Boolean Matrix Transpose Algorithm follows Parallel Computing Strategy

Sanil Shanker KP
Department of Computer Science, Farook College
Kozhikode, India

Abstract: In 2016, Sanil put forward an algorithm to transpose Zero- One matrix. This paper explains the algorithm's parallel nature with the support of an example.

Keywords: Boolean Matrix, Parallel computing.

I. Introduction

A matrix with entities that are either zero or one is called a Boolean matrix [1]. The transpose of a matrix A of order mxn is achieved by exchanging the rows and columns. In Parallel computing, there exists combination of operations to solve a single task [2]. This paper illustrates the parallel computing strategy of the proposed Boolean Matrix Transpose algorithm [3].

II. The Method

Let \mathbf{A} be a Boolean Matrix of order $\mathrm{n} \mathbf{x}$ m. Then the transpose of \mathbf{A} can be computed as:

1. Initialize the matrix A of order $n \mathbf{x} m$.
2. Create the reference matrix .
3. Compute $\mathbf{A}^{\mathbf{T}}$ by combining the characteristics of logical AND with logical OR operations in parallel way with the reference matrix.

III. PARALLEL STRATEGY

Consider the following example, Let \mathbf{A} be a Boolean Matrix of order 4×5.

That is, A =>

0	1	1	0	1
0	0	0	0	0
1	0	0	1	0
0	0	0	0	0

A operates logical AND (\square) with reference matrix D as follows:

Reference Matrix D
\square

• | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | |
| | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ |
| | \downarrow | \downarrow | \downarrow | \downarrow |
| \mathbf{z} | \mathbf{y} | \mathbf{x} | \mathbf{w} | |

Here, the values filled in $\mathbf{z}, \mathbf{y}, \mathbf{x}$ and \mathbf{w} are according to the formulation,

$$
\sum_{i=1}^{p} W_{i, j} \text {, where } j=1,2, \ldots \ldots q
$$

That is the first input binary vector operates logical AND with reference matrix \mathbf{D} in parallel way as follows:

Reference Matrix D

(i) The value of \mathbf{z} :
$\sum_{i=1}^{4} W_{i, j=1}=W_{1,1}+w_{2,1}+w_{3,1}+W_{4,1}=1+0+0+0=1$
Where,
$W_{1,1}=I_{\text {Text }(i=1)} \cdot D_{i=1, j=1}=1 \cdot 1=1$
$W_{2,1}=I_{\text {Text }(\mathrm{i}=2)} \cdot \mathrm{D}_{\mathrm{i}=2, \mathrm{j}=1}=0.0=0$
$\mathrm{W}_{3,1}=\mathrm{I}_{\text {Text(} \mathrm{i}=3 \text {) }} \cdot \mathrm{D}_{\mathrm{i}=3, \mathrm{j}=1}=0.0=0$
$W_{4,1}=I_{\text {Text }(\mathrm{i}=4)} \cdot \mathrm{D}_{\mathrm{i}=4, \mathrm{j}=1}=0.0=0$
(ii) The value of \mathbf{y} :
$\sum_{i=1}^{4} w_{i, j=2}=w_{1,2}+w_{2,2}+w_{3,2}+w_{4,2}=0+0+0+0=0$
Where,
$W_{1,2}=I_{\text {Text (i=1) }} \cdot D_{i=1, j=2}=1 \cdot 0=0$
$W_{2,2}=I_{\text {Text }(\mathrm{i}=2)} \cdot \mathrm{D}_{\mathrm{i}=2, \mathrm{j}=2}=0.1=0$
$W_{3,2}=I_{\text {Text }(i=3)} \cdot D_{i=3, j=2}=0.0=0$
$W_{4,2}=I_{\text {Text }(\mathrm{i}=4)} \cdot \mathrm{D}_{\mathrm{i}=4, \mathrm{j}=2}=0.0=0$
(iii) The value of \mathbf{x} :
$\sum_{i=1}^{4} w_{i, j=3}=W_{1,3}+w_{2,3}+w_{3,3}+w_{4,3}=0+0+0+0=0$

Where,
$\mathrm{W}_{1,3}=\mathrm{I}_{\text {Text }(\mathrm{i}=1)} \cdot \mathrm{D}_{\mathrm{i}=1, \mathrm{j}=3}=1 \cdot 0=0$
$W_{2,3}=I_{\text {Text(i=2) }} \cdot D_{i=2, j=3}=0.0=0$
$\mathrm{W}_{3,3}=\mathrm{I}_{\text {Text(} \mathrm{i}=3)} \cdot \mathrm{D}_{\mathrm{i}=3, \mathrm{j}=3}=0.1=0$
$W_{4,3}=I_{\text {Text(i=4) }} \cdot D_{i=4, j=3}=0 \cdot 0=0$
(iv) The value of \mathbf{w} :
$\sum_{i=1}^{4} W_{i, j=4}=W_{1,4}+W_{2,4}+w_{3,4}+W_{4,4}=0+0+0+0=0$
Where,
$\mathrm{W}_{1,4}=\mathrm{I}_{\text {Text(i=1) }} \cdot \mathrm{D}_{\mathrm{i}=1_{,}, \mathrm{j}=4}=1 \cdot 0=0$
$W_{2,4}=I_{\text {Text }(\mathrm{i}=2)} \cdot \mathrm{D}_{\mathrm{i}=2, \mathrm{j}=4}=0.0=0$
$W_{3,4}=I_{\text {Text(i=3) }} \cdot \mathrm{D}_{\mathrm{i}=3, \mathrm{j}=4}=0.0=0$
$\mathrm{W}_{4,4}=\mathrm{I}_{\text {Text }(\mathrm{i}=4)} \cdot \mathrm{D}_{\mathrm{i}=4, \mathrm{j}=4}=0.1=0$

This gives the transpose of the binary vector as the output,

In the same way, output binary vectors of the input given is as follows:

That is $\mathbf{A}^{\mathbf{I}}=>$

0	0	1	0
1	0	0	0
1	0	0	0
0	0	1	0
1	0	0	0

That is the transpose of inputted Boolean Matrix \mathbf{A} of order 4×5 is $\mathbf{A}^{\mathbf{I}}$ of order 5×4.

IV.SUMMARY

This paper presents an illustration oriented study on the algorithm for Boolean Matrix transpose. Here, we observe the algorithm follows parallel computing strategy.

References

[1] Stephen Warshall, A Theorem on Boolean Matrices. Journal of the ACM. Volume 9 Issue 1, Jan. 1962 Pages 11-12.
[2] Daniel Hills W and Bruce M Boghosian, Parallel
Scientific Computation, Science, Vol 261, Pp. 856-
863
[3] Sanil Shanker KP, An Algorithm to Transpose ZeroOne Matrix, International Journal of Computer Science and Information Technologies, Vol. 7 (4), 2016, 19601961

