Balanced Domination Number of Union of Graphs

${ }^{1}$ S.Christilda, ${ }^{2}$ P.Namasivayam
${ }^{1}$ Department of Mathematics, Sadakathullah Appa College,
Tirunelveli - 627011, Tamil Nadu, INDIA.
${ }^{2} P G$ and Research Department of Mathematics, The MDT Hindu College,
Tirunelveli - 627010, Tamil Nadu, INDIA.

Abstract

Let $G=(V, E)$ be a graph. A Subset D of V is called a dominating set of G if every vertex in $V-D$ is adjacent to atleast one vertex in D. The Domination number $\gamma(G)$ of G is the cardinality of the minimum dominating set of G. Let $G=(V, E)$ be a graph and let f be a function that assigns to each vertex of V to a set of values from the set $\{1,2, \ldots \ldots . . k\}$ that is, $f: V(G) \rightarrow\{1,2, \ldots . . k\}$ such that for each $u, v \in V(G), f(u) \neq f(v)$, if u is adjacent to v in G. Then the dominating set $D \subseteq V(G)$ is called a balanced dominating set if $\sum_{u \in D} f(u)=\sum_{v \in V-D} f(v)$. In this paper, we determine the balanced domination number for union of graphs.

Keywords: balanced domination number, union, pendant
Mathematics subject classification: 05C69

1. INTRODUCTION

Let $G=(V, E)$ be a graph with vertex set V and edge set E. The degree of v denoted by deg_{G} (v) is the number of vertices adjacent to v in G. A leaf vertex (also pendant vertex) is a vertex with degree one. An edge of a graph is said to be pendant if one of its vertices is a pendant vertex.

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph and let f be a function that assigns to each vertex of V to a set of values from the set $\{1,2, \ldots \ldots . . \mathrm{k}\}$ that is, $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \ldots \mathrm{k}\}$ such that for each $\mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G}), \mathrm{f}(\mathrm{u}) \neq \mathrm{f}(\mathrm{v})$, if u is adjacent to v in G . Then the set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is called a balanced dominating set if $\sum_{u \in D} f(u)=\sum_{v \in V-D} f(v)$

The balanced domination number $\gamma_{b d}(G)$ is the minimum cardinality of the balanced dominating set.

The set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is called strong balanced dominating set if
$\sum_{u \epsilon D} f(u) \geq \sum_{v \in V-D} f(v)$. Also the set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is called weak balanced dominating set if $\sum_{u \in D} f(u) \leq \sum_{v \in V-D} f(v)$

The sum of the values assigned to each vertex of G is called the total value of G. that is, Total value $=\mathrm{f}(\mathrm{V})=\sum_{v \in V(G)} f(v)$.
Theorem 1.1
Let G be a graph with n vertices. Then G has a balanced dominating set iff $f(V)=\sum_{v \in V(G)} f(v)$ is even.
Proved in [6].
Theorem 1.2
Let G be a graph with n vertices. Then G has no balanced dominating set iff $f(V)=\sum_{v \in V(G)} f(v)$ is odd.
Proved in [6].
2. UNION OF GRAPHS

Lemma 2.1

Let G be a graph obtained by attaching a pendant vertex to each of vertices of $C_{4 n}$ then the number of vertices of value 1 is equal to the number of vertices of value 2.
That is, if n_{1} is the number of vertices of value 1 and n_{2} is the number of vertices of value 2 in the $\gamma_{b d}$ set of G then $n_{1}=n_{2}$. Also $n_{1}=n_{2}=2 n$.
Proof:
Let G be a graph obtained by attaching a pendant vertex to each of vertices of $C_{4 n}$.

The cycle $C_{4 n}$ has $4 n$ vertices.
Attaching a pendant vertex to each of vertices of $C_{4 n}$, we get $8 n$ vertices.
These $8 n$ vertices divided into $4 n$ vertices of value 1 and $4 n$ vertices of value 2.
Therefore, $4 n 1$'s $+4 n 2$ ' $s=4 n+2(4 n)$

$$
\begin{aligned}
& =4 n+8 n \\
& =12 n .
\end{aligned}
$$

that is, $f(V)=12 n$.
Hence $\sum_{v \in D} f(v)=6 n$.
if n_{1} is the number of vertices of value 1 and n_{2} is the number of vertices of value 2 in the $\gamma_{b d}$ set of G, then $n_{1}+2 n_{2}=6 n$.
In this graph G, we have $4 n$ pendant vertices in which $2 n$ vertices of value 1 and $2 n$ vertices of value 2 .
To cover these $2 n$ pendant vertices of value 2 , we have to take either the pendant vertex of value 2 or vertex adjacent to that pendant vertex which is of value 1 .
Therefore, if m_{l} vertices of value 2 are from pendant vertices then we have to take $2 n-m_{l}$ vertices of value 1 other than pendant vertex.
Similarly, To cover these 2 n pendant vertices of value 1, we have to take either the pendant vertex of value 1 or vertex adjacent to that pendant vertex which is of value 2 .
Therefore, if m_{2} vertices of value 1 are from pendant vertices then we have to take $2 n-m_{2}$ vertices of value 2 other than pendant vertex.
Hence $n_{l}=2 n-m_{1}+m_{2}$ and

$$
\begin{aligned}
& n_{2}=2 n-m_{2}+m_{l} . \\
& n_{1}+2 n_{2}=6 n
\end{aligned}
$$

we have,

$$
2 n-m_{l}+m_{2}+2\left(2 n-m_{2}+m_{l}\right)=6 n
$$

$$
2 n-m_{1}+m_{2}+4 n-2 m_{2}+2 m_{1}=6 n
$$

$$
6 n+m_{1}-m_{2}=6 n
$$

$$
m_{1}-m_{2}=0
$$

$$
m_{l}=m_{2} .
$$

since $m_{1}=m_{2}$, we get $n_{1}=n_{2}$ and $n_{1}=n_{2}=2 n$.
Theorem 2.2
Let G be a graph obtained by attaching a pendant vertex to each of vertices of $C_{4 n}$. then $\gamma_{b d}(G)=4 n$.
Proof:
Let G be a graph obtained by attaching a pendant vertex to each of vertices of $C_{4 n}$.
The cycle $C_{4 n}$ has $4 n$ vertices.
Attaching a pendant vertex to each of vertices of $C_{4 n}$, we get $8 n$ vertices.
These $8 n$ vertices divided into $4 n$ vertices of value 1 and $4 n$ vertices of value 2 .
Therefore, $4 n 1$'s $+4 n 2$'s $=4 n+2(4 n)$

$$
\begin{aligned}
& =4 n+8 n \\
& =12 n .
\end{aligned}
$$

that is, $f(V)=12 n$.
Hence $\sum_{v \in D} f(v)=6 n$.
suppose $n_{1}+2 n_{2}=6 n$ where n_{1} is the number of vertices of value 1 and n_{2} is the number of vertices of value 2 .
then $\gamma_{b d}(G)=n_{1}+n_{2}$.
we have to prove $\gamma_{b d}(G)=n_{1}+n_{2}=4 n$.
we prove this by induction on n.
Let $n=1$.
we get $n_{1}+2 n_{2}=6$
since $2 n_{2}$ is even, n_{1} must be even.
therefore, $n_{1}=2$ and $n_{2}=2$.
Hence $\gamma_{b d}(G)=n_{l}+n_{2}=4=4 n$.
Assume that the result is true for $n-1$.
Let G^{\prime} be the graph obtained by attaching a pendant vertex to each of vertices of $C_{4 n-4}$.
then G^{\prime} has $8 n-8$ vertices and $\sum_{v \in D} f(v)=6 n-1=6 n-6$.
Let m_{1} denote the number of vertices of value 1 and m_{2} denote the number of vertices of value 2 of the graph G '.
then $\gamma_{b d}\left(G^{\prime}\right)=m_{1}+m_{2}=4(n-1)=4 n-4$.
we have, $\quad m_{1}+2 m_{2}=6 n-6$
$m_{1}+2 m_{2}+6=6 n-6+6$
$\left(m_{l}+2\right)+2\left(m_{2}+2\right)=6 n($ by Lemma 2.1$)$
Therefore,

$$
\begin{aligned}
\gamma_{b d}(G) & =m_{l}+2+m_{2}+2 \\
& =m_{l}+m_{2}+4
\end{aligned}
$$

$$
\begin{aligned}
& =4 n-4+4 \\
& =4 n .
\end{aligned}
$$

Example 2.1:

Figure 1
In this graph, $f(V)=48$
$D=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{1 l}, v_{12}, v_{13}, v_{14}, v_{15}, v_{16}\right\}$ is a
balanced dominating set.
$\sum_{v \in D} f(v)=2+2+2+2+2+2+2+2+1+1+1+1+1+1+1+1=24$
$\gamma_{b d}=16$

Lemma 2.3

Let G be a graph obtained by attaching a pendant edge to each vertices of Path P_{n} then the number of vertices of value 1 is equal to the number of vertices of value 2 in the $\gamma_{b d}$ set of G.
that is, if n_{1} is the number of vertices of value 1 and n_{2} is the number of vertices of value 2 in the $\gamma_{b d}$ set of G then $n_{1}=n_{2}$. Also $n_{1}=n_{2}=n / 2$.
Proof:
Let G be a graph obtained by attaching a pendant edge to each vertices of P_{n}.
The Path P_{n} has n vertices.
Attaching a pendant edge to each vertices of P_{n}, we get $2 n$ vertices.
These $2 n$ vertices divided into n vertices of value 1 and n vertices of value 2 .
Therefore, $n 1$'s $+n 2$'s $=n+2(n)$

$$
=3 n .
$$

that is, $f(V)=3 n$.
Hence $\sum_{v \in D} f(v)=3 n / 2$.
if n_{1} is the number of vertices of value 1 and n_{2} is the number of vertices of value 2 in the $\gamma_{b d}$ set of G, then $n_{1}+2 n_{2}=3 n / 2$.
In this graph G, we have n pendant vertices in which $n / 2$ vertices of value 1 and $n / 2$ vertices of value 2 .
To cover these $n / 2$ pendant vertices of value 2, we have to take either the pendant vertex of value 2 or vertex adjacent to that pendant vertex which is of value 1 .
Therefore, if m_{1} vertices of value 2 are from pendant vertices then we have to take $n / 2-m_{1}$ vertices of value 1 other than pendant vertex.

Similarly, To cover these $n / 2$ pendant vertices of value 1, we have to take either the pendant vertex of value 1 or vertex adjacent to that pendant vertex which is of value 2 .
Therefore, if m_{2} vertices of value 1 are from pendant vertices then we have to take $n / 2-m_{2}$ vertices of value 2 other than pendant vertex.
Hence $n_{1}=n / 2-m_{1}+m_{2}$ and

$$
n_{2}=n / 2-m_{2}+m_{l} .
$$

we have, $\quad n_{1}+2 n_{2}=3 n / 2$

$$
n / 2-m_{1}+m_{2}+2\left(n / 2-m_{2}+m_{l}\right)=3 n / 2
$$

$$
n / 2-m_{l}+m_{2}+n-2 m_{2}+2 m_{l}=3 n / 2
$$

$$
3 n / 2+m_{1}-m_{2}=3 n / 2
$$

$$
m_{1}-m_{2}=0
$$

$$
m_{l}=m_{2} .
$$

since $m_{l}=m_{2}$, we get $n_{l}=n_{2}$ and $n_{l}=n_{2}=n / 2$.
Theorem 2.4
Let G be a graph obtained by attaching a pendant edge to each vertices of Path P_{n}. then
$\gamma_{b d}(G)=\left\{\begin{array}{lc}n & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd }\end{array}\right.$
Proof:
Let G be a graph obtained by attaching a pendant edge to each vertices of Path P_{n}.
The Path P_{n} has n vertices.
Attaching a pendant edge to each vertices of P_{n}, we get $2 n$ vertices.
These $2 n$ vertices divided into n vertices of value 1 and n vertices of value 2 .
Therefore, $n 1$'s $+n 2$'s $=n+2(n)=3 n$.
that is, $f(V)=3 n$.
Hence $\sum_{v \in D} f(v)=3 n / 2$.
If n is odd, $\frac{3 n}{2}$ is odd.
Then $\gamma_{b d}(G)=0$.
If n is even, suppose $n_{1}+2 n_{2}=3 n / 2$ where n_{1} is the number of vertices of value 1 and n_{2} is the number of vertices of value 2.
then $\gamma_{b d}(G)=n_{1}+n_{2}$.
we have to prove $\gamma_{b d}(G)=n_{1}+n_{2}=n$.
we prove this by induction on n.
Let $n=2$.
we get $n_{1}+2 n_{2}=3$
therefore, $n_{1}=1$ and $n_{2}=1$.
Hence $\gamma_{b d}(G)=n_{1}+n_{2}=2=n$.
Assume that the result is true for n-2.
Let G^{\prime} be the graph obtained by attaching a pendant edge to each vertices of P_{n-2}.
then G^{\prime} has $n-4$ vertices and $\sum_{v \in D} f(v)=\frac{3(n-2)}{2}=\frac{3 n-6}{2}$
$=\frac{3 n}{2}-{ }^{2}$
Let m_{1} denote the number of vertices of value 1 and m_{2} denote the number of vertices of value 2 of the graph G '. then $\gamma_{b d}\left(G^{\prime}\right)=m_{1}+m_{2}=n-2$.
we have, $\quad m_{l}+2 m_{2}=\frac{3 n}{2}-3$

$$
m_{l}+2 m_{2}+3=\frac{3 n}{2}-3+3
$$

Therefore,

$$
\left(m_{l}+1\right)+2\left(m_{2}+1\right)=\frac{3 n}{2}(\text { by Lemma } 2.3)
$$

$$
\begin{aligned}
\gamma_{b d}(G) & =m_{l}+1+m_{2}+1 \\
& =m_{l}+m_{2}+2 \\
& =n-2+2 \\
& =n .
\end{aligned}
$$

Example 2.2:

Figure 2
In this graph P_{10} (n is even) with pendant edge at each vertex, $f(V)=30$ $D=\left\{v_{2}, v_{5}, v_{8}, v_{9}, v_{11}, v_{14}, v_{15}, v_{17}, v_{18}, v_{20}\right\}$ is a balanced dominating set. $\sum_{v \in D} f(v)=2+2+2+2+2+1+1+1+1+1=15$

$$
\gamma_{b d}=10
$$

Figure 3
In this graph $P_{7}\left(n\right.$ is odd) with pendant edge at each vertex, $f(V)=21, \gamma_{b d}=0$

References

[1] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[2] B.Bresar, Tadeja Kraner Sumenjak, On the 2- rainbow domination in graphs, Discrete Applied Mathematics, 155(2007), 2394-2400.
[3] Henning, M. A. and S. T. Hedetniemi, Defending the Roman Empire-A new strategy, Discrete Mathematics 266, (2003), pp. $239-251$.
[4] F. Haray, Graph Theory, Adison Wesley, reading Mass (1972).
[5] E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga, and J.H. van Vuuren, Protection of a graph, Util. Math. 67 (2005) 1932.
[6] S. Christilda and P. Namasivayam, The Balanced Domination Number of Some Standard Graphs, Proceedings on Recent Trends in Mathematical Sciences (2015) 92-96.
[7] D.B. West, Introduction to Graph Theory (Prentice-Hall, Inc, 2000).

