Pseudo L-Fuzzy Cosets of an L – Fuzzy ℓ - Hx $\underset{\text{R.Muthuraj}^{\#1}, \text{ T.Rakesh Kumar}^{*2}}{\text{Group}}$

^{#1} PG and Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai-622 001, Tamilnadu, India.

^{#2} Department of Mathematics, Selvam College of Technology, Namakkal-637003, Tamilnadu, India.

Abstract - In this paper, we define a new algebraic structure of pseudo L-fuzzy cosets of an L – fuzzy ℓ -HX group and some related properties are investigated. We also discuss the properties of pseudo L-fuzzy cosets of an L – fuzzy sub ℓ - HX group under ℓ - HX group homomorphism and ℓ -HX group anti homomorphism.

Keywords - *HX* group, ℓ - *HX* group , fuzzy set in ℓ - HX group, L-fuzzy set in ℓ -HX group, L – fuzzy ℓ - HX group, pseudo L-fuzzy cosets , ℓ - HX group homomorphism, ℓ - HX group anti homomorphism.

I. INTRODUCTION

The idea of L-fuzzy set was introduced by Goguen (1967) [1] as a extension of Zadeh's (1965) [8] fuzzy sets. Rosenfeld.A [6] introduced the concept of fuzzy group. Li Hongxing [3] introduced the concept of HX group and the authors Luo Chengzhong , Mi Honghai , Li Hongxing [3] introduced the concept of fuzzy HX group. Muthuraj et.al [2][5] defined the concept of Q - fuzzy HX group, intuitionistic Q-fuzzy HX group and study some of their related properties. G.S.V.Satya Saibaba [7] introduced the concept of fuzzy lattice ordered group.

In this paper we define a new concept of pseudo L-fuzzy cosets of an L-fuzzy sub ℓ -HX group and study some of their related properties.

II. PRELIMINARIES

In this section, we site the fundamental definitions that will be used in the sequel.

2.1 Definition [3]

In 2^{G} -{ ϕ }, a non empty set $\vartheta \subset 2^{G}$ -{ ϕ } is called a HX group on G, if ϑ is a group with respect to the algebraic operation defined by $AB = \{ab / a \in A\}$ A and $b \in B$, and its unit element is denoted by E.

2.2 Definition

Let $\vartheta \subset 2^{G}$ -{ ϕ } be a HX group on group G. Define the relation \leq on ϑ as for every $A, B \in \vartheta$, $A \leq B$ iff $a \leq b$, for every $a \in A$ and $b \in B$.

2.3 Definition [7]

A lattice ordered group or a ℓ - group is a system $G = (G, *, \leq)$, where

- i. (G, \cdot) is a group,
 - ii. (G, \leq) is a lattice.

2.4 Remark

Throughout this paper $G = (G, \cdot, \leq)$ is a lattice ordered group or a ℓ - group, e is the identity element of G and xy we mean $x \cdot y$.

2.5 Definition

 $2^{G} - \{\phi\},\$ In а non empty set $(\mathfrak{G} \subset 2^{G} - \{\phi\}, \cdot, \leq)$ is called as an ℓ -HX group or lattice ordered HX group on G, if the following conditions are satisfied.

> i. (ϑ, \cdot) is a HX group. ii. (ϑ, \leq) is a Lattice.

2.6 Definition

Let ϑ and ϑ' be any two ℓ -HX groups on G and G' respectively. The function $f : \vartheta \to \vartheta'$ is called an ℓ -HX group homomorphism if for all A, B in &,

> i. f(AB) = f(A)f(B), $f(A \lor B) = f(A) \lor f(B),$ ii.

iii. f(A \wedge B) = f(A) \wedge f(B).

2.7 Definition

Let ϑ and ϑ' be any two ℓ -HX groups on G and G' respectively (not necessarily commutative). The function $f: \vartheta \to \vartheta'$ is called an ℓ - HX group anti homomorphism if for all A, B in ϑ ,

i. f(AB) = f(B)f(A),:: $f(A \lor B) = f(A) \lor f(B)$

iii.
$$f(A \land B) = f(A) \land f(B)$$
.

III.
$$I(A \land B) = I(A) \land I(B)$$

2.8 Definition [6]

Let G be a group. The mapping $\mu: G \rightarrow [0, 1]$ is called a fuzzy set defined on G.

2.9 Definition

Let G be a group and a non-empty set ϑ $\subset 2^{G} - \{\phi\}$ be a HX group. The mapping $\lambda^{\mu} \colon \vartheta \to L$ is called a L – fuzzy set defined on ϑ , where, (L, \leq) be a lattice with an involutive order reversing operation N: $L \rightarrow L$.

2.10 Definition

Let G be a group. Let μ be an L – fuzzy set defined on G. Let $\vartheta \subset 2^{G}$ -{ ϕ }, a non-empty set, be an ℓ -HX group on G. An L-fuzzy subset λ^{μ} of an ℓ -HX group ϑ is said to be an L - fuzzy sub ℓ -HX group of an ℓ -HX group ϑ if the following conditions are satisfied. For all A and $B \in \vartheta$,

 $\begin{array}{lll} i. & \lambda^{\mu}\left(AB\right) & \geq & \lambda^{\mu}\left(A\right) \wedge \lambda^{\mu}\left(B\right), \\ ii. & \lambda^{\mu}\left(A\right) & = & \lambda^{\mu}\left(A^{-1}\right), \\ iii. & \lambda^{\mu}\left(A \vee B\right) & \geq & \lambda^{\mu}\left(A\right) \wedge \lambda^{\mu}\left(B\right), \\ iv. & \lambda^{\mu}\left(A \wedge B\right) & \geq & \lambda^{\mu}\left(A\right) \wedge \lambda^{\mu}\left(B\right), \\ \text{where } \lambda^{\mu}\left(A\right) = \max \left\{ \left. \mu(x) \right. \right/ \mbox{ for all } x \in A \subseteq G \right\}. \end{array}$

2.11 Definition

Let G_1 and G_2 be any two groups. Let $\vartheta_1 \subset 2 \overset{G}{_1} - \{\phi\}$ and $\vartheta_2 \subset 2 \overset{G}{_2} - \{\phi\}$ be any two ℓ -HX groups defined on G_1 and G_2 respectively. Let μ and α be any two L - fuzzy subsets in G_1 and G_2 respectively. Let λ^{μ} and η^{α} be an L - fuzzy subsets defined on ϑ_1 and ϑ_2 respectively. Let f: $\vartheta_1 \rightarrow \vartheta_2$ be a mapping then the image of λ^{μ} denoted as $f(\lambda^{\mu})$ is an L - fuzzy subset of ϑ_2 defined as for each $U \in \vartheta_2$,

$$(f(\lambda^{\mu}))(U) = \begin{cases} \sup \{\lambda^{\mu}(X) : X \in f^{-1}(U)\}, \text{ if } f^{-1}(U) \neq \phi \\\\0, \text{ otherwise} \end{cases}$$

Also the pre-image of η^{α} denoted as $f^{-1}(\eta^{\alpha})$ under f is a fuzzy subset of ϑ_1 defined as for each X $\in \vartheta_1$, $(f^{-1}(\eta^{\alpha}))(X) = \eta^{\alpha}(f(X))$.

2.12 Definition

Let G_1 and G_2 be any two groups. Let $\vartheta_1 \subset 2 \overset{G}{}_1 - \{\varphi\}$ and $\vartheta_2 \subset 2 \overset{G}{}_2 - \{\varphi\}$ be any two ℓ - HX groups defined on G_1 and G_2 respectively. Let λ^{μ} be an L-fuzzy HX sub ℓ - HX group of an ℓ - HX group in ϑ_1 . Let f: $\vartheta_1 \rightarrow \vartheta_2$ be a function. Then λ^{μ} is called f-invariant if f(A) = f(B) implies that $\lambda^{\mu}(A) = \lambda^{\mu}(B)$.

III. Properties of pseudo L-fuzzy cosets of an L-fuzzy sub ℓ -HX group of an ℓ -HX group

In this section, we discuss some of the properties of pseudo L-fuzzy cosets of an L-fuzzy sub ℓ -HX group of an ℓ -HX group.

3.1 Definition

Let G be a group. Let μ be an $L-fuzzy set defined on G. Let <math display="inline">\vartheta \subset 2^G \text{-}\{\varphi\}, a$ non-empty set, be an ℓ -HX group on G. Let λ^μ be an L - fuzzy sub

 ℓ -HX group of an ℓ -HX group ϑ and $A \in \vartheta$. Then the pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group of an ℓ -HX group determined by the element $A \in \vartheta$ is defined as $(A\lambda^{\mu})^{p}(X) = p(A) \lambda^{\mu}(X)$, for every $X \in \vartheta$ and for some $p \in P$, where $P = \{p(X) \ / p(X) \in [0,1] \text{ for all } X \in \vartheta \}$.

3.2 Theorem

Let G be a group. Let μ be an L – fuzzy set defined on G. Let a non-empty set $\vartheta \subset 2^G \cdot \{\varphi\}$ be an ℓ -HX group on G. If λ^{μ} is an L-fuzzy sub ℓ -HX group of an ℓ -HX group ϑ , then $(A\lambda^{\mu})^p$ is an L-fuzzy sub ℓ -HX group ϑ , for all $A \in \vartheta$.

Proof: Let λ^{μ} be an L-fuzzy sub ℓ -HX group of an ℓ -HX group ϑ . Let $A \in \vartheta$.

For any X, $Y \in \vartheta$,

i.	$(A\lambda^{\mu})^{p}(XY)$	=	$p(A) \lambda^{\mu}(XY)$
		\geq	$p(A) \{ \lambda^{\mu}(X) \land \lambda^{\mu}(Y) \}$
		\geq	$p(A)\lambda^{\mu}(X) \wedge p(A) \lambda^{\mu}(Y)$
		\geq	$(A\lambda^{\mu})^{p}(X) \wedge (A\lambda^{\mu})^{p}(Y).$
	$(A\lambda^{\mu})^{p}(XY)$	\geq	$(A\lambda^{\mu})^{p}(X) \wedge (A\lambda^{\mu})^{p}(Y).$
ii.	$(A\lambda^{\mu})^{p}(X^{-1})$	=	$p(A) \lambda^{\mu}(X^{-1})$
		=	$p(A)\lambda^{\mu}(X).$
	$(A\lambda^{\mu})^{p}(X^{-1})$	=	$(A\lambda^{\mu})^{p}(X).$
iii.	$(A\lambda^{\mu})^{p}(X \vee Y)$	() =	$p(A) \lambda^{\mu}(X \vee Y)$
		\geq	$p(A) \left\{ \ \lambda^{\mu} \left(X \right) \land \lambda^{\mu} \left(Y \right) \right\}$
		\geq	$p(A)\lambda^{\mu}(X) \wedge p(A) \lambda^{\mu}(Y)$
		\geq	$(A\lambda^{\mu})^{p}(X) \wedge (A\lambda^{\mu})^{p}(Y).$
	$(A\lambda^{\mu})^{p}(X \vee Y)$	Y)≥	$(A\lambda^{\mu})^{p}(X) \wedge (A\lambda^{\mu})^{p}(Y).$
iv.	$(A\lambda^{\mu})^{p}(X \wedge$	Y) =	$p(A) \lambda^{\mu}(X \wedge Y)$
		\geq	$p(A) \left\{ \ \lambda^{\mu} \left(X \right) \land \lambda^{\mu} \left(Y \right) \right\}$
		\geq	$p(A)\lambda^{\mu}(X) \wedge p(A) \lambda^{\mu}(Y)$
		\geq	$(A\lambda^{\mu})^{p}(X) \wedge (A\lambda^{\mu})^{p}(Y).$
(Aλ ^ı	$^{\mu})^{p}(X \wedge Y) \geq$		$(A\lambda^{\mu})^{p}(X) \wedge (A\lambda^{\mu})^{p}(Y).$

Hence, $(A\lambda^{\mu})^p$ is an L-fuzzy sub ℓ -HX group of an ℓ -HX group ϑ .

3.3 Theorem

Let G be a group. Let μ be an L – fuzzy set defined on G. Let a non-empty set $\vartheta \subset 2^{G}$ -{ ϕ } be an ℓ -HX group on G. If λ^{μ} is an L-fuzzy sub ℓ -HX group of an ℓ -HX group ϑ , then $(A\lambda^{\mu})^{p}$ is an L-fuzzy sub ℓ -HX group ϑ , for all $A \in \vartheta$.

Proof :Let λ^{μ} be an L-fuzzy sub ℓ -HX group of an ℓ -HX group ϑ . Let $A \in \vartheta$.

For any X, $Y \in \vartheta$,

i.	$(A\lambda^{\mu})^{p}(XY)$	=	$p(A) \lambda^{\mu}(XY)$
		\geq	$p(A) \ \{ \ \lambda^{\mu}(X) \wedge \lambda^{\mu}(Y) \ \}$
		\geq	$p(A)\lambda^{\mu}(X) \wedge p(A) \lambda^{\mu}(Y)$
		\geq	$(A\lambda^{\mu})^{p}(X) \wedge (A\lambda^{\mu})^{p}(Y).$
	$(A\lambda^{\mu})^{p}(XY)$	\geq	$(A\lambda^{\mu})^{p}(X) \wedge (A\lambda^{\mu})^{p}(Y).$
ii.	$(A\lambda^{\mu})^{p}(X^{-1})$	=	$p(A) \lambda^{\mu}(X^{-1})$

		=	$p(A)\lambda^{\mu}(X).$
	$(A\lambda^{\mu})^{p}(X^{-1})$	=	$(A\lambda^{\mu})^{p}(X).$
iii.	$(A\lambda^{\mu})^p(X\vee Y)$	=	$p(A) \lambda^{\mu}(X \vee Y)$
		\geq	$p(A) \left\{ \ \lambda^{\mu} \left(X \right) \land \lambda^{\mu} \left(Y \right) \right\}$
		\geq	$p(A)\lambda^{\mu}(X) \wedge p(A) \lambda^{\mu}(Y)$
		\geq	$(A\lambda^{\mu})^{p}(X) \wedge (A\lambda^{\mu})^{p}(Y).$
	$(A\lambda^{\mu})^{p}(X\vee Y)$	\geq	$(A\lambda^{\mu})^{p}(X) \wedge (A\lambda^{\mu})^{p}(Y).$
iv.	$(A\lambda^{\mu})^{p}(X\wedge Y)$	=	$p(A) \ \lambda^{\mu}(X \wedge Y)$
		\geq	$p(A) \left\{ \ \lambda^{\mu} \left(X \right) \land \lambda^{\mu} \left(Y \right) \right\}$
		\geq	$p(A)\lambda^{\mu}(X) \wedge p(A) \lambda^{\mu}(Y)$
		\geq	$(A\lambda^{\mu})^{p}(X) \wedge (A\lambda^{\mu})^{p}(Y).$
	$(A\lambda^{\mu})^p(X\wedge Y)$	\geq	$(A\lambda^{\mu})^{p}(X) \wedge (A\lambda^{\mu})^{p}(Y).$
	TT (AAUSD)		

Hence, $(A\lambda^{\mu})^p$ is an L-fuzzy sub ℓ -HX group of an ℓ -HX group 9.

3.4 Theorem

Let G be a group. Let μ be an L – fuzzy set defined on G. Let a non-empty set $\vartheta \subset 2^{G}$ -{ φ } be an ℓ -HX group on G. Let λ^{μ} is an L-fuzzy sub ℓ -HX group of an ℓ -HX group ϑ . Let $(A\lambda^{\mu})^{p}$ and $(B\lambda^{\mu})^{p}$ be pseudo L-fuzzy cosets of an L-fuzzy sub ℓ -HX group of an ℓ -HX group determined by the element A, B $\in \vartheta$. Then, their intersection, $(A\lambda^{\mu})^{p} \cap (B\lambda^{\mu})^{p}$ is an L-fuzzy sub ℓ -HX group of an ℓ -HX group ϑ , for all A, B $\in \vartheta$. Proof : It is clear.

IV. Properties of pseudo L-fuzzy cosets of an L-fuzzy sub ℓ -HX group of an ℓ -HX group under ℓ -HX group homomorphism and ℓ -HX group anti homomorphism

In this section, we discuss some of the properties of pseudo L-fuzzy cosets of an L – fuzzy sub ℓ -HX group of an ℓ -HX group under ℓ -HX group homomorphism and ℓ -HX group anti homomorphism.

4.1 Theorem

Let ϑ and ϑ' be any two ℓ -HX groups on G and G'.Let λ^{μ} be an L-fuzzy sub ℓ -HX group of an ℓ -HX group ϑ . Let f: $\vartheta \to \vartheta'$ be an onto ℓ -HX group homomorphism. Let $(A\lambda^{\mu})^{p}$ be a pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group λ^{μ} of an ℓ -HX group determined by the element $A \in \vartheta$. Then $f(A\lambda^{\mu})$ is a pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group determined by the element $f(A) \in \vartheta'$ and $f((A\lambda^{\mu})^{p}) = (f(A)f(\lambda^{\mu}))^{p}$ if λ^{μ} has supremum property and λ^{μ} is f - invariant.

 determined by the element $A \in \vartheta$. Clearly, $f(\lambda^{\mu})$ is an L-fuzzy sub ℓ -HX group of ϑ' and $f((A\lambda^{\mu})^p)$ is an pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group $f(\lambda^{\mu})$ of an ℓ -HX group ϑ' determined by the element $f(A) \in \vartheta'$.

Now, for any $\Lambda \in \mathfrak{S}$, $I(\Lambda) \in \mathfrak{S}$ and	nd
---	----

$(f(A)f(\lambda^{\mu}))^{p}(f(X))$	=	$p(f(A))f(\lambda^{\mu})f(X)$
	=	$p(A)\lambda^{\mu}(X)$
	=	$(A\lambda^{\mu})^{p}(X)$
	=	$f((A\lambda^{\mu})^{p})f(X),$
$(f(A)f(\lambda^{\mu}))^{p}(f(X))$	=	$f((A\lambda^{\mu})^p)f(X)$
Hence, $(f(A)f(\lambda^{\mu}))^{p}$	=	$f((A\lambda^{\mu})^{p}).$

4.2 Theorem

Let ϑ and ϑ' be any two ℓ -HX groups on G and G'.Let η^{α} be an L-fuzzy sub ℓ -HX group of an ℓ -HX group ϑ' . Let f: $\vartheta \to \vartheta'$ be an ℓ -HX group homomorphism. Let $(B\eta^{\alpha})^p$ be a pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group η^{α} of an ℓ -HX group determined by the element $B \in \vartheta'$. Then $f^{-1}(B\eta^{\alpha})$ is a pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group $f^{-1}(\eta^{\alpha})$ of an ℓ -HX group determined by the element $f^{-1}(B) \in \vartheta$ and $f^{-1}((B\eta^{\alpha})^p) = (f^{-1}(B)f^{-1}(\eta^{\alpha}))^p$.

Proof: Let η^{α} be an L-fuzzy sub ℓ -HX group of an ℓ -HX group ϑ' . Let $(B\eta^{\alpha})^p$ be a pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group η^{α} of an ℓ -HX group determined by the element $B \in \vartheta'$. Clearly, $f^1(\eta^{\alpha})$ is an L – fuzzy sub ℓ -HX group of an ℓ -HX group ϑ and $f^1(B\eta^{\alpha})$ is a pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group $f^1(\eta^{\alpha})$ of an ℓ -HX group determined by the element $f^1(B) \in \vartheta$. Now, for any $X \in \vartheta$, $f(X) \in \vartheta'$ and

	/ -	
$(f^{1}(B)f^{1}(\eta^{\alpha}))^{p}(X)$	=	$p(f^{-1}(B)) (f^{-1}(\eta^{\alpha})(X))$
	=	$p(B)(\eta^{\alpha}(f(X)))$
	=	$(B\eta^{\alpha})^{p}(f(X))$
	=	$f^{1}((B\eta^{\alpha})^{p})(X).$
$(f^{1}(B)f^{1}(\eta^{\alpha}))^{p}(X)$	=	$f^{1}((B\eta^{\alpha})^{p})(X).$
Hence, $f^{-1}((B\eta^{\alpha})^p)$	=	$(f^{1}(B)f^{1}(\eta^{\alpha}))^{p}.$

4.3 Theorem

Let ϑ and ϑ' be any two ℓ -HX groups on G and G'.Let λ^{μ} be an L-fuzzy sub ℓ -HX group of an ℓ -HX group ϑ . Let f: $\vartheta \to \vartheta'$ be an onto ℓ -HX group anti homomorphism. Let $(A\lambda^{\mu})^p$ be a pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group λ^{μ} of an ℓ -HX group determined by the element $A \in \vartheta$. Then $f(A\lambda^{\mu})$ is a pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group $f(\lambda^{\mu})$ of an ℓ -HX group determined by the element $f(A) \in \vartheta'$ and $f((A\lambda^{\mu})^{p}) = (f(A)f(\lambda^{\mu}))^{p} \text{ if } \lambda^{\mu} \text{ has supremum property}$ and λ^{μ} is f - invariant.

Proof: Let λ^{μ} be an L-fuzzy sub ℓ -HX group of G and $(A\lambda^{\mu})^{p}$ be an pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group λ^{μ} of an ℓ -HX group G determined by the element $A \in \vartheta$. Clearly, $f(\lambda^{\mu})$ is an L-fuzzy sub ℓ -HX group of ϑ' and $f((A\lambda^{\mu})^{p})$ is an pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group $f(\lambda^{\mu})$ of an ℓ -HX group ϑ' determined by the element $f(A) \in \vartheta'$.

Now, for any $X \in \vartheta$, $f(X) \in \vartheta'$ and

$(f(A)f(\lambda^{\mu}))^{p}(f(X))$	=	$p(f(A))f(\lambda^{\mu})f(X)$
	=	$p(A)\lambda^{\mu}(X)$
	=	$(A\lambda^{\mu})^{p}(X)$
	=	$f((A\lambda^{\mu})^{p})f(X),$
$(f(A)f(\lambda^{\mu}))^{p}(f(X))$	=	$f((A\lambda^{\mu})^{p})f(X)$
Hence, $(f(A)f(\lambda^{\mu}))^{p}$	=	$f((A\lambda^{\mu})^{p}).$

4.4 Theorem

Let ϑ and ϑ' be any two ℓ -HX groups on G and G'.Let η^{α} be an L-fuzzy sub ℓ -HX group of an ℓ -HX group ϑ' . Let f: $\vartheta \to \vartheta'$ be an ℓ -HX group anti homomorphism. Let $(B\eta^{\alpha})^p$ be a pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group η^{α} of an ℓ -HX group determined by the element $B \in \vartheta'$. Then $f^1(B\eta^{\alpha})$ is a pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group $f^1(\eta^{\alpha})$ of an ℓ -HX group determined by the element $f^1(B) \in \vartheta$ and $f^1((B\eta^{\alpha})^p) = (f^1(B)f^1(\eta^{\alpha}))^p$.

Proof: Let η^{α} be an L-fuzzy sub ℓ -HX group of an ℓ -HX group ϑ' . Let $(B\eta^{\alpha})^p$ be a pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group η^{α} of an ℓ -HX group determined by the element $B \in \vartheta'$. Clearly, $f^1(\eta^{\alpha})$ is an L – fuzzy sub ℓ -HX group of an ℓ -HX group ϑ and $f^1(B\eta^{\alpha})$ is a pseudo L-fuzzy coset of an L-fuzzy sub ℓ -HX group $f^1(\eta^{\alpha})$ of an ℓ -HX group determined by the element $f^1(B) \in \vartheta$. Now, for any $X \in \vartheta$, $f(X) \in \vartheta'$ and

101 411 11 = 0,1(· · · · · · · · · · · · · · · · · · ·
$(f^{1}(B)f^{1}(\eta^{\alpha}))^{p}(X)$	=	$p(f^{1}(B)) (f^{1}(\eta^{\alpha})(X))$
	=	$p(B)(\eta^{\alpha}(f(X)))$
	=	$(B\eta^{\alpha})^{p}(f(X))$
	=	$f^{1}((B\eta^{\alpha})^{p})(X).$
$(f^{1}(B)f^{1}(\eta^{\alpha}))^{p}(X)$	=	$f^{1}((B\eta^{\alpha})^{p})(X).$
Hence, $f^{1}((B\eta^{\alpha})^{p})$	=	$(f^{1}(B)f^{1}(\eta^{\alpha}))^{p}.$

V. CONCLUSION

The new algebraic structure of pseudo L-fuzzy coset of an L-fuzzy ℓ -HX group of an ℓ -HX group is introduced and discussed its properties. The image and pre-image of a pseudo L-fuzzy coset of an L-fuzzy ℓ -HX group of an ℓ -HX group is

discussed under ℓ -HX group homomorphism and ℓ -HX group anti homomorphism.

REFERENCES

- [1]. Goguen, J., L-fuzzy sets, Jour. Math. Anal. Appl., 18(1967), 145-174
- [2]. Lakshmana Gomathi Nayagam V, Muthuraj R and Manikandan KH, Intuitionistic Q – fuzzy HX group, International journal of mathematical archive (2229 – 5046), Vol.2, no.7, pp.1133 – 1139, 2011.
- [3]. Li Hongxing, HX group, BUSEFAL, vol.33, pp.31-37, 1987.
- [4]. Luo Chengzhong , Mi Honghai , Li Hongxing , Fuzzy HX group , BUSEFAL, 41(14), pp. 97-106, 1989.
- [5]. Muthuraj R, Manikandan KH, Pseudo fuzzy cosets of a HX group, Applied Mathematical Sciences (1312 -885X), Vol.7, No. 86, pp. 4259 – 4271, 2013.
- [6]. Rosenfeld A, fuzzy groups, Journal of math. Anal.Appl. vol.35, pp. 512-517, 1971.
- [7]. Satya Saibaba GSV, Fuzzy Lattice Ordered Groups, Southeast Asian Bulletin of Mathematics, vol.32, pp.749-766, 2008.
- [8]. Zadeh A, Fuzzy sets, Information and control, vol.8, pp.338-353, 1965.