Boolean Matrix Transpose Algorithm follows Parallel Computing Strategy

Sanil Shanker KP

Department of Computer Science, Farook College Kozhikode, India

Abstract: In 2016, Sanil put forward an algorithm to transpose Zero- One matrix. This paper explains the algorithm's parallel nature with the support of an example.

Keywords: Boolean Matrix, Parallel computing.

I. INTRODUCTION

A matrix with entities that are either zero or one is called a Boolean matrix [1]. The transpose of a matrix A of order m x n is achieved by exchanging the rows and columns. In Parallel computing, there exists combination of operations to solve a single task [2]. This paper illustrates the parallel computing strategy of the proposed Boolean Matrix Transpose algorithm [3].

II. THE METHOD

Let A be a Boolean Matrix of order n x m. Then the transpose of A can be computed as:

- 1. Initialize the matrix A of order n x m.
- 2. Create the reference matrix.
- 3. Compute \mathbf{A}^{T} by combining the characteristics of logical AND with logical OR operations in parallel way with the reference matrix.

III. PARALLEL STRATEGY

Consider the following example, Let \mathbf{A} be a Boolean Matrix of order 4×5 .

That is, $A \Rightarrow$

0	1	1	0	1
0	0	0	0	0
1	0	0	1	0
0	0	0	0	0

A operates logical AND (\square) with reference matrix **D** as follows:

Reference Matrix D

Here, the values filled in \mathbf{z} , \mathbf{y} , \mathbf{x} and \mathbf{w} are according to the formulation,

$$\sum_{i=1}^{p} W_{i,j}$$
, where $j = 1,2, q$.

That is the first input binary vector operates logical AND with reference matrix \mathbf{D} in parallel way as follows:

Reference Matrix D

1	•	1	0	0	0
(i=1)		(i=1,j=1)	(i=1,j=2)	(i=1,j=3)	(i=1,j=4)
0	•	0	1	0	0
(i=2)		(i=2,j=1)	(i=2,j=2)	(i=2,j=3)	(i=2,j=4)
0	•	0	0	1	0
(i=3)		(i=3,j=1)	(i=3,j=2)	(i=3,j=3)	(i=3,j=4)
0	•	0	0	0	1
(i=4)		(i=4,j=1)	(i=4,j=2)	(i=4,j=3)	(i=4,j=4)
		+	+	+	+
		Z	y	X	W

(i) The value of \mathbf{z} :

$$\sum_{i=1}^{4} W_{i,j=1} = W_{1,1} + W_{2,1} + W_{3,1} + W_{4,1} = 1 + 0 + 0 + 0 = 1$$

Where,

$$\begin{split} W_{1,1} &= \ I_{\text{Text(i=1)}} \ . \ D_{i=1, \ j=1} = 1 \ .1 = 1 \\ W_{2,1} &= \ I_{\text{Text(i=2)}} \ . \ D_{i=2, \ j=1} = 0 \ .0 = 0 \\ W_{3,1} &= \ I_{\text{Text(i=3)}} \ . \ D_{i=3, \ j=1} = 0 \ .0 = 0 \\ W_{4,1} &= \ I_{\text{Text(i=4)}} \ . \ D_{i=4, \ j=1} = 0 \ .0 = 0 \end{split}$$

(ii) The value of \mathbf{y} :

$$\sum_{i=1}^{4} W_{i,j=2} = W_{1,2} + W_{2,2} + W_{3,2} + W_{4,2} = 0 + 0 + 0 + 0 = 0$$

Where.

$$\begin{split} W_{1,2} &= \ I_{\text{Text(i=1)}} \ . \ D_{i=1, \ j=2} = 1 \ .0 = 0 \\ W_{2,2} &= \ I_{\text{Text(i=2)}} \ . \ D_{i=2, \ j=2} = 0 \ .1 = 0 \\ W_{3,2} &= \ I_{\text{Text(i=3)}} \ . \ D_{i=3, \ j=2} = 0 \ .0 = 0 \\ W_{4,2} &= \ I_{\text{Text(i=4)}} \ . \ D_{i=4, \ i=2} = 0 \ .0 = 0 \end{split}$$

(iii) The value of **x**:

$$\sum_{i=1}^{4} W_{i,j=3} = W_{1,3} + W_{2,3} + W_{3,3} + W_{4,3} = 0 + 0 + 0 + 0 = 0$$

Where,

$$\begin{split} W_{1,3} &= \ I_{\text{Text(i=1)}} \ . \ D_{i=1,j=3} \ = 1 \ .0 = 0 \\ W_{2,3} &= \ I_{\text{Text(i=2)}} \ . \ D_{i=2,\ j=3} = 0 \ .0 = 0 \\ W_{3,3} &= \ I_{\text{Text(i=3)}} \ . \ D_{i=3,\ j=3} = 0 \ .1 = 0 \\ W_{4,3} &= \ I_{\text{Text(i=4)}} \ . \ D_{i=4,\ j=3} = 0 \ .0 = 0 \end{split}$$

(iv) The value of **w**:

$$\sum_{i=1}^{4} W_{i,j=4} = W_{1,4} + W_{2,4} + W_{3,4} + W_{4,4} = 0 + 0 + 0 + 0 = 0$$
Where,
$$W_{1,4} = I_{\text{Text}(i=1)} \cdot D_{i=1, i=4} = 1 \cdot 0 = 0$$

$$W_{1,4} = I_{\text{Text(i=1)}} \cdot D_{i=1, j=4} = 1.0 = 0$$
 $W_{2,4} = I_{\text{Text(i=2)}} \cdot D_{i=2, j=4} = 0.0 = 0$
 $W_{3,4} = I_{\text{Text(i=3)}} \cdot D_{i=3, j=4} = 0.0 = 0$
 $W_{4,4} = I_{\text{Text(i=4)}} \cdot D_{i=4, j=4} = 0.1 = 0$

This gives the transpose of the binary vector as the output,

In the same way, output binary vectors of the input given is as follows:

That is $A^{I} =>$

0	0	1	0
1	0	0	0
1	0	0	0
0	0	1	0
1	0	0	0

That is the transpose of inputted Boolean Matrix A of order 4 x 5 is A^{I} of order 5 x 4.

IV.SUMMARY

This paper presents an illustration oriented study on the algorithm for Boolean Matrix transpose. Here, we observe the algorithm follows parallel computing strategy.

REFERENCES

- [1] Stephen Warshall, *A Theorem on Boolean Matrices*. Journal of the ACM. Volume 9 Issue 1, Jan. 1962 Pages 11-12.
- [2] Daniel Hills W and Bruce M Boghosian, Parallel Scientific Computation, Science, Vol 261, Pp. 856-863
- [3] Sanil Shanker KP, An Algorithm to Transpose Zero-One Matrix, International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1960-1961