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Abstract 
        In this paper, we introduce and study the 

concept e-semimaximal submodule. Also many 

relationships of this concept with other related 

concepts are given. 
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1- INTRODUCTION 

        Let R be a commutative ring with unity and let 

M be a left R-module. A proper submodule N of M 

is called semimaximal if 
M

N
 is semisimple [8]. Y-

Wang in [10] introduced the concept -

semimaximal submodule, where a proper 

submodule N of M is called -seminaximal if there 

exist submodules N1, …, Nk of M such that 
k

i
i 1

N N


   and 
i

M

N
 is singular simple, for each           

i = 1, …, k. Also -semimaximal submodules had 

been studied in [6]. Recall that a submodule W of 

M is called essential (denoted by W 
e
  M) if                      

N  K = (0) implies K = (0), where K is a 

submodule of M [7]. Note that if W = (0) then            

W 
e


 

M if and only if M = (0), [7]. In this paper, we 

call that a proper submodule N of M is e-

semimaximal if 
k

i
i 1

N N


   for some essential 

maximal submodules N1, …, Nk. We give the main 

properties for this concept and its relations with 

other classes of submodules. 

 

2- MAIN RESULTS 

 

Remarks and Examples (2.1):  

(1) If N is an e-semimaximal submodule in an R-

module M, then N is -semimaximal, but the 

converse is not true in general. 

Proof: Since N is e-semimaximal, 
n

i
i 1

N N


   for 

some essential maximal submodules Ni,                   

i = 1, …, n. Hence 
i

M

N
 is simple for all i = 1, …, n. 

By [5,Prop.1.21,p.32], Ni 
e
  M implies 

i

M

N
 is 

singular,  i = 1, …, n. Thus N is -semimaximal. 

(2) If N ≨ W  M and W is e-semimaximal, then 

it is not necessarily that N is                            

e-semimaximal, for example: in the Z-module 

Z9, (3)  is e-semimaximal, but (0) (3)  is not 

e-semimaximal. 

(3) It is clear that the intersection of two e-

semimaximal submodules is e-semimaximal. 

(4) It is clear that every e-semimaximal 

submodule is essential and the convery may 

not be true, for example: in the Z-module Z16, 

N = <4> 
e
  z16 but it is not e-semimaximal. 

(5) A homomorphic image of e-semimaximal 

submodule need not be e-semimaximal, for 

example: N = 6Z in the Z-module Z is e-

semimaximal. If : Z  Z/N ≃ Z6 then                 

(N) = (0)  which is not e-semimaximal in Z6. 

(6) Let f: M  M' be an R-epimorphism and let 

W be an e-maximal submodule of M'. Then              

f
  – 1

(W) is an e-maximal submodule of M. 

Proof: It is easy, so is omitted. 

(7) Let f: M  M' be an R-isomorphism, let N 

< M. If N is an e-semimaximal submodule of 

M, then f (N) is an e-semimaximal submodule 

of M'. 

Proof:  

        Since N is e-semimaximal, 
n

i
i 1

N N


   for 

some essential maximal submodules                        

N1, …, Nn. By essentiality of Ni and the condition  f  

is monomorphism. We have f (Ni) 
e
  M', for each              

i = 1, …, n. Also f is an epimorphism and Ni is 

maximal imply f (Ni) is maximal in M'. Beside this, 

f is monomorphism implies that 
n

i
i 1

(N) (N )f f


  . 

Thus f (N) is an e-semimaximal. 

(8) If N and W are isomorphic submodules of an 

R-module M such that N is an                         

e-semimaximal, then it is not necessarily that 

W is e-semimaximal. For example: in the Z-

module Z, N = 6Z is e-semimaximal and              

N  W = 4Z, but W is not e-semimaximal. 
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Proposition (2.2):  

        Let M be a uniform R-module, N < M. Then N 

is e-semimaximal if and only if N is -

semimaximal. 

Proof:  It is clear by Rem. (2.1(1)). 

 Since N is -semimaximal, 
n

i
i 1

N W


  , for some 

submodules W1, …,Wn such that 
i

M

W
 is singular 

simple, for each i = 1, …, n. But 
i

M

W
 is simple 

imply Wi is maximal, and since M is uniform, so 

that Wi 
e
  M,  i = 1, …, n. Thus N is e-

semimaximal. 

 

Proposition (2.3):  

        Let M be a nonsingular R-module, N < M. 

Then N is e-semimaximal if and only if N is -

semimaximal. 

Proof:  It follows by Rem. (2.1(1)). 

 Since N is -semimaximal. 
n

i
i 1

N W


  , for some 

submodules W1, …,Wn where 
i

M

W
 is singular 

simple,  i = 1, …, n. As 
i

M

W
 is simple for each          

i = 1, …, n, so that Wi is maximal,  i = 1, …, n. 

On the other hand M is nonsingular and 
i

M

W
 is 

singular imply Wi 
e
  M by [5]. It follows that N is 

e-semimaximal. 

 

Corollary (2.4):  

        Let M be a nonsingular module over an 

integral domain, let (0)  N < M. If N is maximal, 

then N is e-semimaximal. 

Proof: Since N is maximal, N  (0), then by              

[6, Th.2.6], N is -semimaximal and so by Prop. 

(2.3), N is e-semimaximal. 

 

 

        Note that the condition M is nonsingular is 

necessary condition in Cor.2.4, for example in Z-

module Z6, (0)  N = (2)  < Z6 is maximal but not 

e-semimaximal. 

 

        Recall that an R-module M is called fully 

prime if every proper submodule of M is prime. 

        Recall that an R-module M is called a 

multiplication module if for each submodule N of 

M, there exists an ideal I of R such that N = IM. 

Equivalently M is a multiplication R-module if for 

each submodule N of M, N = [N:M]M, [3]. 

 

Proposition (2.5):  

        Let M be a fully prime multiplication R-

module. Then every e-semimaximal submodule is 

maximal. 

Proof: Let N be an e-semimaximal submodule. 

Then 
n

i
i 1

N N


   for some essential maximal 

submodules N1, …, Nn. By hypothesis, M is fully 

prime, we have N is a prime submodule. As M is 

multiplication, we have N  Nt for some                             

t = 1, …, n. It follows that N = Nt (since Nt is 

maximal). Thus N is maximal. 

 

Proposition (2.6):  

        Every e-semimaximal submodule N of an R-

module M is semimaximal, but not conversely. 

Proof: As N is e-semimaximal, 
n

i
i 1

N W


   for 

some essential maximal submodules                    

W1,…,Wn. Thus 
M

N
 is isomorphic to a submodule 

of 
1 n

M M
...

W W
  . But 

1 n

M M
...

W W
   is 

semisimple, hence 
M

N
 is semisimple. Thus N is 

semimaximal. 

 

Example: (0)  in the Z-module Z6 is semimaximal 

but it is not e-semimaximal. 

 

 

        Recall that an R-module is F-regular if every 

submodule N of M is pure; that is IM  N = IN for 

each ideal I of R, [4]. 

        An R-module M is called fully stable if every 

submodule N of M is stable; where N is stable 

means that for each R-homomorphism                             

f : N  M, f (N)  N, [1]. 

 

Proposition (2.7):  

        Let M be a cyclic R-module such that annRM 

is e-semimaximal. Then M is fully stable. 

Proof: As annRM is e-semimaximal, so by Prop. 

(2.6) annRM is semimaximal. Hence by [8] M is F-

regular and so every proper submodule is 

semiprime. Then by [2, Cor.(4.11),p.66], M is fully 

stable. 

 

Remark (2.8): Let N < M such that [N
R
: M] is e-

semimaximal. Then 
M

N
 is F-regular, where 

[N
R
: M] = {r  R:rM  N}. 
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Proof: By Prop.(2.6), [N:M] is semimaximal. 

Hence by [8,Prop.(1.3.8], 
M

N
 is F-regular R-

module. 

 

Proposition (2.9): Every e-semimaximal 

submodule is semiprime. 

Proof: Let N be an e-semimaximal submodule of 

an R-module M. Then 
n

i
i 1

N W


   for some 

essential maximal sumodules W1,…,Wn of M. But 

every maximal submodule is prime, so that 

W1,…,Wn are prime submodules. Thus N is 

semiprime [2,Prop.(3.1),p.53]. 

 

 

        The converse of Prop.(2.9) need not be true for 

example: (0) in the Z-module is semiprime but not 

e-semimaximal. 

 

Remark (2.10): Let M be a cyclic R-module. If 

every proper submodule is e-semimaximal. Then M 

is fully stable. 

Proof: By Prop. (2.9), every proper submodule of 

M is semiprime. Hence M is fully stable by [2,Prop. 

(4.10),p.66]. 

 

Lemma (2.11): Let R be a principal ideal domain 

(PID), let I < R, I  (0). Then I is a semiprime ideal 

of R if and only if I is the intersection of finite 

number of prime ideals. 

 

Proposition (2.12): 

        Let R be a PID., let I < R, I  (0). Then I is a 

semiprime ideal if and only if I is an e-

semimaximal ideal. 

Proof: It follows directly by Lemma (2.11) and the 

fact that every nonzero proper prime ideal of a PID 

is maximal and every nonzero ideal of R is essential 

in R. 

 

 

        Note that the condition R is a PID is a 

necessary condition in Prop. (2.12), for example in 

the ring Z12, I = 6   is a semiprime ideal but not 

e-semimaximal. 

 

Theorem (2.13): 
        Let M be a faithful finitely generated 

multiplication R-module and let N < M. Then the 

following statements are equivalent: 

(1) N is an e-semimaximal submodule of M. 

(2) [N
R
: M] is an e-semimaximal ideal of R. 

(3) N = IM for some e-semimaximal ideal I of R. 

Proof: (1)  (2) By (1), 
n

i
i 1

N W


   for some 

essential maximal submodules W1,…,Wn. Then 

n n

i i
i 1 i 1R R R

[N : M] [ W : M] [W : M]
 

     and as Wi is 

maximal in M,  i = 1, …, n, we have i
R

[W : M]  is 

a maximal ideal in R,  i = 1, …, n. Also, since M 

is a faithful multiplication R-module and Ni 
e
  M. 

Hence  Ji 
e
  R such that Ni = JiM,  i = 1, …, n, 

by [3,Th.(2.13)], so that Ji = i
eR

[N : M] R ,               

 i = 1, …, n, [3,Th.(3.1)]. It follows that 
R

[N : M]  

is an e-semimaximal ideal of R. 

(2)  (3) It is clear since N = 
R

[N : M] M. 

(3)  (1) Since N = IM for some e-semimaximal 

ideal I of R, hence 
n

i
i 1

I J


   for some essential 

maximal ideals J1, …, Jn of R. Hence 
n

i
i 1

N ( J )M


  . But M is faithful multiplication, so 

by [3,Th.(1.6)], 
n

i
i 1

N (J M)


  . Also by [3,Th.(3.1)], 

[3,Th.(2.13)] JiM is maximal in M and JiM 
e
  M,      

 i = 1, …, n. Thus N is an e-semimaximal 

submodule of M. 

 

Corollary (2.14): 
        Let M be a finitely generated faithful 

multiplication module over a PID R, let                      

(0)  N < M. Then N N is e-semimaximal if and 

only if N is semiprime. 

Proof:  It is clear by Prop.(2.9). 

 Since N is a semiprime submodule, then 

R
[N : M]  is a semiprime ideal of R. But M is a 

multiplication R-module and N  (0), so that 

R
[N : M]   (0). Hence by Prop. (2.12), 

R
[N : M]

 

 is 

an e-semimaximal ideal of R. Thus N is an e-

semimaximal submodule of M by Th. (2.13). 

 

 

        Recall that the Jacobson radical of an R-

module M (denoted by J(M) or Rad M) is the 

intersection of all maximal submodules of M, if M 

has maximal submodules and J(M) = M if M has no 

maximal submodules [7]. Equivalently, 

U M

J(M) U


  , where U is a small submodules of 

M, [7]. Also U is a small submodules of M 

(denoted by U ≪ M) if U is a proper submodule of 

M and U + W M for any proper submodule W of 

M, [7]. D.X.Zhou and X.R.Zhang introduced 

RadeM', where RadeM =  {N 
e
  M: N is maximal 
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in M} if M has maximal submodules and 

RadeM=M if M has no maximal submodule [11]. 

Equivalently, RadeM =  N, where N 
e
  M, [11] 

and N 
e
  M if N + W = M and W 

e
  M, implies          

W = M, [11]. 

 

 

        Similarly we define the concept e-J(M) (or e-

Rad M) as follows: if M has e-semimaximal 

submodule then e-Rad M =  {N:N is an e-

semimaximal submodule of M} and e-Rad M = M 

if M has no e-semimaximal submodule. 

 

        However the following proposition shows that 

RadeM and e-Rad M are identical. 

 

Proposition (2.15): 
        For an R-module M, RadeM = e-Rad M. 

Proof: Let m  RadeM. Then m belongs to any 

essential maximal submodule of M, so m belongs to 

any finite intersection of essential maximal 

submodule. Hence m belongs to any semimaximal 

submodule and so m  e-Rad M; that is RadeM  

e-Rad M. 

Now let m  e-Rad M; hence m is in any 

semimaximal submodule of M. But every essential 

maximal submodule of M is semimaximal, so that 

m   {N 
e
  M: N is maximal in M} = RadeM. 

Hence e-Rad M  RadeM. Thus e-Rad M = RadeM. 

 

Theorem (2.16):   

        Let M be a faithful finitely generated 

multiplication R-module. Then RadeM= (RadeR)M. 

Proof: Since RadeM = e-Rad M, so that e-Rad M = 

 {N:N is semimaximal submodule in M}. But M 

is a fathful finitely generated multiplication R-

module, so every semimaximal submodule N of M, 

N = IM for some semimaximal ideal I of R by Th. 

(2.13). Thus e-Rad M =  {IM:I is semimaximal 

idealof R}. But M is faithful multiplication, so that 

(IM) = (I)M by [3,Th.(1.6)].  

Hence e-Rad M =(e-Rad R)M = (RadeR)M. 

 

Theorem (2.17):   

        Let M be an R-module. Consider the following 

statements: 

(1) M is Artinian. 

(2) M satisfies descending chain condition on e-

small submodules and on e-semimaximal 

submodules. 

(3) M satisfies descending chain condition on e-

small submodules and RadeM is e-

semimaximal submodule. 

Then (1)  (2)  (3) and (3)  (1) if RadeM is 

Artinian. 

Proof:  (1)  (2)  It is clear. 

(2)  (3)  Since M satisfies descending chain 

condition on e-semimaximal, M has a minimal e-

semimaximal submodule say N. So 
n

i
i 1

N N


  , Ni 

is essential maximal for each i = 1, …, n. Hence 

RadeM  N. So if RadeM = M, then M = N which is 

a contradiction. Thus M  Rade M. If P is any 

maximal essential submodule of M, then N  P is 

e-semimaximal submodule. But N is minimal             

e-semimaximal, so N = N  P, thus N  P. Hence                             

N  Rade M. But Rade M  N. So that N = Rade M. 

Thus Rade M is e-semimaximal submodule. 

(3)  (1)  Rade M is Artinian. As Rade M is e-

semimaximal, M  Rade M and 
n

e i
i 1

Rad M P


   for 

some Pi essential maximal submodule of M for each 

i = 1,…, n. But Pi 
e
  M, implies 

i

M

P
 is singular, 

[4,Proposition 1.21,p.32]. Also Pi is maximal, 

implies 
i

M

P
 is simple. Since 

n
e

i
i 1

M M

Rad M
P







 

submodule of 
1 n

M M
...

P P
  , and 

1 n

M M
...

P P
   is a 

semisimple module so 
1 n

M M
...

P P
   is Artinian. 

Hence 
e

M

Rad M
 is Artinian. But Rade M is Artinian, 

it follows that M is Artinian. 

 

 

        Next we have that: 

 

Proposition (2.18):   

        Let I be an e-semimaximal ideal of a ring R. 

Then I[X] is an e-semimaximal ideal of R[X], 

provide that every ideal of R[X] has the form K[X] 

for some ideal K of R. 

Proof: Since I is e-semimaximal, 
n

i
i 1

I J


   for some 

essential maximal ideals J1, …, Jn of R and then 

I[X] = 
n

i
i 1

( J )

 [X]. It follows that I[X] = 

n

i
i 1

(J [X])

 . 

But Ji 
e
  R,  i = 1, …, n implies that Ji[X] 

e
  R[X] 

by [9,Exc.30,p.116]. 

On the other hand for any i = 1, …, n, Ji[X] is a 

maximal ideal in R, since if there exists an ideal 

Wi[X] in R[X] such that Ji[X]  Wi[X] for some 

ideal W in R. Then Ji  Wi. Hence Ji = W and so 

Ji[X] = W[X]. Thus I[X] is an e-semimaximal ideal 

in R[X]. 
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