime}+\beta^{\prime}\right) / 2-w, w_{1}\right) \\
,\left(\left(\beta^{\prime}+1\right) / 2-\rho, \rho_{1}\right)
\end{array}\right)
$$

$$
\aleph_{4}(z)=\aleph_{p_{i}+3, q_{i}+3, c_{i} ; r}^{m, \mathfrak{n}+3}\left(\frac{z e^{i \pi w_{1} / 2}}{4^{w_{1}}} \left\lvert\, \begin{array}{c}
\mathrm{A},\left(-\alpha^{\prime}+\beta^{\prime}-2 w, w_{1}\right),\left(1-w, w_{1}\right) \\
\mathrm{B},\left(1-2 \mathrm{w}-\alpha^{\prime}+\beta^{\prime}, w_{1}\right),\left(\left(\alpha^{\prime}+1\right) / 2-w, w_{1}\right)
\end{array}\right.\right.
$$

$$
\left.\begin{array}{c}
\left(1+\left(\alpha^{\prime}+\beta^{\prime}\right) / 2-w, w_{1}\right) \tag{3.5}\\
,\left(\beta^{\prime} / 2-w, w_{1}\right)
\end{array}\right)
$$

with the validity conditions: $\operatorname{Re}(\rho)>0, \operatorname{Re}(w)>0,|\arg z|<\frac{1}{2} \pi \Omega$,

$$
\begin{align*}
& \operatorname{Re}\left(2 \rho-\alpha-\beta+2 \rho_{1} \min _{1 \leqslant j \leqslant n} \frac{b_{j}}{\beta_{j}}\right)>0 \text { and } \operatorname{Re}\left(2 w-\alpha^{\prime}-\beta^{\prime}+2 w_{1} \min _{1 \leqslant j \leqslant n} \frac{b_{j}}{\beta_{j}}\right)>0 \\
& \text { b) } \int_{0}^{1} \int_{0}^{\pi / 2} x^{\rho-1}(1-x)^{\rho}[1+a x+b(1-x)]^{-2 \rho+1}{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta+2}{2} ; \frac{x(1+a)}{1+a x+b(1-x)}\right] \\
& e^{i \pi(2 w-1) \theta}(\sin \theta)^{w-2}(\cos \theta)^{w-1}{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}}{2} ; e^{i \theta} \cos \theta \mid\right. \\
& \times \aleph_{p_{i},,_{i}, c_{i} ; r}^{m, n}\left(z x^{\rho_{1}}(1-x)^{\rho_{1}}[1+a x+b(1-x)]^{-2 \rho_{1}} e^{2 i \theta w_{1}}(\sin \theta)^{w_{1}}(\cos \theta)^{w_{1}} \left\lvert\, \begin{array}{c}
\mathrm{A} \\
\mathrm{~B}
\end{array}\right.\right) \mathrm{d} \theta \mathrm{~d} x \\
& =\frac{2^{\alpha+\beta-2 \rho-1} \Gamma\left(\frac{\alpha+\beta+2}{2}\right)}{\Gamma(\alpha) \Gamma(\beta)(1+a)^{\rho}(1+b)^{\rho}}\left[\Gamma\left(\frac{\alpha+\beta}{2}\right) \Gamma\left(\frac{\beta}{2}\right) \aleph_{5}(z)-\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\alpha+\beta}{2}\right) \aleph_{6}(z)\right] \\
& \times \frac{e^{i \pi(w+1) / 2} \Gamma\left(\frac{\alpha^{\prime}+\beta^{\prime}+2}{2}\right)}{2^{2 w-\alpha^{\prime}+1} \Gamma\left(\alpha^{\prime}-\beta^{\prime}\right) \Gamma\left(\alpha^{\prime}\right) \Gamma\left(\beta^{\prime}\right)}\left[\Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}}{2}\right) \aleph_{7}(z)-\Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}+2}{2}\right) \aleph_{8}(z)\right] \tag{3.6}
\end{align*}
$$

where

$$
\begin{align*}
& \aleph_{5}(z)=\aleph_{p_{i}+3, q_{i}+3, c_{i} ; r}^{m, \mathfrak{n}+3}\left(\frac{2^{-2 \rho_{1}} z}{(1+a)^{\rho_{1}}(1+b)^{\rho_{1}}} \left\lvert\, \begin{array}{c}
\mathrm{A},\left(2+\alpha-\beta-2 \rho, \rho_{1}\right),\left(2-\rho, \rho_{1}\right) \\
,\left(3-2 \rho+\alpha+\beta, 2 \rho_{1}\right),\left(1+\alpha / 2-\rho, \rho_{1}\right)
\end{array}\right.\right. \\
& ,\left(2+(\alpha+\beta) / 2-\rho, \rho_{1}\right) \tag{3.7}\\
& ,\left((\beta+3) / 2-\rho, \rho_{1}\right)
\end{align*}
$$

$$
\left.\begin{array}{l}
\aleph_{6}(z)=\aleph_{p_{i}+3, q_{i}+3, c_{i} ; r}^{m, \mathfrak{n}+3}\left(\frac{2^{-2 \rho_{1}} z}{(1+a)^{\rho_{1}}(1+b)^{\rho_{1}}}\right) \\
\mathrm{B},\left(3-2 \rho-\alpha+\beta, 2 \rho_{1}\right),\left(1+\beta / 2-\rho, \rho_{1}\right) \tag{3.8}\\
,\left(2+(\alpha+\beta) / 2-\rho, \rho_{1}\right) \\
\quad,\left((\alpha+3) / 2-\rho, \rho_{1}\right)
\end{array}\right)
$$

$\aleph_{7}(z)=\aleph_{p_{i}+3, q_{i}+3, c_{i} ; r}^{m, n+3}\left(\frac{z e^{i \pi w_{1} / 2}}{4^{w_{1}}} \left\lvert\, \begin{array}{c}\mathrm{A},\left(2+\alpha^{\prime}-\beta^{\prime}-2 w, w_{1}\right),\left(2-w, w_{1}\right) \\ \mathrm{B},\left(3-2 \mathrm{w}-\alpha^{\prime}+\beta^{\prime}, 2 w_{1}\right),\left(1+\alpha / 2-w, w_{1}\right)\end{array}\right.\right.$

$$
\left.\begin{array}{l}
,\left(2+\left(\alpha^{\prime}+\beta^{\prime}\right) / 2-w, w_{1}\right) \tag{3.9}\\
,\left((\beta+3) / 2-w, w_{1}\right)
\end{array}\right)
$$

$\aleph_{8}(z)=\aleph_{p_{i}+3, q_{i}+3, c_{i} ; r}^{m, n+3}\left(\frac{z e^{i \pi w_{1} / 2}}{4^{w_{1}}} \left\lvert\, \begin{array}{c}\mathrm{A},\left(2-\alpha^{\prime}+\beta^{\prime}-2 w, w_{1}\right),\left(2-w, w_{1}\right) \\ \mathrm{B},\left(3-2 \mathrm{w}-\alpha^{\prime}+\beta^{\prime}, 2 w_{1}\right),\left(1+\beta / 2-w, w_{1}\right)\end{array}\right.\right.$
$\left.\begin{array}{c},\left(2+\left(\alpha^{\prime}+\beta^{\prime}\right) / 2-w, w_{1}\right) \\ ,\left((\alpha+3) / 2-w, w_{1}\right)\end{array}\right)$
with the validity conditions: $\operatorname{Re}(\rho)>1, \operatorname{Re}(w)>1,|\arg z|<\frac{1}{2} \pi \Omega$, and

$$
\begin{align*}
& \operatorname{Re}\left(2 \rho-\alpha-\beta+2 \rho_{1} \min _{1 \leqslant j \leqslant n} \frac{b_{j}}{\beta_{j}}\right)>2 \text { and } \operatorname{Re}\left(2 w-\alpha^{\prime}-\beta^{\prime}+2 w_{1} \min _{1 \leqslant j \leqslant n} \frac{b_{j}}{\beta_{j}}\right)>2 \\
& \text { c) } \int_{0}^{1} \int_{0}^{\pi / 2} x^{\rho-1}(1-x)^{\rho}[1+a x+b(1-x)]^{-2 \rho+1}{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta+2}{2} ; \frac{x(1+a)}{1+a x+b(1-x)}\right] \\
& \times e^{i \pi(2 w-1) \theta}(\sin \theta)^{w-1}(\cos \theta)^{w-1}{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}}{2} ; e^{i \theta} \cos \theta\right] \\
& \times \aleph_{p_{i}, q_{i}, c_{i} ; r}^{m, n}\left(z x^{\rho_{1}}(1-x)^{\rho_{1}}[1+a x+b(1-x)]^{-2 \rho_{1}} e^{2 i \theta w_{1}}(\sin \theta)^{w_{1}}(\cos \theta)^{w_{1}} \left\lvert\, \begin{array}{l}
\mathrm{A} \\
\mathrm{~B}
\end{array}\right.\right) \mathrm{d} \theta \mathrm{~d} x \\
& =\frac{2^{\alpha+\beta-2 \rho-1}}{\Gamma(\alpha) \Gamma(\beta)(\alpha-\beta)(1+a)^{\rho}(1+b)^{\rho}}\left[\Gamma\left(\frac{\alpha+1}{2}\right) \Gamma\left(\frac{\beta}{2}\right) \aleph_{1}(z)-\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta+1}{2}\right) \aleph_{2}(z)\right] \\
& \times \frac{e^{i \pi(w-1) / 2} \Gamma\left(\frac{\alpha^{\prime}+\beta^{\prime}}{2}\right)}{2^{2 w+\alpha^{\prime}-\beta^{\prime}+1} \Gamma\left(\alpha^{\prime}\right) \Gamma\left(\beta^{\prime}\right)}\left[\Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}}{2}\right) \aleph_{7}(z)-\Gamma\left(\frac{\alpha^{\prime}}{2}\right) \Gamma\left(\frac{\beta^{\prime}+1}{2}\right) \aleph_{8}(z)\right] \tag{3.11}
\end{align*}
$$

Where $\aleph_{1}(z), \aleph_{2}(z), \aleph_{7}(z)$ and $\aleph_{8}(z)$ are mentioned in (3.2) , (3.3) , (3.9) and (3.10) respectively an the validity conditions are the following :

$$
\begin{align*}
& \operatorname{Re}(\rho)>0, \operatorname{Re}(w)>1,|\arg z|<\frac{1}{2} \pi \Omega \text {, and } \operatorname{Re}\left(2 \rho-\alpha-\beta+2 \rho_{1} \min _{1 \leqslant j \leqslant n} \frac{b_{j}}{\beta_{j}}\right)>0 \\
& , \operatorname{Re}\left(2 w-\alpha^{\prime}-\beta^{\prime}+2 w_{1} \min _{1 \leqslant j \leqslant n} \frac{b_{j}}{\beta_{j}}\right)>0 \\
& \text { d) } \int_{0}^{1} \int_{0}^{\pi / 2} x^{\rho}(1-x)^{\rho-2}[1+a x+b(1-x)]^{-2 \rho+1}{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta+2}{2} ; \frac{x(1+a)}{1+a x+b(1-x)}\right] \\
& \times e^{i \pi(2 w+1) \theta}(\sin \theta)^{w}(\cos \theta)^{w-1}{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}+2}{2} ; e^{i \theta} \cos \theta\right] \\
& \times \aleph_{p_{i}, q_{i}, c_{i} ; r}^{m, \mathfrak{n}}\left(z x^{\rho_{1}}(1-x)^{\rho_{1}}[1+a x+b(1-x)]^{-2 \rho_{1}} e^{2 i \theta w_{1}}(\sin \theta)^{w_{1}}(\cos \theta)^{w_{1}} \left\lvert\, \begin{array}{l}
\mathrm{A} \\
\mathrm{~B}
\end{array}\right.\right) \mathrm{d} \theta \mathrm{~d} x \\
& =\frac{2^{\alpha+\beta-2 \rho-1} \Gamma\left(\frac{\alpha+\beta}{2}\right) \Gamma\left(\frac{\alpha+\beta+2}{2}\right)}{\Gamma(\alpha) \Gamma(\beta)(1+a)^{\rho}(1+b)^{\rho}}\left[\Gamma\left(\frac{\alpha+1}{2}\right) \Gamma\left(\frac{\beta}{2}\right) \aleph_{5}(z)-\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta+1}{2}\right) \aleph_{6}(z)\right] \\
& \times \frac{e^{i \pi(w+1) / 2} \Gamma\left(\frac{\alpha^{\prime}+\beta^{\prime}+2}{2}\right)}{2^{2 w+\alpha^{\prime}-\beta^{\prime}+1} \Gamma\left(\alpha^{\prime}\right) \Gamma\left(\beta^{\prime}\right) \Gamma\left(\alpha^{\prime}-\beta^{\prime}\right)}\left[\Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}}{2}\right) \aleph_{3}(z)-\Gamma\left(\frac{\alpha^{\prime}}{2}\right) \Gamma\left(\frac{\beta^{\prime}+1}{2}\right) \aleph_{4}(z)\right] \tag{3.12}
\end{align*}
$$

Where $\aleph_{5}(z), \aleph_{6}(z), \aleph_{3}(z)$ and $\aleph_{4}(z)$ are mentioned by (3.4) , (3.5) , (3.7) and (3.8) respectively and the validity conditions are:
$\operatorname{Re}(\rho)>0, \operatorname{Re}(w)>1,|\arg z|<\frac{1}{2} \pi \Omega$, and $\operatorname{Re}\left(2 \rho-\alpha-\beta+2 \rho_{1} \min _{1 \leqslant j \leqslant n} \frac{b_{j}}{\beta_{j}}\right)>0$
, $\operatorname{Re}\left(2 w-\alpha^{\prime}-\beta^{\prime}+2 w_{1} \min _{1 \leqslant j \leqslant n} \frac{b_{j}}{\beta_{j}}\right)>2$

Proof : To etablish (3.1),we express the Aleph_function on the left hande side using (1.1) in Mellin-Barnes contour integral and interchanging the order of integration which is justifiable due to absolute convergence of the integrals, we
have :
$\frac{1}{2 \pi \omega} \int_{L} \Omega_{p_{i}, q_{i}, c_{i} ; r}^{m, \mathfrak{n}}(s)\left(\left(\int_{0}^{1} x^{\rho+\rho_{1} s-1}(1-x)^{\rho+\rho_{1} s}[1+a x+b(1-x)]^{-2 \rho-2 \rho_{1} s-1}\right.\right.$
$\left.\times{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta+2}{2} ; \frac{x(1+a)}{1+a x+b(1-x)}\right] \mathrm{d} x\right)\left(\int_{0}^{\pi / 2} e^{i\left(2 w+2 w_{1} s+1\right)}(\sin \theta)^{w+w_{1} s}\right.$
$\left.\left.\times(\cos \theta)^{w+w_{1} s}{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}+2}{2} ; e^{i \theta} \cos \theta\right]\right) \mathrm{d} \theta\right) z^{-s} \mathrm{~d} s$
We evaluate the inner integrals with the help of (2.1) and (2.3) and applying (1.1) , we get the R.H.S of (3.1) in terms of product of Aleph-functions. The other integrals calculate in the similar method

4 Particular cases

If $a=b$ in (3.6), we obtain :

$$
\begin{align*}
& \int_{0}^{1} \int_{0}^{\pi / 2} x^{\rho-1}(1-x)^{\rho}(1+b)^{-2 \rho+1}{ }_{2} F_{1}\left[\alpha, \beta ; \frac{\alpha+\beta+2}{2} ; x\right] e^{i \pi(2 w+1) \theta}(\sin \theta)^{w-2} \\
& \times(\cos \theta)^{w-1}{ }_{2} F_{1}\left[\alpha^{\prime}, \beta^{\prime} ; \frac{\alpha^{\prime}+\beta^{\prime}+2}{2} ; e^{i \theta} \cos \theta \mid\right. \\
& \times \aleph_{p_{i}, q_{i}, c_{i} ; r}^{m, n}\left(z x^{\rho_{1}}(1-x)^{\rho_{1}}(1+b)^{-2 \rho_{1}} e^{2 i w_{1} \theta}(\sin \theta)^{w_{1}}(\cos \theta)^{w_{1}} \left\lvert\, \begin{array}{c}
\mathrm{A} \\
\mathrm{~B}
\end{array}\right.\right) \mathrm{d} \theta \mathrm{~d} x \\
& =\frac{2^{\alpha+\beta-2 \rho_{1}-1} \Gamma\left(\frac{\alpha+\beta}{2}\right)}{\Gamma(\alpha) \Gamma(\beta)(1+b)^{2 \rho}}\left[\Gamma\left(\frac{\alpha+1}{2}\right) \Gamma\left(\frac{\beta}{2}\right) \aleph_{5}(z)-\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta+1}{2}\right) \aleph_{6}(z)\right] \\
& \times \frac{e^{i \pi\left(w_{1}-1\right) / 2} \Gamma\left(\frac{\alpha^{\prime}+\beta^{\prime}+2}{2}\right)}{2^{2 w+\alpha^{\prime}-\beta^{\prime}+1} \Gamma\left(\alpha^{\prime}\right) \Gamma\left(\beta^{\prime}\right)}\left[\Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}}{2}\right) \aleph_{7}(z)-\Gamma\left(\frac{\alpha^{\prime}+1}{2}\right) \Gamma\left(\frac{\beta^{\prime}+2}{2}\right) \aleph_{8}(z)\right] \tag{4.1}
\end{align*}
$$

Remarks : if $c_{i}=1$ for $i=1, \cdots, r$, the Aleph-function degenere into the I_function defined by V.P. Saxena [6], for more details see D.kumar et al [1,5]. If $\mathrm{r}=1$,the I_function degenere into the fox's H -function, see Ronghe [4].

5 Conclusion

The aleph-function, presented in this paper, is quite basic in nature. Therefore, on specializing the parameters of this function, we may obtain various other special functions such as I-function ,Fox's H-function see [2] , Meijer's Gfunction, Wright's generalized Bessel function, Wright's generalized hypergeometric function, MacRobert's E-function, generalized hypergeometric function, Bessel function of first kind, modied Bessel function, Whittaker function, exponential function, binomial function etc. as its special cases, and therefore, various unified integral presentations can be obtained as special cases of our results.

References

[1] Choi J. and Kumar D.; Certain unified fractional integrals and derivatives for a product of Aleph function and a
general class of multivariable polynomials, Journal of Inequalities and Applications, Vol. 2014 (2014), 15 pages.
[2] Fox's C. The G-function and H-function as symetric Fourier Kernels, Trans. Amer. Math. Soc. 98, (1961) page 396_429.
[3] Kumar D., Saxena R.K. and Ram J. : Finite Integral Formulas Involving Aleph Function , To appear ,16 pages
[4] Ronghe A.K.: Double integrals involving H-function of one variable , Vij. Pari. Anu. Patri 28(1) , (1985) page 33-38.
[5] Saxena R.K. , Ram J. and Kumar D. ; Generalized Fractional Integration of the Product of two Aleph -Functions Associated with the Appell Function 3 F , ROMAI , Journal, Vol.9, No. 1 (2013), pp. 147-158.
[6] Saxena, V.P. Formal solution of certain new pair of dual integral equations involving H-function, Proc. Nat. Acad. Sci. India, A52, (1982), 366-275.
[7] G.Sharma and A.K. Rathie : Integrals of hypergeometric series , Vij. Pari. Anu. Patri 34(1-2) , (1991) page 26-29.
[8] Südland, N.; Baumann, B. and Nonnenmacher,T.F., Open problem : who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4) (1998): 401-402.

[^0]
[^0]: *Personal adress : 411 Avenue Joseph Raynaud
 Le parc Fleuri , Bat B
 83140 , Six-Fours les plages
 Tel : 06-83-12-49-68
 Department : VAR
 Country : FRANCE

