k-cordial labeling of some prisms.

M.V.Modha^{#1}, K.K.Kanani^{*2}

[#] Research scholar, R.K.University, Rajkot-360020, Gujarat, India.

Abstract — We discuss here k-cordial labeling of prism for all odd k. We prove that prisms $P_m \times C_k$, $P_m \times C_{k+1}$, $P_m \times C_{k+3}$ are k-cordial for all odd k and $m \ge 2$. In addition to this we prove that all the Prisms $P_m \times C_{2k-1}$ are k-cordial for all odd k, $m \ge 2$ and $m \ne tk$; $t \ge 1$.

Keywords—*Abelian Group; k-cordial Labeling; Prism.*

I. INTRODUCTION

Throughout this work, by a graph we mean finite, connected, undirected, simple graph G=(V(G), E(G)) of order |V(G)| and size |E(G)|.

Definition 1.1 A *graph labeling* is an assignment of integers to the vertices or edges or both subject to certain condition(s) If the domain of the mapping is the set of vertices(edges) then the labeling is called a *vertex labeling*(an *edge labeling*.)

Definition 1.2 Let $\langle A, * \rangle \rangle$ be any Abelian group. A graph is said to be *Acordial* if there is a mapping $f:V(G) \rightarrow A$ which satisfies the following two conditions when the edge e=uv is labeled as f(u)*f(v) $(i) |v_f(a)-v_f(b)| \leq l$; for all $a, b \lor A$,

 $\begin{array}{ll} (1) |v_f(a) - v_f(b)| \leq 1; & \text{for all } a, b \lor A, \\ (ii) |e_f(a) - e_f(b)| \leq 1; & \text{for all } a, b \lor A, \\ \text{Where,} \end{array}$

 $v_f(a)$ =the number of vertices with label *a*;

 $v_f(b)$ =the number of vertices with label b;

 $e_f(a)$ =the number of edges with label a;

 $e_f(b)$ =the number of edges with label b.

Definition 1.3 The *prism* $P_m \times C_n$ is obtained by taking the cartesian product of path P_m with cycle C_n .

Seoud and Abdel Maqusoud[5] proved that the prism $C_n \times P_m$ is cordial except for the case $C_{4k+2} \times P_2$ for m ≥ 2 .

For any undefined term in graph theory we rely upon Clark and Holton [2].

II. MAIN RESULTS

Theorem 2.1 All the Prisms $P_m \times C_n$ are *k*-cordial for all odd *k* and n = k; k + 1; k + 3, $m \ge 2$.

Proof We divide the proof in three cases.

<u>Case I</u>: For n=k, we prove that prism $G = P_m \times C_k$ is *k*-cordial, $m \ge 2$.

Let $G = P_m \times C_k$ be the prism. Let $v_1, v_2, ..., v_{mk}$ be the vertices of the prism. Let $v_1, v_2, ..., v_k$ be vertices of the outer most cycle. Start the labeling pattern from the vertices $v_1 \ v_2, ..., v_k$ arranged in the clockwise direction. Let v_{k+1} be the vertex of first inner cycle which is adjacent to v_k . Next label the vertices $v_{k+1}, v_{k+2}, ..., v_{2k}$ in the clockwise direction. Continue this pattern up to the last inner cycle. Let $v_{(m-1)k+1}$ be the vertex of the last inner cycle which is adjacent to $v_{(m-1)k+1}$ be the vertex of the last inner cycle which is adjacent to $v_{(m-1)k+1}$ be the vertices

 $v_{(m-1)k+1}, v_{(m-1)k+2}, v_{(m-1)k+3}, \dots, v_{mk}$ of the last inner cycle in the clockwise direction.

Note that |V(G)| = mk and |E(G)| = (2m - 1)k.

In this case we define *k*-cordial labeling $f: V(G) \rightarrow Z_k$ as follows.

 $f(v_i) = p_i$, where $(2i - 1) \equiv p_i (mod \ k)$, for i = 1, 2, ..., mk.

<u>Case II:</u> For n=k+1, we prove that prism $G = P_m \times C_{k+1}$ is k-cordial, $m \ge 2$.

Let $G = P_m \times C_{k+1}$ be the prism. Let $v_1 v_2,..., v_{m(k+1)}$ be the vertices of the prism. Let $v_1, v_2,..., v_k, v_{k+1}$ be the vertices of the outer most cycle. Start the labeling pattern from the vertices $v_1, v_2,..., v_k, v_{k+1}$ arranged in the clockwise direction. Let v_{k+2} be the vertex of first inner cycle which is adjacent to v_{k+1} . Next label the vertices, $v_{k+2}, v_{k+3}, v_{k+4},..., v_{2k+1}, v_{2k+2}$ in the clockwise direction. Continue this pattern up to the last inner cycle. Let $v_{(m-1)k+m}$ be the vertex of the last inner cycle which is adjacent to $v_{(m-1)k+(m-1)}$. Finally label the vertices $v_{(m-1)k+m} v_{(m-1)k+m+1},..., v_{m(k+1)}$ of the last inner cycle in the clockwise direction.

Note that |V(G)| = m(k+1) and |E(G)| = (2m-1)(k+1).

In this case we define *k*-cordial labeling $f: V(G) \rightarrow Z_k$ as follows.

 $f(v_i) = p_i$, where $(2i - 1) \equiv p_i (mod \ k)$, for i = 1, 2,...,m(k + 1).

<u>Case III</u>: For n=k+3, we prove that prism $G = P_m \times C_{k+3}$ is k-cordial, $m \ge 2$.

Let $G = P_m \times C_{k+3}$ be the prism. Let $v_1, v_2, ..., v_{m(k+3)}$ be the vertices of the prism. Let $v_1, v_2, v_3, ..., v_{k+2}, v_{k+3}$ be vertices of the outer most cycle. Start the labeling pattern from $v_1, v_2, v_3, ..., v_{k+2}, v_{k+3}$ arranged in the clockwise direction. Let v_{k+4} be the vertex of the first inner cycle which is adjacent to v_{k+3} . Next label the vertices $v_{k+4}, v_{k+5}, v_{k+6}, ..., v_{2k+5}, v_{2k+6}$ in the clockwise

direction. Continue this pattern up to the last inner cycle. Let $v_{(m-1)k+3m-2}$ be the vertex of the last inner cycle which is adjacent to $v_{(m-1)k+3m-3}$. Finally label the vertices,

 $V_{(m-1)k+3m-2}, V_{(m-1)k+3m-1}, V_{(m-1)k+3m}, V_{(m-1)k+3m+1}, \dots, V_{m(k+3)-1}, V_{m(k+3)}$

of the last inner cycle in the clockwise direction.

Note that |V(G)| = m(k+3) and |E(G)| = (2m - 1)(k + 3).

In this case we define *k*-cordial labeling $f: V(G) \rightarrow Z_k$ as follows.

 $f(v_i)=p_i$, where $(2i - 1) \equiv p_i \pmod{k}$, for i = 1, 2,...,m(k + 3).

The labeling pattern defined above covers all possible arrangement of vertices. In each possibility the graph under consideration satisfies the vertex conditions and edge conditions for *k*-cordial labeling.

Illustration 2.2(a): The prism $P_4 \times C_9$ and its 9-cordial labeling is shown in Fig 2.1.

Fig 2.1: 9-Cordial labeling of prism $P_4 \times C_9$.

Illustration 2.2(b): The prism $P_5 \times C_6$ and its 5-cordial labeling is shown in Fig 2.2.

Fig 2.2: 5-Cordial labeling of prism $P_5 \times C_6$.

Illustration 2.2(c): The prism $P_{3} \times C_{10}$ and its 7-cordial labeling is shown in Fig 2.3.

Fig 2.3: 7-Cordial labeling of prism $P_3 \times C_{10}$.

Theorem 2.3 All the Prisms $P_m \times C_n$ are *k*-cordial for all odd *k* and n=2k-1, $m \ge 2$ and $m \ne tk$, $t \ge 1$.

Proof: For n=2k-1.

Let $G = P_m \times C_{2k-1}$ be the prism. Let $v_1, v_2, \dots, v_{m(2k-1)}$ be the vertices of the prism. Let v_1 , v_2 , v_3 ,..., v_{2k-1} be the vertices of outer most cycle. Start the labeling pattern from $v_1, v_2, v_3, \dots, v_{2k-1}$ arranged in the clockwise direction. Let v_{2k} be the vertex of first inner cycle which is adjacent to v_{2k-1} . Next label $v_{2k}, v_{2k+1}, v_{2k+2}, \dots, v_{2(2k-1)}$ vertices in the clockwise direction. Continue this pattern up to last inner cycle. Let $v_{(m-1)(2k-1)+1}$ be the vertex of the last inner cycle which is adjacent to $v_{(m-1)(2k-1)}$. Finally label the vertices $v_{(m-1)(2k-1)+1}, v_{(m-1)(2k-1)+2}, v_{(m-1)(2k-1)+2}, \dots, v_{m(2k-1)}$ of the last inner cycle in the clockwise direction.

We note that |V(G)| = m(2k-1) and |E(G)| = (2m-1)(2k-1).

<u>Case I:</u> $m \neq (tk+1)$

In this case we define k-cordial labelling f: V $(G) \rightarrow Z_k$ as follows.

 $f(v_i)=p_i$, where $(2i-1) \equiv p_i \pmod{k}$, for i = 1,2,...,m(2k-1).

<u>Case II:</u> m = (tk+1)

In this case we define *k*-cordial labeling $f: V(G) \rightarrow Z_k$ as follows.

 $f(v_i)=p_i$, where $(2i-1) \equiv p_i (mod \ k)$, for i = 1,2,...,(m(2k-1)-1). $f(v_{m(2k-1)})=k-1$, where i=(m(2k-1)).

The labeling pattern defined above covers all possible arrangement of vertices. In each possibility the graph under consideration satisfies the vertex conditions and edge conditions for k-cordial labeling.

Illustration 2.4(a): The prism $P_6 \times C_9$ and its 5-cordial labeling is shown in Fig 2.4.

Fig 2.4: 5-Cordial labeling of prism $P_6 \times C_9$.

Illustration 2.4(b): The prism $P_3 \times C_{13}$ and its 7-cordial labeling is shown in Fig 2.5.

Fig 2.5: 7-Cordial labeling of prism $P_3 \times C_{13}$.

III. CONCLUDING REMARKS

Here we have contributed two general results to the theory of k-cordial labeling. To derive similar results for other graph families is an open area of research.

References

- L. W. Beineke and S. M. Hegde, Strongly multiplicative graphs, Discuss.Math. Graph Theory, Vol 21,63-75 (2001).
- [2] John Clark and Derek Allan Holton, A first look at graph theory, Allied Publications Ltd.
- [3] J. A. Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 18(2015).
- [4] M. Hovey, A-cordial graphs, Discrete Math., 93, 183-194(1991).
- [5] M. A. Seoud and A. E. I. Abdel Maqsoud, On cordial and balanced labelings of graphs, J. Egyptian Math. Soc., 7 (1999) 127-135
- [6] R. Tao, On k-cordiality of cycles, crowns and wheels, Systems Sci. Math.Sci., 11, 227-229(1998).
- [7] M. Z. Youssef, On k-cordial labeling, Australas. J. Combin., 43, 31-37(2009)