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1. Introduction 

Mathematical modeling of many real phenomena 

leads to a non-linear ordinary or partial differential 

equations in various fields of physics and 

engineering. There are some methods to obtain 

approximate or exact solutions of these kinds of 

equations, such as:the extended tanh-function 

method[1-4],the sub-equation method [5,6], the 

Bäcklund transform method [7], the Exp-function 

method [8-17], the simple equation method[18-19], 

the extended multiple Riccati equation [20],,the 

Jacobi elliptic function expansion method [21-25], 

the modified extended tanh with fractional Riccati 

equation[26-32],the Fractional sub-equation 

method[33-36], the sine-cosine method [37-39], the 

-expansion method[40-44],the -expansion 

method [45-47],the modified simple equation method 

[48-50],the Kudryashov method  [51-53],and so on. 

In this paper we have considered the 

followingNPDEs 

 

- Burger's equation 

        (1.1) 

- Generalized Burgers-Kdv Equation 

   (1.2) 

- Lax' Fifth-Order (Lax5) Equation  

(1.3)  

This paper is arranged as follows: In Section 2, we 

give the description for main steps of the extended 

-expansion method. In Section 3, we apply this 

method to finding exact solutions for the 

equationswhich we stated above. 

2.  Description Of Extended -Expansion 

Method 

Consider the following nonlinear evolution equation, 

say in the two independent variables x, t 

(2.1) 

is a polynomial in  and its partial 

derivatives in which the highest order derivatives and 

nonlinear terms are involved. In the following, we 

give the main steps of this method: [40-44] 

Step1. Using the wave transformation 

     (2.2) 

is a constant to be determined later. Then 

equation (2.1) becomes a nonlinear ordinary 

differential equation 

     (2.3) 

is a polynomial of  and its derivatives and 

the superscripts indicate the ordinary derivatives with 

respect to ξ. If possible, we should integrate    Eq. 

(2.3) term by term one or more times. 

Step2. Suppose the solutions of Eq. (2.3) can be 

expressed as a polynomial of  in the form 

     (2.4)  

(i = 0, 1..., ) in Eq. (2.4) are constants to 

be determined later. The positive integer  in Eq. 

(2.4) can be determined by considering the 

homogeneous balance between the highest-order 

derivatives and nonlinear terms appearing in                   

Eq. (2.3). More precisely, we define the degree of 

 as  which gives rise to the degree 

of other expressions as follows: 
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(2.5) 

Therefore can get the value of M in Eq. (2.4)                   

If  is equal to a fractional or negative number we 

can take the following transformations: [54] 

1- When (where  is a fraction in lowest 

terms), we let 

        (2.6)  

Substituting Eq. (2.6) into Eq. (2.3) and then 

determine the value of  in new          Eq. (2.3). 

2- When M is a negative integer, we let 

               (2.7) 

Substituting Eq. (2.7) into Eq. (2.3) and return to 

determine the value of  once again. 

 The function   in Eq. (2.4) satisfies the 

following second order linear : 

  (2.8) 

 and  are real constants to be determined. 

Step3. Substituting Eq. (2.4) along with Eq. (2.8), 

into Eq. (2.3), collecting all terms with the same 

order of  together, and then equating each 

coefficient of the resulting polynomial to zero, we 

obtain a set of algebraic equations for k. 

Then, we solve the system with the aid of a computer 

algebra system, such as Maple, to determine these 

constants. On the other hand, depending on the sign 

of the discriminant , the general 

solutions of Eq. (2.8) are as follows: 

 

(2.9) 

are arbitrary constants. Then substituting 

 along with    Eq. (2.9) into Eq. (2.4), 

we get the solutions of Eq. (2.1). 

3. Applications 

3.1-Exact solutions of the Burger's equation 

          (3.1) 

In [55], the author solved Eq. (3.1) by the tanh- coth 

method and established some exact solutions for it. 

Now we will apply the extended -Expansion 

Method to Eq. (3.1). To begin with, suppose the   

where  is an arbitrary 

constant to be determined later, to convert the Eq. 

(3.1) into the following nonlinear (ODE) 

(3.2) 

Integrating (3.2) once with respect to and neglecting 

the constant of integration, we have 

   (3.3) 

Balancing (    ) with ( , we obtain ( ). Thus 

Eq. (3.3) becomes  

(3.4)  

Using Eq. (3.4) along with Eq. (2.8), we derive: 

 

 (3.5)             

Substituting Eq. (3.4) and Eq. (3.5) into Eq. (3.3), 

collecting the coefficients of powers of  and 

setting them to zero, we obtain the following system 

of algebraic equations involving the parameters 

 as follows: 

 

 

 

 

 

Solving this system by Maple, we have the following 

two sets solutions 
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Substituting the solution set  along with Eq. (2.9) 

into Eq. (3.4), we have the solutions of Eq. (3.1) as 

follows: 

When , we obtain the hyperbolic 

function travelling wave solutions: 
 

     (3.6)  

In particular, by setting  in 

Eq. (3.6), we get 

(3.7) 

while, if we setting  in Eq. (3.6), 

we get 

(3.8) 

When , we obtain the 

trigonometric function travelling wave solutions: 
 

(3.9)  

In particular, by setting  in 

Eq. (3.9), we get 

(3.10) 

while, if we setting  in Eq. 

(3.9), we get 

(3.11) 

 Similarly, For  

When we obtain the hyperbolic 

function travelling wave solutions: 
 

 

(3.12)  

In particular, by setting 

 in Eq. (3.12), we get 

 

   (3.13) 

When , we obtain the trigonometric 

functions travelling wave solutions: 

 

 

   

(3.14)  

In particular, by setting 

 in Eq. (3.14), we get 
 

   

(3.15) 

3.2-Exact Solutions of the Generalized Burgers-

Kdv Equation 

    (3.16) 

This equation incorporates the KdV 

equation Modified KdV equation 

 generalized KdV equation  

 Burgers equation  

modified Burgers equation  

generalized Burgers equation and the 

modified Burgers-KdV equation  which 

are integrable. These equations are widely used in 

such fields as solid-states physics, plasma physics, 

fluid physics and quantum field theory. In [56], the 

authors solved Eq. (3.16) by extended tanh method 

and established some exact solutions for it. Now we 

will apply the extended -Expansion Method to 

solve Eq. (3.16). To begin with, suppose that  

(3.17) 

is an arbitrary constant to be determined 

later, the equations above converted into the 

following ODE 

(3.18) 

By Integrating Eq. (3.18) and setting constant 

integration to zero, we get  

.   (3.19) 

Balancing .To obtain a 

closed form analytic solution, the parameter M 

should be an integer. To achieve this goal we use a 

transformation formula . This Eq. 

(3.19) becomes 

(3.20) 

Consequently, 

Eq. (3.20) has the formula solution: 

(3.21) 

Using Eq. (3.21) along with Eq. (2.8), we derive: 
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(3.22)             

 

 

(3.23) 

Substituting Eq. (3.21), Eq. (3.22) and Eq. (3.23) into 

Eq. (3.20), collecting the coefficients of powers of 

 and setting them to zero, we obtain the 

following system of algebraic equations involving 

the parameters  as follows: 

 

 

 

 

 

 

 

 

Solving this system by Maple, we have the following 

sets solutions 

 

 

 

 

 

 

 

Substituting the solution set  along with Eq. (2.9) 

into Eq. (3.21), we have the following solutions of 

Eq. (3.16) as follows: 

When , we obtain the hyperbolic 

function travelling wave solutions: 
 

(3.24) 

In particular, by setting  in Eq. 

(3.23), we get 
 

      

(3.25) 

while, if  in Eq. (3.23), we get 
 

  

(3.26) 

Where  

When , we obtain the 

trigonometric functions travelling wave solutions: 
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      (3.27) 

For  

When , we obtain the hyperbolic 

function travelling wave solutions: 
 

 

                                

(3.28)  

In particular, by setting  in Eq. 

(3.27), we get 

 

  (3.29) 

When , we obtain the 

trigonometric functions travelling wave solutions 
 

 

                             

(3.30)  

Where  

3.3 -Exact Solutions ofLax' Fifth-Order [(Lax5) 

Equation 

(3.32)  

This equation solved by [57] by Adomian 

decomposition method, [58] by extended tanh 

method, modified [59] by Hirota‟s bilinear method 

and established some exact solutions for it. Now we 

will apply the extended -Expansion Method to 

solve Eq. (3.16). To begin with, suppose that  
 

is a constant to be determined later.  

Substituting Eq. (3.31), we get the following (ODE) 

(3.33) 

Balancing  with  in the Eq. (3.33), we have  

 Thus Eq. (3.33) has the formula solution: 

                       (3.34) 

Using Eq. (3.34) along with Eq. (2.8), we derive: 
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Where  

Substituting the function and its derivatives into 

the Eq. (3.33), setting the coefficients of 

 to zero, we obtain the following system 

of algebraic equations: 
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Solving this system by Maple, we have the following 

sets solutions 

 

 

 

 

 

 

 

 

 

 

 

 

 
Where 
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Substituting the solution set  along with Eq. (2.9) 

into Eq. (3.34), we have the solutions following of 

Eq. (3.31)  

When , we obtain the hyperbolic 

function travelling wave solutions: 

 

 

                      

(3.35)  

 In particular, by setting  in Eq. 

(3.35), we get 

(3.36) 

while, if  in Eq. (3.35), we get 

 

(3.37)  

When  we obtain the trigonometric 

function travelling wave solutions: 

 

 

(3.38)  

 In particular, by setting  in Eq. 

(3.38), we get 

   (3.39) 

while, if  in Eq. (3.39), we get 

(3.40) 

When , we have 

 

.      (3.41) 

In particular, by setting  in Eq. 

(3.41), we get 

 

     (3.42) 

 

,we obtain the hyperbolic 

function travelling wave solutions: 
 

 

(3.43)  

 In particular, by setting  in Eq. 

(3.43), we get 

 

  (3.44) 

while, if  in Eq. (3.43), we get 

 

(3.45)  

When , we obtain the trigonometric 

function travelling wave solutions: 

 

 

                                          

(3.46)  

 In particular, by setting  in Eq. 

(3.46), we get 

 

ct,(3.47) 

while, if  in Eq. (3.46), we get 

 

 

(3.48)  

When , we have the solutions: 

 

(3.49) 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 36 Number 1- August 2016 

68Page                                       http://www.ijmttjournal.org                    5373-ISSN: 2231 

In particular, by setting  in Eq. 

(3.49), we get 

 

 (3.50)  

Where  

For  

When , we obtain the hyperbolic 

function travelling wave solutions: 

 

 

(3.51)  

In particular, by setting  in Eq. 

(3.51), we get 

 

 

(3.52) 

 

while, if  in Eq. (3.51), we get 

 

 

    (3.53) 

When , we obtain the trigonometric 

function travelling wave solutions: 

 

 

                                  

(3.54)  

In particular, by setting  in Eq. 

(3.54), we get 

 

 

(3.55)  

while, if  in Eq. (3.54), we get 

 

 

 

(3.56) 

When  we have the solutions: 

 

(3.57)  

In particular, by setting  in Eq. 

(3.57), we get 

 

(3.58)     

For  

When we obtain the hyperbolic 

function travelling wave solutions: 

 

 

                            

(3.59)  

In particular, by setting  in Eq. 

(3.59), we get 

 

 

(3.60)  

while, if  in Eq. (3.59), we get 
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12λ−2.(3.61)  

When we obtain the trigonometric 

function travelling wave solutions: 

 

 

 

(3.62) 

In particular, by setting  in Eq. 

(3.62), we get 

 

 

12λ−2,(3.63) 

while, if  in Eq. (3.62), we get 

 

 

                                                            

(3.64) 

When , we have 

 

              (3.65)  

In particular, by setting  in Eq. 

(2.65), we get 

 

       (3.66)  

5. Conclusions 

In this paper, we successfully use the extended -

Expansion Methodto solve some non-linear partial 

differential equations. This method is reliable and 

efficient. By comparing the results of subsection 

(3.1) with the results of [55], we conclude that the 

results: (3.7),(3.8) and (3.13) are in agreement whit 

the results: (71), (72) and (73) of [55], respectively, 

when  this shows that our results are more 

general. Comparing the results of subsection (3.2) 

with the results of [56],we conclude that the results: 

(3.24),(3.25) and (3.28) are agreement with the 

results of [56].This shows that our results are more 

general. The solutions obtained in subsection (3.3) 

have not been reported in the literature so far. 

According theresultsof sub-sec. (3.1) and sub-sec. 

(3.2), we conclude that the -Expansion Method is 

more effective and general than of extended tanh 

method. 
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