e-Semimaximal Submodules

Inaam, M.A.Hadi^{#1}, Sameeah Hasoon Aidi^{*2} ^{#1}Department of Mathematics, College of Education for pure Science/ Ibn-Al-Haitham, University of Baghdad, Iraq *2 The Ministry of Education, General Directorate of Education Rasafa/2

Abstract

In this paper, we introduce and study the concept e-semimaximal submodule. Also many relationships of this concept with other related concepts are given.

KeyWords:e-semimaximalsubmodule,semimaximalsubmodules,δ-semimaximalsubmodule,multiplication modules.

1- INTRODUCTION

Let R be a commutative ring with unity and let M be a left R-module. A proper submodule N of M is called semimaximal if $\frac{M}{N}$ is semisimple [8]. Y-

Wang in [10] introduced the concept δ -semimaximal submodule, where a proper submodule N of M is called δ -seminaximal if there exist submodules N_1, \ldots, N_k of M such that

 $N = \mathop{\cap}\limits_{i=1}^k N_i \ \text{ and } \ \frac{M}{N_i} \ \text{ is singular simple, for each}$

i = 1, ..., k. Also δ -semimaximal submodules had been studied in [6]. Recall that a submodule W of M is called essential (denoted by W $\leq M$) if

 $N \cap K = (0)$ implies K = (0), where K is a submodule of M [7]. Note that if W = (0) then $W \leq M$ if and only if M = (0), [7]. In this paper, we

call that a proper submodule N of M is e-

semimaximal if $N = \bigcap_{i=1}^{k} N_i$ for some essential maximal submodules $N_1, ..., N_k$. We give the main properties for this concept and its relations with other classes of submodules.

2- MAIN RESULTS

Remarks and Examples (2.1):

(1) If N is an e-semimaximal submodule in an R-module M, then N is δ -semimaximal, but the converse is not true in general.

Proof: Since N is e-semimaximal, $N = \bigcap_{i=1}^{n} N_i$ for some essential maximal submodules N_i ,

i = 1, ..., n. Hence $\frac{M}{N_i}$ is simple for all i = 1, ..., n.

By [5,Prop.1.21,p.32], $N_i \leq M$ implies $\frac{M}{N_i}$ is

singular, $\forall i = 1, ..., n$. Thus N is δ -semimaximal.

- (2) If N ≨ W ≤ M and W is e-semimaximal, then it is not necessarily that N is e-semimaximal, for example: in the Z-module Z₉, (3) is e-semimaximal, but (0) < (3) is not e-semimaximal.
- (3) It is clear that the intersection of two esemimaximal submodules is e-semimaximal.
- (4) It is clear that every e-semimaximal submodule is essential and the convery may not be true, for example: in the Z-module Z_{16} , $N = \langle 4 \rangle \leq z_{16}$ but it is not e-semimaximal.
- (5) A homomorphic image of e-semimaximal submodule need not be e-semimaximal, for example: N = 6Z in the Z-module Z is e-semimaximal. If π: Z → Z/N ≃ Z₆ then π(N) = (0) which is not e-semimaximal in Z₆.
- (6) Let f: M → M' be an R-epimorphism and let W be an e-maximal submodule of M'. Then f⁻¹(W) is an e-maximal submodule of M.

Proof: It is easy, so is omitted.

(7) Let f: M → M' be an R-isomorphism, let N < M. If N is an e-semimaximal submodule of M, then f (N) is an e-semimaximal submodule of M'.</p>

Proof:

Since N is e-semimaximal, $N = \bigcap_{i=1}^{n} N_i$ for some essential maximal submodules $N_1, ..., N_n$. By essentiality of N_i and the condition fis monomorphism. We have $f(N_i) \leq M'$, for each

i = 1, ..., n. Also f is an epimorphism and N_i is maximal imply $f(N_i)$ is maximal in M'. Beside this,

f is monomorphism implies that $f(N) = \bigcap_{i=1}^{n} f(N_i)$.

Thus f(N) is an e-semimaximal.

(8) If N and W are isomorphic submodules of an R-module M such that N is an e-semimaximal, then it is not necessarily that W is e-semimaximal. For example: in the Z-module Z, N = 6Z is e-semimaximal and $N \cong W = 4Z$, but W is not e-semimaximal.

Proposition (2.2):

Let M be a uniform R-module, N < M. Then N is e-semimaximal if and only if N is δ -semimaximal.

Proof: \Rightarrow It is clear by Rem. (2.1(1)).

 \Leftarrow Since N is δ-semimaximal, N = $\bigcap_{i=1}^{n} W_i$, for some submodules W₁, ...,W_n such that $\frac{M}{W_i}$ is singular simple, for each i = 1, ..., n. But $\frac{M}{W_i}$ is simple

 $\begin{array}{l} W_i \\ \text{imply } W_i \text{ is maximal, and since } M \text{ is uniform, so} \\ \text{that } W_i & \leq \\ e \\ \end{array} \\ M, \ \forall \ i = 1, \ \dots, \ n. \ \text{Thus } N \text{ is e-} \end{array}$

semimaximal.

Proposition (2.3):

Let M be a nonsingular R-module, N < M. Then N is e-semimaximal if and only if N is δ -semimaximal.

Proof: \Rightarrow It follows by Rem. (2.1(1)).

 \Leftarrow Since N is δ-semimaximal. N = $\bigcap_{i=1}^{n} W_i$, for some submodules W₁, ...,W_n where $\frac{M}{W_i}$ is singular simple, $\forall i = 1, ..., n$. As $\frac{M}{W_i}$ is simple for each i = 1, ..., n, so that W_i is maximal, $\forall i = 1, ..., n$. On the other hand M is nonsingular and $\frac{M}{W_i}$ is singular imply W_i \leq_e M by [5]. It follows that N is e-semimaximal.

Corollary (2.4):

Let M be a nonsingular module over an integral domain, let $(0) \neq N < M$. If N is maximal, then N is e-semimaximal.

Proof: Since N is maximal, $N \neq (0)$, then by [6, Th.2.6], N is δ -semimaximal and so by Prop. (2.3), N is e-semimaximal.

Note that the condition M is nonsingular is necessary condition in Cor.2.4, for example in Zmodule Z₆, $(0) \neq N = (\overline{2}) < Z_6$ is maximal but not e-semimaximal.

Recall that an R-module M is called fully prime if every proper submodule of M is prime.

Recall that an R-module M is called a multiplication module if for each submodule N of M, there exists an ideal I of R such that N = IM.

Equivalently M is a multiplication R-module if for each submodule N of M, N = [N:M]M, [3].

Proposition (2.5):

Let M be a fully prime multiplication R-module. Then every e-semimaximal submodule is maximal.

Proof: Let N be an e-semimaximal submodule. Then $N = \bigcap_{i=1}^{n} N_i$ for some essential maximal submodules N_1, \ldots, N_n . By hypothesis, M is fully prime, we have N is a prime submodule. As M is multiplication, we have $N \supseteq N_t$ for some $t = 1, \ldots, n$. It follows that $N = N_t$ (since N_t is maximal). Thus N is maximal.

Proposition (2.6):

Every e-semimaximal submodule N of an R-module M is semimaximal, but not conversely.

Proof: As N is e-semimaximal, $N = \bigcap_{i=1}^{n} W_i$ for some essential maximal submodules W_1, \dots, W_n . Thus $\frac{M}{N}$ is isomorphic to a submodule of $\frac{M}{W_1} \oplus \dots \oplus \frac{M}{W_n}$. But $\frac{M}{W_1} \oplus \dots \oplus \frac{M}{W_n}$ is

semisimple, hence $\frac{M}{N}$ is semisimple. Thus N is semimaximal.

Example: $(\overline{0})$ in the Z-module Z₆ is semimaximal but it is not e-semimaximal.

Recall that an R-module is F-regular if every submodule N of M is pure; that is $IM \cap N = IN$ for each ideal I of R, [4].

An R-module M is called fully stable if every submodule N of M is stable; where N is stable means that for each R-homomorphism $f: N \longrightarrow M, f(N) \subseteq N, [1].$

Proposition (2.7):

Let M be a cyclic R-module such that ann_RM is e-semimaximal. Then M is fully stable.

Proof: As ann_RM is e-semimaximal, so by Prop. (2.6) ann_RM is semimaximal. Hence by [8] M is F-regular and so every proper submodule is semiprime. Then by [2, Cor.(4.11),p.66], M is fully stable.

Remark (2.8): Let N < M such that [N : M] is esemimaximal. Then $\frac{M}{N}$ is F-regular, where $[N : M] = \{r \in R: rM \subseteq N\}.$ **Proof:** By Prop.(2.6), [N:M] is semimaximal. Hence by [8,Prop.(1.3.8], $\frac{M}{N}$ is F-regular R-module.

Proposition (2.9): Every e-semimaximal submodule is semiprime. **Proof:** Let N be an e-semimaximal submodule of an R-module M. Then $N = \bigcap_{i=1}^{n} W_i$ for some essential maximal sumodules W_1, \dots, W_n of M. But every maximal submodule is prime, so that W_1, \dots, W_n are prime submodules. Thus N is semiprime [2,Prop.(3.1),p.53].

The converse of Prop.(2.9) need not be true for example: (0) in the Z-module is semiprime but not e-semimaximal.

Remark (2.10): Let M be a cyclic R-module. If every proper submodule is e-semimaximal. Then M is fully stable.

Proof: By Prop. (2.9), every proper submodule of M is semiprime. Hence M is fully stable by [2,Prop. (4.10),p.66].

Lemma (2.11): Let R be a principal ideal domain (PID), let I < R, $I \neq (0)$. Then I is a semiprime ideal of R if and only if I is the intersection of finite number of prime ideals.

Proposition (2.12):

Let R be a PID., let I < R, $I \neq (0)$. Then I is a semiprime ideal if and only if I is an e-semimaximal ideal.

Proof: It follows directly by Lemma (2.11) and the fact that every nonzero proper prime ideal of a PID is maximal and every nonzero ideal of R is essential in R.

Note that the condition R is a PID is a necessary condition in Prop. (2.12), for example in the ring Z_{12} , $I = \langle \overline{6} \rangle$ is a semiprime ideal but not e-semimaximal.

Theorem (2.13):

Let M be a faithful finitely generated multiplication R-module and let N < M. Then the following statements are equivalent:

(1) N is an e-semimaximal submodule of M.

(2) [N: M] is an e-semimaximal ideal of R. R

(3) N = IM for some e-semimaximal ideal I of R.

Proof: (1) \Rightarrow (2) By (1), $N = \bigcap_{i=1}^{n} W_i$ for some essential maximal submodules W_1, \dots, W_n . Then

$$\begin{split} & [\mathbf{N}:\mathbf{M}] = [\bigcap_{i=1}^{n} W_{i}:\mathbf{M}] = \bigcap_{i=1}^{n} [W_{i}:\mathbf{M}] \text{ and as } W_{i} \text{ is} \\ & \text{maximal in } \mathbf{M}, \forall i = 1, ..., n, \text{ we have } [W_{i}:\mathbf{M}] \text{ is} \\ & \text{a maximal ideal in } \mathbf{R}, \forall i = 1, ..., n. \text{ Also, since } \mathbf{M} \\ & \text{is a faithful multiplication } \mathbf{R}\text{-module and } \mathbf{N}_{i} \leq \mathbf{M}. \\ & \text{Hence } \exists J_{i} \leq \mathbf{R} \text{ such that } \mathbf{N}_{i} = J_{i}\mathbf{M}, \forall i = 1, ..., n, \\ & \text{by } [3, \text{Th.}(2.13)], \text{ so that } J_{i} = [\mathbf{N}_{i}:\mathbf{M}] \leq \mathbf{R} \\ & \mathbf{R} \\ & \forall i = 1, ..., n, [3, \text{Th.}(3.1)]. \text{ It follows that } [\mathbf{N}:\mathbf{M}] \\ & \mathbf{R} \\ & \text{is an e-semimaximal ideal of } \mathbf{R}. \\ & (2) \Rightarrow (3) \text{ It is clear since } \mathbf{N} = [\mathbf{N}:\mathbf{M}]\mathbf{M}. \end{split}$$

(3) \Rightarrow (1) Since N = IM for some e-semimaximal ideal I of R, hence $I = \bigcap_{i=1}^{n} J_i$ for some essential maximal ideals J_1, \dots, J_n of R. Hence $N = (\bigcap_{i=1}^{n} J_i)M$. But M is faithful multiplication, so by [3,Th.(1.6)], $N = \bigcap_{i=1}^{n} (J_iM)$. Also by [3,Th.(3.1)], [3,Th.(2.13)] J_iM is maximal in M and $J_iM \leq M$, $\forall i = 1, \dots, n$. Thus N is an e-semimaximal submodule of M.

Corollary (2.14):

Let M be a finitely generated faithful multiplication module over a PID R, let $(0) \neq N < M$. Then N N is e-semimaximal if and only if N is semiprime.

Proof: \Rightarrow It is clear by Prop.(2.9).

multiplication R-module and N \neq (0), so that [N:M] \neq (0). Hence by Prop. (2.12), [N:M] is R an esamimaximal ideal of R Thus N is an e

an e-semimaximal ideal of R. Thus N is an e-semimaximal submodule of M by Th. (2.13).

Recall that the Jacobson radical of an Rmodule M (denoted by J(M) or Rad M) is the intersection of all maximal submodules of M, if M has maximal submodules and J(M) = M if M has no maximal submodules [7]. Equivalently, $J(M) = \sum_{U \le M} U$, where U is a small submodules of M, [7]. Also U is a small submodules of M (denoted by U \ll M) if U is a proper submodule of M and U + W \neq M for any proper submodule W of

M and U + W \neq M for any proper submodule W of M, [7]. D.X.Zhou and X.R.Zhang introduced Rad_eM', where Rad_eM = $\cap \{N < M: N \text{ is maximal } e^{-1}\}$

in M} if M has maximal submodules and Rad_eM=M if M has no maximal submodule [11]. Equivalently, Rad_eM = Σ N, where N \square M, [11] and N \square M if N + W = M and W \leq M, implies e W = M, [11].

Similarly we define the concept e-J(M) (or e-Rad M) as follows: if M has e-semimaximal submodule then e-Rad $M = \bigcap \{N:N \text{ is an e-semimaximal submodule of } M\}$ and e-Rad M = M if M has no e-semimaximal submodule.

However the following proposition shows that Rad_eM and e-Rad M are identical.

Proposition (2.15):

For an R-module M, $Rad_eM = e$ -Rad M.

Proof: Let $m \in Rad_eM$. Then m belongs to any essential maximal submodule of M, so m belongs to any finite intersection of essential maximal submodule. Hence m belongs to any semimaximal submodule and so $m \in e$ -Rad M; that is $Rad_eM \subseteq e$ -Rad M.

Now let $m \in e$ -Rad M; hence m is in any semimaximal submodule of M. But every essential maximal submodule of M is semimaximal, so that $m \in \cap \{N < M: N \text{ is maximal in } M\} = Rad_eM.$

Hence e-Rad $M \subseteq \text{Rad}_e M$. Thus e-Rad $M = \text{Rad}_e M$.

Theorem (2.16):

Let M be a faithful finitely generated multiplication R-module. Then $\text{Rad}_eM = (\text{Rad}_eR)M$. **Proof:** Since $\text{Rad}_eM = e\text{-Rad} M$, so that e-Rad M = \cap {N:N is semimaximal submodule in M}. But M is a fathful finitely generated multiplication Rmodule, so every semimaximal submodule N of M, N = IM for some semimaximal ideal I of R by Th. (2.13). Thus e-Rad M = \cap {IM:I is semimaximal ideal of R}. But M is faithful multiplication, so that \cap (IM) = (\cap I)M by [3,Th.(1.6)].

Hence e-Rad M = $(e-Rad R)M = (Rad_eR)M$.

Theorem (2.17):

Let M be an R-module. Consider the following statements:

(1) M is Artinian.

- (2) M satisfies descending chain condition on esmall submodules and on e-semimaximal submodules.

Then (1) \Rightarrow (2) \Rightarrow (3) and (3) \Rightarrow (1) if Rad_eM is Artinian.

Proof: (1) \Rightarrow (2) It is clear.

semimaximal, $M \neq \text{Rad}_e M$ and $\text{Rad}_e M = \bigcap_{i=1}^n P_i$ for some P_i essential maximal submodule of M for each i = 1, ..., n. But $P_i \leq M$, implies $\frac{M}{P_i}$ is singular, [4,Proposition 1.21,p.32]. Also P_i is maximal, implies $\frac{M}{P_i}$ is simple. Since $\frac{M}{\text{Rad}_e M} = \frac{M}{\bigcap_{i=1}^n P_i}$ submodule of $\frac{M}{P_1} \oplus ... \oplus \frac{M}{P_n}$, and $\frac{M}{P_1} \oplus ... \oplus \frac{M}{P_n}$ is a semisimple module so $\frac{M}{P_1} \oplus ... \oplus \frac{M}{P_n}$ is Artinian.

Hence $\frac{M}{Rad_e M}$ is Artinian. But $Rad_e M$ is Artinian,

it follows that M is Artinian.

Next we have that:

Proposition (2.18):

Let I be an e-semimaximal ideal of a ring R. Then I[X] is an e-semimaximal ideal of R[X], provide that every ideal of R[X] has the form K[X] for some ideal K of R.

Proof: Since I is e-semimaximal, $I = \bigcap_{i=1}^{n} J_i$ for some essential maximal ideals $J_1, ..., J_n$ of R and then $I[X] = (\bigcap_{i=1}^{n} J_i)[X]$. It follows that $I[X] = \bigcap_{i=1}^{n} (J_i[X])$. But $J_i \leq R, \forall i = 1, ..., n$ implies that $J_i[X] \leq R[X]$

by [9,Exc.30,p.116].

On the other hand for any i = 1, ..., n, $J_i[X]$ is a maximal ideal in R, since if there exists an ideal $W_i[X]$ in R[X] such that $J_i[X] \leq W_i[X]$ for some ideal W in R. Then $J_i \subseteq W_i$. Hence $J_i = W$ and so $J_i[X] = W[X]$. Thus I[X] is an e-semimaximal ideal in R[X].

References

- 1. M.S.Abass, "On Fully Stable Modules", Ph.D. Thesis, Univ. of Baghdad, Iraq, 1990.
- 2. E.A.Athab, "Prime Submodules and Semiprime Submodules", Ms.C. Thesis, Univ. of Baghdad, Iraq, 1996.
- 3. Z.A.Elbast, and P.F.Smith, "Multiplication Modules, *Communication J. in Algebra*, Vol.10(4), 1988.
- D.J.Fieldhous, "Pure Theories", Math.Ann., Vol.184, pp.1-18, 1969.
- 5. K.R.Goodearl, "Ring Theory Nonsingular Rings and Modules", Marcel Dekkl, 1976.
- I.M.A. Hadi, "δ-Semimaximal Submodules", Proceeding of 4th International Scientific Conference of Salahadin Univ.Erbil-Iraq, pp.18-20, 2011.
- F.Kasch, "Modules and Rings", Academic Press, Inc-London, 1982.
- 8. H.Y.Khalaf, "Semimaximal Submodules", Ph.D. Thesis, University of Baghdad, Iraq, 2007.
- 9. T.Y.Lam, "Lectures on Modules and Rings", Springer, 1998.
- Y.Wang, "δ-Small Submodules and δ-Supplemented Modules", International J.Math. and Mathematical Sciences, Vol. 1, pp.1-8, 2007.
- D.X.Zhou and X.R.Zhang, "Small-Essential Submodules and Morita Duality", *Southeast Asian Bull. Math.*, Vol.35, pp.1051-1062, 2011.