k -cordial labeling of some prisms.

M.V.Modha ${ }^{\# 1}$, K.K.Kanani ${ }^{* 2}$
\# Research scholar, R.K.University, Rajkot-360020, Gujarat, India.

Abstract

We discuss here k-cordial labeling of prism for all odd k. We prove that prisms $P_{m} \times C_{k}$, $P_{m} \times C_{k+1}, P_{m} \times C_{k+3}$ are k-cordial for all odd k and $m \geq$ 2. In addition to this we prove that all the Prisms P_{m} $\times C_{2 k-1}$ are k-cordial for all odd $k, m \geq 2$ and $m \neq t k$; $t \geq 1$. Keywords-Abelian Group; k-cordial Labeling;

 Prism.
I. Introduction

Throughout this work, by a graph we mean finite, connected, undirected, simple graph $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}$ (G)) of order |V (G)| and size |E (G)|.

Definition 1.1 A graph labeling is an assignment of integers to the vertices or edges or both subject to certain condition(s) If the domain of the mapping is the set of vertices(edges) then the labeling is called a vertex labeling (an edge labeling.)

Definition 1.2 Let < A, * be any Abelian group. A graph is said to be A cordial if there is a mapping $f: V \quad(G) \rightarrow A$ which satisfies the following two conditions when the edge $e=u v$ is labeled as $f(u)^{*} f(v)$
(i) $\left|v_{f}(a)-v_{f}(b)\right| \leq 1 ; \quad$ for all $a, b v A$,
(ii) $\left|e_{f}(a)-e_{f}(b)\right| \leq 1 ; \quad$ for all $a, b v A$,

Where,
$v_{f}(a)=$ the number of vertices with label a;
$v_{f}(b)=$ the number of vertices with label b;
$e_{f}(a)=$ the number of edges with label a;
$e_{f}(b)=$ the number of edges with label b.
Definition 1.3 The prism $\mathrm{P}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}$ is obtained by taking the cartesian product of path P_{m} with cycle C_{n}.

Seoud and Abdel Maqusoud[5] proved that the prism $C_{n} \times P_{m}$ is cordial except for the case $C_{4 k+2} \times P_{2}$ for m ≥ 2.
For any undefned term in graph theory we rely upon Clark and Holton [2].

II. MAIN RESULTS

Theorem 2.1 All the Prisms $P_{m} \times C_{n}$ are k-cordial for all odd k and $n=k ; k+1 ; k+3, m \geq 2$.

Proof We divide the proof in three cases.
Case I: For $n=k$, we prove that prism $G=P_{m} \times C_{k}$ is k-cordial, $m \geq 2$.

Let $G=P_{m} \times C_{k}$ be the prism. Let $v_{1}, v_{2}, \ldots, v_{m k}$ be the vertices of the prism. Let $v_{l}, v_{2}, \ldots, v_{k}$ be vertices of the outer most cycle. Start the labeling pattern from the vertices $v_{1} v_{2}, \ldots, v_{k}$ arranged in the clockwise direction. Let v_{k+l} be the vertex of first inner cycle which is adjacent to v_{k}. Next label the vertices v_{k+1}, v ${ }_{k+2}, \ldots, v_{2 k}$ in the clockwise direction. Continue this pattern up to the last inner cycle. Let $v_{(m-1) k+1}$ be the vertex of the last inner cycle which is adjacent to $v_{(m-}$ ${ }_{1)}$. Finally label the vertices
$v_{(m-1) k+1}, v_{(m-1) k+2}, v_{(m-1) k+3}, \ldots, v_{m k}$ of the last inner cycle in the clockwise direction.
Note that $|V(G)|=m k$ and $|E(G)|=(2 m-1) k$.
In this case we define k-cordial labeling $f: V(G) \rightarrow$ Z_{k} as follows.
$f\left(v_{i}\right)=p_{i}, \quad$ where $(2 i-1) \equiv p_{i}(\bmod k)$, for $i=$ $1,2, \ldots, m k$.

Case II: For $n=k+1$, we prove that prism $G=P_{m} \times$ C_{k+1} is k-cordial, $m \geq 2$.

Let $G=P_{m} \times C_{k+1}$ be the prism. Let $v_{1} v_{2}, \ldots, v_{m(k+1)}$ be the vertices of the prism. Let $v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}$ be the vertices of the outer most cycle. Start the labeling pattern from the vertices $v_{l}, v_{2}, \ldots, v_{k}, v_{k+1}$ arranged in the clockwise direction. Let v_{k+2} be the vertex of first inner cycle which is adjacent to v_{k+1}. Next label the vertices, $v_{k+2}, v_{k+3}, v_{k+4}, \ldots, v_{2 k+1}, v_{2 k+2}$ in the clockwise direction. Continue this pattern up to the last inner cycle. Let $v_{(m-1) k+m}$ be the vertex of the last inner cycle which is adjacent to $v_{(m-1) k+(m-1)}$. Finally label the vertices $v_{(m-1) k+m}, v_{(m-l) k+m+l}, \ldots, v_{m(k+l)}$ of the last inner cycle in the clockwise direction.

Note that $|V(G)|=m(k+1)$ and $|E(G)|=(2 m-1)(k+1)$.
In this case we define k-cordial labeling $f: V(G) \rightarrow$ Z_{K} as follows.
$f\left(v_{i}\right)=p_{i}, \quad$ where $(2 i-1) \equiv p_{i}(\bmod k)$, for $i=1$, $2, \ldots, m(k+1)$.

Case III: For $n=k+3$, we prove that prism $G=P_{m} \times$ C_{k+3} is k-cordial, $m \geq 2$.

Let $G=P_{m} \times C_{k+3}$ be the prism. Let $v_{1}, v_{2}, \ldots, v_{m(k+3)}$ be the vertices of the prism. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{k+2}, v_{k+3}$ be vertices of the outer most cycle. Start the labeling pattern from $v_{1}, v_{2}, v_{3}, \ldots, v_{k+2}, v_{k+3}$ arranged in the clockwise direction. Let v_{k+4} be the vertex of the first inner cycle which is adjacent to v_{k+3}. Next label the vertices $v_{k+4}, v_{k+5}, v_{k+6}, \ldots, v_{2 k+5}, v_{2 k+6}$ in the clockwise
direction. Continue this pattern up to the last inner cycle. Let $v_{(m-l) k+3 m-2}$ be the vertex of the last inner cycle which is adjacent to $v_{(m-1) k+3 m-3}$. Finally label the vertices,
$v_{(m-1) k+3 m-2}, v_{(m-1) k+3 m-1}, v_{(m-1) k+3 m}, v_{(m-l) k+3 m+1}, \ldots, \quad v_{m(k+3)-l}$,
$v_{m(k+3)}$
of the last inner cycle in the clockwise direction.
Note that $|V(G)|=m(k+3)$ and $|E(G)|=(2 m-1)(k+$ 3).

In this case we define k-cordial labeling $f: V(G) \rightarrow$ Z_{k} as follows.
$f\left(v_{i}\right)=p_{i}, \quad$ where $(2 i-1) \equiv p_{i}(\bmod k)$, for $i=1$, $2, \ldots, m(k+3)$.

The labeling pattern defined above covers all possible arrangement of vertices. In each possibility the graph under consideration satisfies the vertex conditions and edge conditions for k-cordial labeling.

Illustration 2.2(a): The prism $P_{4} \times C_{9}$ and its 9-cordial labeling is shown in Fig 2.1.

Fig 2.1: 9-Cordial labeling of prism $P_{4} \times C_{9}$.
Illustration 2.2(b): The prism $P_{5} \times C_{6}$ and its 5cordial labeling is shown in Fig 2.2.

Fig 2.2: 5-Cordial labeling of prism $P_{5} \times C_{6}$.

Illustration 2.2(c): The prism $P_{3} \times C_{10}$ and its 7cordial labeling is shown in Fig 2.3.

Fig 2.3: 7-Cordial labeling of prism $P_{3} \times C_{10}$.
Theorem 2.3 All the Prisms $P_{m} \times C_{n}$ are k-cordial for all odd k and $n=2 k-1, m \geq 2$ and $m \neq t k, t \geq 1$.

Proof: For $n=2 k-1$.
Let $G=P_{m} \times C_{2 k-1}$ be the prism. Let $v_{l}, v_{2}, \ldots, v_{m(2 k-l)}$ be the vertices of the prism. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{2 k-l}$ be the vertices of outer most cycle. Start the labeling pattern from $v_{1}, v_{2}, v_{3}, \ldots, v_{2 k-1}$ arranged in the clockwise direction. Let $v_{2 k}$ be the vertex of first inner cycle which is adjacent to $v_{2 k-1}$. Next label $v_{2 k}, v_{2 k+1}, v_{2 k+2}, \ldots, v_{2(2 k-1)}$ vertices in the clockwise direction. Continue this pattern up to last inner cycle. Let $v_{(m-1)(2 k-1)+1}$ be the vertex of the last inner cycle which is adjacent to $v_{(m-1)(2 k-1)}$. Finally label the vertices $v_{(m-1)(2 k-1)+1}, v_{(m-1)(2 k-1)+2}, v_{(m-1)(2 k-1)+2, \ldots,} v_{m(2 k-1)}$ of the last inner cycle in the clockwise direction.

We note that $|V(G)|=m(2 k-1)$ and $|E(G)|=(2 m$ -1)(2k-1).

Case I: $\mathrm{m} \neq(\mathrm{tk}+1)$
In this case we define k-cordial labelling $f: V$ $(G) \rightarrow Z_{k}$ as follows.
$f\left(v_{i}\right)=p_{i}, \quad$ where $(2 i-1) \equiv p_{i}(\bmod k)$, for $i=$ $1,2, \ldots, m(2 k-1)$.

Case II: $\mathrm{m}=(\mathrm{tk}+1)$
In this case we define k-cordial labeling $f: V(G) \rightarrow$ Z_{k} as follows.
$f\left(v_{i}\right)=p_{i}, \quad$ where $(2 i-1) \equiv p_{i}(\bmod k)$, for $i=$ $1,2, \ldots,(m(2 k-1)-1)$.
$f\left(v_{m(2 k-1)}\right)=k-1$, where $i=(m(2 k-1))$.
The labeling pattern defined above covers all possible arrangement of vertices. In each possibility the graph under consideration satisfies the vertex conditions and edge conditions for k-cordial labeling.

Illustration 2.4(a): The prism $P_{6} \times C_{9}$ and its 5cordial labeling is shown in Fig 2.4.

Fig 2.4: 5-Cordial labeling of prism $P_{6} \times C_{9}$.
Illustration 2.4(b): The prism $P_{3} \times C_{13}$ and its 7cordial labeling is shown in Fig 2.5.

Fig 2.5: 7-Cordial labeling of prism $P_{3} \times C_{13}$.

III. CONCLUDING REMARKS

Here we have contributed two general results to the theory of k-cordial labeling. To derive similar results for other graph families is an open area of research.

References

[1] L. W. Beineke and S. M. Hegde, Strongly multiplicative graphs, Discuss.Math. Graph Theory,Vol 21,63-75 (2001).
[2] John Clark and Derek Allan Holton, A first look at graph theory, Allied Publications Ltd.
[3] J. A. Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 18(2015).
[4] M. Hovey, A-cordial graphs, Discrete Math., 93, 183194(1991).
[5] M. A. Seoud and A. E. I. Abdel Maqsoud, On cordial and balanced labelings of graphs, J. Egyptian Math. Soc., 7 (1999) 127-135
[6] R. Tao, On k-cordiality of cycles, crowns and wheels, Systems Sci. Math.Sci., 11, 227-229(1998).
[7] M. Z. Youssef, On k-cordial labeling, Australas. J. Combin., 43, 31-37(2009)

