Properties of supra N-open sets

¹L.Vidyarani and ²M.Vigneshwaran

¹Research Scholar and ²Assistant Professor Department of Mathematics Kongunadu Arts and Science College (Autonomous) Coimbatore-641029, Tamil Nadu, India.

Abstract: The purpose of this paper is to introduce and study some of the properties of supra N-open sets via supra N-derived, supra N-border, supra Nfrontier and supra N-exterior. Also we introduce some separation axioms using supra N- open set.

Mathematics subject classification: 54A10, 54A05, 54D10.

Keywords: supra N-interior, supra N-closure, supra N-derived, supra N-frontier, supra N-border, supra N-exterior, supra $N-T_0$, supra $N-T_1$, supra $N-T_2$.

1. INTRODUCTION

In 1983, A.S.Mashhour et al [4] introduced supra topological spaces and studied, s-continuous functions and s^* - continuous functions. The Authors have introduced the notion of supra N-closed set[6] in supra topological spaces.

In this paper, we bring out some of the concept of supra N-derived, supra N- border, supra N-frontier and supra N-exterior of a set and study their properties. And also brings out some of the separation axioms by using supra N-open sets.

2. PRELIMINARIES

Definition 2.1[4] A subfamily μ of X is said to be supra topology on X if

ii)If $A_i \in \mu, \, \forall i \in J \text{ then } \mathsf{U}Ai \in \mu$

 (X, μ) is called supra topological space.

The element of μ are called supra open sets in (X, μ) and the complement of supra open set is called supra closed sets and it is denoted by μ^c .

Definition 2.3[4] Let (X, τ) be a topological space and μ be a supra topology on X. We call μ a supra

topology associated with τ , if $\tau \subseteq \mu$.

Definition 2.4

A subset A of a space X is called

- (i) supra semi-open set[3], if $A \subseteq cl^{\mu}(int^{\mu}(A))$.
- (ii) supra α -open set[2], if $A \subseteq int^{\mu}(cl^{\mu}(int^{\mu}(A)))$.

(iii) supra
$$\Omega$$
 closed set[5], if scl^µ(A)
int^µ(U), whenever A \subseteq U, U is supra open

set.

(iv) supra N-closed set[6] if $\Omega cl^{\mu}(A) \subseteq U$, whenever $A \subseteq U$, U is supra α open

set.

(v) supra regular closed if $A = cl^{\mu}(int^{\mu}(A))$.

The complement of the above mentioned sets are their respective open and closed sets.

Remark 2.5

The supra closure of a set A is denoted by $cl^{\mu}(A)$, and is defined as supra $cl(A) = \cap \{B : B \text{ is supra} closed and A \subseteq B\}.$

The supra interior of a set A is denoted by $int^{\mu}(A)$, and is defined as supra $int(A) = \bigcup \{B:B \text{ is supra}\}$

open and $A \supseteq B$.

The supra N-closure of a set A is denoted by N $cl^{\mu}(A)$, and is defined as supra $Ncl(A) = \cap \{B : B \text{ is supra N-closed and } A \subseteq B\}.$

The supra N-interior of a set A is denoted by Nint^{μ}(A), and is defined as supra Nint(A) =U{B:B is supra N-open and A \supseteq B}.

3. SUPRA N-DERIVED SET

Definition 3.1 Let A be subset of a supra topological space X. An element $x \in X$ is said to be a supra N-limit point of A, if every supra N-open set U in X containing x, such that $U \cap (A - \{x\}) \neq \varphi$.

Definition 3.2 The set of all supra N-limit points of A is called supra N-derived set of A. It is denoted by $D_N^{\mu}(A)$.

Theorem 3.3 Let A, B be subsets of a supra topological space X, then

(i) $D_N^{\mu}(A) \subseteq D^{\mu}(A)$.

- (ii) If $A \subseteq B$ then, $D_N^{\mu}(A) \subseteq D_N^{\mu}(B)$.
- (iii) $D_N^{\mu}(A \cap B) \subseteq D_N^{\mu}(A) \cap D_N^{\mu}(B).$
- (iv) $D_N^{\mu} (D_N^{\mu} (A)) A \subseteq D_N^{\mu} (A).$
- $(v) \qquad D_N^{\ \mu} \left(A \cup D_N^{\ \mu} \left(A \right) \right) \subseteq A \cup D_N^{\ \mu} \left(A \right).$

Proof

(i) It is obvious, since every supra open set is supra N-open set.

(ii) Let $x \in D_N^{\mu}(A)$, then x is supra N-limit point of A. Then every neighbourhood of x contains a point of A different from x. Since $A \subseteq B$, every neighbourhood of x contains a point of B different from x. Hence $x \in D_N^{\mu}(B)$. Therefore $D_N^{\mu}(A) \subseteq D_N^{\mu}(B)$.

(iii) Since $D_N^{\mu}(A \cap B) \subseteq D_N^{\mu}(A)$ and $D_N^{\mu}(A \cap B)$

 $\subseteq D_N^{\mu}(B)$, proof follows from (ii).

(iv) If $x \in D_N^{\mu}(D_N^{\mu}(A)) - A$ and U is a supra Nopen set containing x, then $U \cap (D_N^{\mu}(A) - \{x\}) \neq \varphi$. Let $y \in U \cap (D_N^{\mu}(A) - \{x\})$. Then , since $y \in D_N^{\mu}(A)$ and $y \in U$, so $U \cap (A - \{y\}) \neq \varphi$. Let $z \in U \cap (A - \{y\})$. Then, $z \neq x$ for $z \in A$ and $x \notin A$. Hence $U \cap (A - \{x\}) \neq \varphi$. Therefore $x \in D_N^{\mu}(A)$.

(v) Let $x \in D_N^{\mu} [A \cup D_N^{\mu} (A)]$. If $x \in A$, the result is obvious. So let $x \in D_N^{\mu} [A \cup D_N^{\mu} (A)] - A$, then for supra N-open set U containing x, such that $U \cap [A \cup D_N^{\mu} (A) - \{x\}] \neq \phi$. Thus $U \cap [A - \{x\}] \neq \phi$ or $U \cap [D_N^{\mu} (A) - \{x\}] \neq \phi$. Hence from (iv) $x \in D_N^{\mu} (A)$. Hence $x \in A \cup D_N^{\mu} (A)$. Therefore $D_N^{\mu} [A \cup D_N^{\mu} (A)] \subseteq A \cup D_N^{\mu} (A)$. The proof of the above theorem is shown by the following example.

Example 3.4 Let X={a, b, c} and $\tau = \{X, \phi, \{a\}, \{a, b\}\}, \tau^c = \{X, \phi, \{b, c\}, \{c\}\}$. supra N-open sets are $\{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. supra N-closed sets are $\{X, \phi, \{b\}, \{c\}, \{c\}, \{a, c\}\}$.

- (i) Let $A=\{a, b\}$. $D_N^{\mu} \{a, b\} = \{c\}$ and $D^{\mu} \{a, b\} = \{b, c\}$. Hence $D_N^{\mu} (A) \subseteq D^{\mu}(A)$.
- (ii) Let A={a} and B={a,b}. $D_N^{\mu}{a}={c}$ and $D_N^{\mu}{a,b}={c}$. Hence $D_N^{\mu}(A) \subseteq D_N^{\mu}(B)$.
- (iii) Let A={a} and B={a,b}. $D_N^{\mu}{a}={c}$ and $D_N^{\mu}{a,b}={c}$. Hence $D_N^{\mu}(A \cap B) \subseteq D_N^{\mu}(A) \cap D_N^{\mu}(B)$.
- (iv) Let $A=\{a, b\}$. $D_N^{\mu}\{a, b\}=\{c\}$. D_N^{μ} $(D_N^{\mu}(\{a, b\})) - \{a, b\}=D_N^{\mu}(\{c\}) - \{a, b\}=\phi$. Hence $D_N^{\mu}(D_N^{\mu}(A)) - A \subseteq D_N^{\mu}(A)$.

(v) Let $A=\{a\}$. $D_N^{\mu}(\{a\}) = \{c\}$. $A \cup D_N^{\mu}(\{a\}) = \{a, c\}$ and $D_N^{\mu}(\{a, c\}) = \{c\}$. Hence $D_N^{\mu}(A \cup D_N^{\mu}(A)) \subseteq A \cup D_N^{\mu}(A)$.

4. SUPRA N-BORDER

Definition 4.1 For a subset A of X, supra N-Border of A is defined as $Bd_N^{\mu}(A) = A - Nint^{\mu}(A)$. **Theorem 4.2** For a subset A of a supra topological space X, the following statement hold.

(i) $\operatorname{Bd}_{N}^{\mu}(A) \subseteq \operatorname{Bd}^{\mu}(A)$, where $\operatorname{Bd}^{\mu}(A)$ denotes supra border of A. (ii) $A = \operatorname{Nint}^{\mu}(A) \cup \operatorname{Bd}_{N}^{\mu}(A)$. (iii) $\operatorname{Nint}^{\mu}(A) \cap \operatorname{Bd}_{N}^{\mu}(A) = \varphi$. (iv) A is supra N-open iff $\operatorname{Bd}_{N}^{\mu}(A) = \varphi$. (v) $\operatorname{Bd}_{N}^{\mu}(\operatorname{Nint}^{\mu}(A)) = \varphi$. (vi) $\operatorname{Nint}^{\mu}(\operatorname{Bd}_{N}^{\mu}(A)) = \varphi$. (vii) $\operatorname{Bd}_{N}^{\mu}(\operatorname{Bd}_{N}^{\mu}(A)) = \operatorname{Bd}_{N}^{\mu}(A)$. (viii) $\operatorname{Bd}_{N}^{\mu}(A) = A \cap \operatorname{Ncl}^{\mu}(X - A)$. (ix) $\operatorname{Bd}_{N}^{\mu}(A) = \operatorname{D}_{N}^{\mu}(X - A)$.

Proof

- (i) Obvious, since every supra open set is supra N-open set.
- (ii) Nint^{μ}(A) \cup Bd_N^{μ} (A)=Nint^{μ}(A) \cup (A - Nint^{μ}(A))=A.
- (iii) $\operatorname{Nint}^{\mu}(A) \cap \operatorname{Bd}_{N}^{\mu}(A) = \operatorname{Nint}^{\mu}(A) \cap (A \operatorname{Nint}^{\mu}(A)) = \varphi.$
- (iv) $Bd_N^{\mu}(A) = A Nint^{\mu}(A) = \phi$ iff A is supra N-open.
- (v) $\operatorname{Bd}_{N}^{\mu}$ (Nint^{μ}(A)) = Nint^{μ}(A) Nint^{μ}(Nint^{μ}(A)) = φ .
- (vi) If $x \in \operatorname{Nint}^{\mu}(\operatorname{Bd}_{N}^{\mu}(A))$, then $x \in \operatorname{Bd}_{N}^{\mu}$ (A). On the other hand, since $\operatorname{Bd}_{N}^{\mu}$ (A) \subseteq A, $x \in \operatorname{Nint}^{\mu}(\operatorname{Bd}_{N}^{\mu}(A)) \subseteq$ Nint^{μ}(A). Hence $x \in \operatorname{Nint}^{\mu}(A) \cap \operatorname{Bd}_{N}^{\mu}$ (A), which contradicts (iii). Hence Nint^{μ}(Bd_N^{μ}(A)) = φ .
- (vii) $\begin{array}{ll} Bd_N^{\mu}(Bd_N^{\mu}(A)) = Bd_N^{\mu}(A-\operatorname{Nint}^{\mu}(A)) = \\ (A-\operatorname{Nint}^{\mu}(A)) \operatorname{Nint}^{\mu}(A-\operatorname{Nint}^{\mu}(A)) = \\ A-\operatorname{Nint}^{\mu}(A) = Bd_N^{\mu}(A). \end{array}$
- (viii) $Bd_N^{\mu}(A) = A Nint^{\mu}(A) = A-(X-Ncl^{\mu}(X-A)) = A \cap Ncl^{\mu}(X-A).$
- (ix) $Bd_N{}^{\mu}(A) = A Nint^{\mu}(A) = A (A D_N{}^{\mu}(X A)) = D_N{}^{\mu}(X A).$

The proof of the above theorem is shown by the following example.

Example 4.3 Let $X=\{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. $\tau^c = \{X, \phi, \{b, c\}, \{c\}\}$. supra N-open sets are $\{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. supra N-closed sets are $\{X, \phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$.

- (i) Let $A = \{b, c\}$. $Bd_N^{\mu} \{b, c\} = \{c\}$ and $Bd^{\mu} \{b, c\} = \{b, c\}$. Hence $Bd_N^{\mu} (A) \subset Bd^{\mu}(A)$.
- (ii) Let $A=\{b, c\}$. $Bd_N^{\mu} \{b, c\} = \{c\}$ and Nint^{μ} {b, c} = {b}. Hence $A = Nint^{\mu} \cup Bd_N^{\mu}(A)$.

- $\begin{array}{ll} (iii) & \mbox{ Let } A{=}\{b, c\}. \ Bd_N{}^\mu \ \{b, c\} = \{c\} \ and \\ Nint^\mu \ \{b, c\} = \{b\}. \ Hence \ Nint^\mu \ \cap \\ Bd_N{}^\mu \ (A) = \phi. \end{array}$
- (iv) Let $A=\{a, c\}$ is supra N-open set. Bd_N^µ $\{a, c\} = \varphi$. Hence A is supra N-open iff Bd_N^µ(A) = φ .
- (v) Let $A=\{a, c\}$. Nint^{μ} $\{a, c\} = \{a, c\}$ and $Bd_N^{\mu}\{a, c\} = \phi$. Hence $Bd_N^{\mu}(Nint^{\mu}(A)) = \phi$.
- (vi) Let $A=\{a, c\}$. Nint^{μ}($Bd_N^{\mu} \{a, c\}$) = Nint^{μ}(ϕ) = ϕ . Hence Nint^{μ}(Bd_N^{μ} (A)) = ϕ .
- (vii) Let $A=\{c\}$. $Bd_N^{\mu} (Bd_N^{\mu} \{c\}) = Bd_N^{\mu}$ ({c}) = {c}. Hence $Bd_N^{\mu} (Bd_N^{\mu} (A)) = Bd_N^{\mu} (A)$.
- $\begin{array}{ll} (viii) & \mbox{Let } A {=} \{c\}. \ Bd_N{}^\mu \ \{c\} {=} \{c\}. \ Ncl^\mu (X \\ \{c\}) {=} \ X. \ A \cap Ncl^\mu (X A) {=} \ \{c\}. \\ & \mbox{Hence } Bd_N{}^\mu (A) {=} \ A \cap Ncl^\mu (X A). \end{array}$
- (ix) Let $A = \{c\}$. $Bd_N^{\mu} \{c\} = \{c\}$ and $D_N^{\mu} (X \{c\}) = \{c\}$. Hence $Bd_N^{\mu}(A) = D_N^{\mu} (X A)$.

5. SUPRA N-FRONTIER

Definition 5.1 For a subset A of a supra topological space X, $Fr_N^{\mu}(A) = Ncl^{\mu}(A)-Nint^{\mu}(A)$ is said to be supra N-Frontier of A.

Theorem 5.2 For a subset A of a supra topological space X, the following statements hold:

(i)
$$\operatorname{Fr}_{N}^{\mu}(A) \subseteq \operatorname{Fr}^{\mu}(A)$$
, where $\operatorname{Fr}^{\mu}(A)$
denotes supra frontier of A.

- (ii) $\operatorname{Ncl}^{\mu}(A) = \operatorname{Nint}^{\mu}(A) \cup \operatorname{Fr}_{N}^{\mu}(A).$
- (iii) $\operatorname{Nint}^{\mu}(A) \cap \operatorname{Fr}_{N}^{\mu}(A) = \varphi.$
- (iv) $\operatorname{Bd}_{N}^{\mu}(A) \subseteq \operatorname{Fr}_{N}^{\mu}(A).$
- (v) $\operatorname{Fr}_{N}^{\mu}(A) = \operatorname{Ncl}^{\mu}(A) \cap \operatorname{Ncl}^{\mu}(X A).$
- (vi) $Fr_N^{\mu}(A) = Fr_N^{\mu}(X A).$
- (vii) $\operatorname{Fr_N}^{\mu}(A)$ is supra N-closed.
- (viii) $\operatorname{Fr}_{N}^{\mu}(\operatorname{Fr}_{N}^{\mu}(A)) \subseteq \operatorname{Fr}_{N}^{\mu}(A).$
- (ix) $\operatorname{Nint}^{\mu}(A) = A \operatorname{Fr}_{N}^{\mu}(A).$

Proof

- (i) Let $x \in Fr_N^{\mu}(A)$ then $x \in Ncl^{\mu}(A) Nint^{\mu}(A)$, implies $x \in cl^{\mu}(A) int^{\mu}(A)$. Hence $x \in Fr^{\mu}(A)$. Therefore $Fr_N^{\mu}(A) \subseteq Fr^{\mu}(A)$.
- (ii) $\begin{array}{l} \operatorname{Nint}^{\mu}(A) \cup \operatorname{Fr}_{N}^{\mu}(A) = \operatorname{Nint}^{\mu}(A) \cup \\ (\operatorname{Ncl}^{\mu}(A) \operatorname{Nint}^{\mu}(A)) = \operatorname{Ncl}^{\mu}(A). \end{array}$
- (iii) $\operatorname{Nint}^{\mu}(A) \cap \operatorname{Fr}_{N}^{\mu}(A) = \operatorname{Nint}^{\mu}(A) \cap (\operatorname{Ncl}^{\mu}(A) \operatorname{Nint}^{\mu}(A)) = \varphi.$
- (iv) Let $x \in Bd^{\mu}_{N}(A)$, implies $x \in A$ -Nint^{μ}(A), implies $x \in A$ and $x \notin$ Nint^{μ}(A). Implies $x \in Ncl^{\mu}(A)$. Therefore $x \in Fr_{N}^{\mu}(A)$. Hence $Bd^{\mu}_{N}(A) \subseteq Fr_{N}^{\mu}(A)$.
- (v) $\begin{aligned} & Fr_N^{\ \mu}\left(A\right) = Ncl^{\mu}(A) Nint^{\mu}(A) = \\ & Ncl^{\mu}(A) \cap Ncl^{\mu}(X A). \end{aligned}$
- (vi) $\begin{aligned} & \operatorname{Fr}_{N}^{\mu}(A) = \operatorname{Ncl}^{\mu}(A) \operatorname{Nint}^{\mu}(A) = (X \operatorname{Nint}^{\mu}(A)) (X \operatorname{Ncl}^{\mu}(A)) = \operatorname{Ncl}^{\mu}(X A) \\ & -\operatorname{Nint}^{\mu}(X A) = \operatorname{Fr}_{N}^{\mu}(X A). \end{aligned}$
- (vii) $Ncl^{\mu}(Fr_{N}^{\mu}(A)) =$ $Ncl^{\mu}(Ncl^{\mu}(A) \cap Ncl^{\mu}(X-A)) = Ncl^{\mu}(A)$

 $\bigcap \text{Ncl}^{\mu}(X-A) = \text{Fr}_{N}^{\mu} (A). \text{ Hence } \text{Fr}_{N}^{\mu}$ (A) is supra N-closed.

- (viii) $\begin{array}{l} \operatorname{Fr}_{N}^{\mu}(\operatorname{Fr}_{N}^{\mu}(A)=\operatorname{Ncl}^{\mu}(\operatorname{Fr}_{N}^{\mu}\\ (A))\cap\operatorname{Ncl}^{\mu}(X-\operatorname{Fr}_{N}^{\mu}(A))\subseteq\operatorname{Ncl}^{\mu}(\operatorname{Fr}_{N}^{\mu}\\ (A))=\operatorname{Fr}_{N}^{\mu}(A). \text{ Hence } \operatorname{Fr}_{N}^{\mu}(\operatorname{Fr}_{N}^{\mu}\\ (A))\subseteq\operatorname{Fr}_{N}^{\mu}(A). \end{array}$
- (ix) $\begin{aligned} A Fr_N^{\mu}(A) &= A (Ncl^{\mu}(A) Nint^{\mu}(A)) &= Nint^{\mu}(A). \text{ Hence Nint}^{\mu}(A) \\ &= A Fr_N^{\mu}(A). \end{aligned}$

The proof of the above theorem is shown by the following example.

Example 5.3 Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a, b\}\}$ and $\tau^c = \{X, \phi, \{c\}\}$. N- open set are $\{X, \phi, \{a, b\}, \{a\}, \{b\}\}$. N-closed set are $\{X, \phi, \{b, c\}, \{a, c\}, \{c\}\}$.

- (i) Let $A=\{a\}$. F r^{μ} $\{a\} = X$ and Fr_{N}^{μ} $\{a\}$ = $\{c\}$. Therefore Fr_{N}^{μ} $(A) \subseteq Fr^{\mu}(A)$.
- (ii) Let $A = \{a\}$. $Ncl^{\mu} \{a\} = \{a, c\}$. $Nint^{\mu} \{a\} = \{a\}$ and $Fr_{N}^{\mu} \{a\} = \{c\}$. Hence $Ncl^{\mu}(A) = Nint^{\mu}(A) \cup Fr_{N}^{\mu}(A)$.
- (iii) Let $A=\{a\}$. Nint^{μ} $\{a\} = \{a\}$ and Fr_N^{μ} $\{a\} = \{c\}$. Hence $Nint^{\mu}(A) \cap Fr_N^{\mu}(A)$ $= \phi$.
- (iv) Let $A=\{b, c\}$. $Bd^{\mu}_{N} \{b, c\} = \{c\}$. $Fr_{N}^{\mu} \{b, c\} = \{c\}$. Hence $Bd^{\mu}_{N} (A) \subseteq Fr_{N}^{\mu}$ (A).
- (v) Let $A=\{a, b\}$. $Ncl^{\mu}\{a, b\} = X$. $Ncl^{\mu}(X - \{a, b\}) = \{c\}$ and $Fr_{N}^{\mu}\{a, b\}$ $= \{c\}$. Hence $Fr_{N}^{\mu}(A) = Ncl^{\mu}(A) \cap$ $Ncl^{\mu}(X - A)$.
- (vi) Let $A=\{a\}$. $Fr_N^{\mu} \{a\} = \{c\}$ and $Fr_N^{\mu} (X \{a\}) = \{c\}$. Hence $Fr_N^{\mu} (A) = Fr_N^{\mu} (X A)$.
- (vii) Let $A=\{b, c\}$. $Fr_N^{\mu}\{b, c\} = \{c\}$, which is supra N-closed set.
- (viii) Let $A = \{b, c\}$. $Fr_N^{\mu} (Fr_N^{\mu} \{b, c\}) = Fr_N^{\mu} (\{c\}) = \{c\}$. Hence $Fr_N^{\mu} (Fr_N^{\mu} (A)) \subseteq Fr_N^{\mu} (A)$.
- (ix) Let $A=\{b, c\}$. $Fr_N^{\mu}(\{b, c\})=\{c\}$. Nint^{μ}($\{b, c\}$) = $\{b\}$. $A - Fr_N^{\mu}(A) = \{b\}$. Hence Nint^{μ}(A) = $A - Fr_N^{\mu}(A)$.

6. SUPRA N-EXTERIOR

Definition 6.1 For a subset A of a supra topological space X, $Ext_N^{\mu}(A) = Nint^{\mu}(X - A)$ is said to be supra N-exterior of A.

Theorem 6.2 For a subset A of a supra topological space X, the following statement holds.

- (i) $\operatorname{Ext}^{\mu}(A) \subseteq \operatorname{Ext}_{N}^{\mu}(A)$, where $\operatorname{Ext}^{\mu}(A)$ denotes supra exterior of A.
- (ii) $\operatorname{Ext}_{N}^{\mu}(A)$ is supra N-open.
- (iii) $Ext_N^{\mu}(A) = Nint^{\mu}(X A) = X Ncl^{\mu}(A).$
- (iv) $\operatorname{Ext}_{N}^{\mu}(\operatorname{Ext}_{N}^{\mu}(A)) = \operatorname{Nint}^{\mu}(\operatorname{Ncl}^{\mu}(A)).$
- (v) If $A \subseteq B$, then $\operatorname{Ext}_{N}^{\mu}(A) \supseteq \operatorname{Ext}_{N}^{\mu}(B)$.
- (vi) $\operatorname{Ext}_{N}^{\mu}(A \cup B) \subseteq \operatorname{Ext}_{N}^{\mu}(A) \cup \operatorname{Ext}_{N}^{\mu}$ (B).
- (vii) $\operatorname{Ext}_{N}^{\mu}(A \cap B) \supseteq \operatorname{Ext}_{N}^{\mu}(A) \cap \operatorname{Ext}_{N}^{\mu}$ (B).

- (viii) $\operatorname{Ext}_{N}^{\mu}(X) = \varphi.$
- (ix) $\operatorname{Ext}_{N}^{\mu}(\varphi) = X.$
- (x) $\operatorname{Ext}_{N}^{\mu}(A) = \operatorname{Ext}_{N}^{\mu}(X \operatorname{Ext}_{N}^{\mu}(A)).$
- (xi) $\operatorname{Nint}^{\mu}(A) \subseteq \operatorname{Ext}_{N}^{\mu}(\operatorname{Ext}_{N}^{\mu}(A).$
- (*xii*) $X=Nint^{\mu}(A) \cup Ext_{N}^{\mu}(A) \cup Fr_{N}^{\mu}(A).$
- Proof
 - (i) $\operatorname{Ext}^{\mu}(A) \subseteq \operatorname{Ext}_{N}^{\mu}(A)$, Since every supra open set is supra N-open set.
 - (ii) Nint^{μ}(Ext_N^{μ} (A))= Nint^{μ}(Nint^{μ}(X A))= Nint^{μ}(X – A)= Ext_N^{μ} (A). Therefore Ext_N^{μ}(A) is supra N-open.
 - (iii) It is obvious from the definition. (iv) $\operatorname{Ext}_{N}^{\mu}(\operatorname{Ext}_{N}^{\mu}(A)) = \operatorname{Ext}_{N}^{\mu}$
 - $(\operatorname{Nint}^{\mu}(X-A)) = \operatorname{Nint}^{\mu}(X-\operatorname{Nint}^{\mu}(X-A))$ $= \operatorname{Nint}^{\mu}(\operatorname{Ncl}^{\mu}(A)).$
 - $\begin{array}{ll} (v) & \quad \mbox{If } A \subseteq B, \mbox{ then } Ncl^{\mu}(A) \subseteq Ncl^{\mu}(B), \\ & \quad \mbox{ implies } X Ncl^{\mu}(A) \supseteq X Ncl^{\mu}(B). \\ & \quad \mbox{ Hence } Ext_{N}^{\ \mu}(A) \supseteq Ext_{N}^{\ \mu}\ (B). \end{array}$
 - $\begin{array}{ll} (\text{vi}) & \quad \operatorname{Ext}_{N}^{\mu}(A \cup B) = X \operatorname{-Ncl}^{\mu}(A \cup B) \subseteq (X \\ & \quad -\operatorname{Ncl}^{\mu}(A)) \cup (X \operatorname{Ncl}^{\mu}(B)) = \operatorname{Ext}_{N}^{\mu} \\ & \quad (A) \cup \operatorname{Ext}_{N}^{\mu}(B). \end{array}$
 - (vii) $\begin{aligned} & \operatorname{Ext}_{N}^{\mu}(A \cap B) = X \operatorname{-Ncl}^{\mu}(A \cap B) \supseteq (X \\ & -\operatorname{Ncl}^{\mu}(A)) \cap (X \operatorname{Ncl}^{\mu}(B)) = \operatorname{Ext}_{N}^{\mu} \\ & (A) \cap \operatorname{Ext}_{N}^{\mu}(B). \end{aligned}$
 - $(viii) \qquad Ext_N{}^{\mu}(X) {=} X {-} Ncl^{\mu}(X) {=} X {-} X {=} \phi.$
 - (ix) $\operatorname{Ext}_{N}^{\mu}(\phi) = X \cdot \operatorname{Ncl}^{\mu}(\phi) = X \cdot \phi = X.$
 - (x) $\operatorname{Ext}_{N}^{\mu} (X \operatorname{Ext}_{N}^{\mu} (A)) = \operatorname{Ext}_{N}^{\mu} (X \operatorname{Nint}^{\mu} (X A)) = \operatorname{Nint}^{\mu} (X (X \operatorname{Nint}^{\mu} (X A))) = \operatorname{Nint}^{\mu} (\operatorname{Nint}^{\mu} (X A)) = \operatorname{Nint}^{\mu} (X A) = \operatorname{Ext}_{N}^{\mu} (A).$
 - (xi)
 $$\begin{split} \operatorname{Nint}^{\mu}(A) &\subseteq \operatorname{Nint}^{\mu}(\operatorname{Ncl}^{\mu}(A)) \\ &= \operatorname{Nint}^{\mu}(X \operatorname{Nint}^{\mu}(X A)) = \operatorname{Ext}_{N}^{\mu}(X \operatorname{Ext}_{N}^{\mu}(A)) \\ &= \operatorname{Ext}_{N}^{\mu}(A)) = \operatorname{Ext}_{N}^{\mu}(\operatorname{Ext}_{N}^{\mu}(A)), \text{ from } \\ & (x). \end{split}$$
 - (xii) $\operatorname{Nint}^{\mu}(A) \cup \operatorname{Ext}_{N}^{\mu}(A) \cup \operatorname{Fr}_{N}^{\mu}(A) = \operatorname{Ext}_{N}^{\mu}(A) \cup \operatorname{Ncl}^{\mu}(A) = X.$

The proof of the above theorem is also seen from the following example.

Example 6.3 Let $X=\{a, b, c\}$ and $\tau = \{X, \phi, \{a, b\}\}$ and $\tau^c = \{X, \phi, \{c\}\}$. N- open set are $\{X, \phi, \{a, b\}, \{a\}, \{b\}\}$. N-closed set are $\{X, \phi, \{b, c\}, \{a, c\}, \{c\}\}$.

- (i) Let $A=\{a\}$. $Ext_N^{\mu}(\{a\}) = \{b\}$, $Ext^{\mu}(\{a\}) = \varphi$. Hence $Ext^{\mu}(A) \subseteq Ext_N^{\mu}(A)$.
- (ii) Let $A=\{a\}$. Ext_N^{μ} ($\{a\}$) = $\{b\}$, which is supra N-open.
- (iii) Let $A = \{a\}$. $Ext_N^{\mu}(\{a\}) = Nint^{\mu}(X \{a\}) = X Ncl^{\mu}(\{a\}) = \{b\}.$
- (iv) Let $A=\{a\}$. $Ext_N^{\mu}(Ext_N^{\mu}(\{a\}))$ =Nint^{μ}(Ncl^{μ}({a})) ={a}.
- $\begin{array}{ll} (v) & \mbox{ Let } A{=}\{a\} \mbox{ and } B{=}\{a,b\}. \ A \subseteq B. \\ & \mbox{ Ext}_N{}^\mu \left(\{a\}\right) = \{b\}. \ Ext_N{}^\mu \left(\{a,b\}\right) = \phi. \\ & \mbox{ Hence } Ext_N{}^\mu (A) \supseteq Ext_N{}^\mu (B). \end{array}$
- $\begin{array}{ll} (\text{vi}) & \quad \text{Let } A = \{a\} \text{ and } B = \{b\}. \ \text{Ext}_N{}^\mu{}\left(\{a\}\right) = \\ \{b\}. \ \text{Ext}_N{}^\mu{}\left(\{b\}\right) = \{b\}. \ \text{Ext}_N{}^\mu{}\left(\{a, b\}\right) \\ = \phi. \ \text{Hence } \text{Ext}_N{}^\mu{}\left(A \cup B\right) \subseteq \text{Ext}_N{}^\mu{}\left(A\right) \\ \cup \ \text{Ext}_N{}^\mu{}\left(B\right). \end{array}$

- $\begin{array}{ll} (\text{vii}) & \mbox{Let } A = \{a\} \mbox{ and } B = \{b\}. \mbox{Ext}_N{}^\mu \, (\{a\}) = \\ \{b\}. \mbox{Ext}_N{}^\mu \, (\{b\}) = \{b\}. \mbox{Ext}_N{}^\mu \, (\{\phi\}) \\ = X. \mbox{ Hence } \mbox{Ext}_N{}^\mu \, (A \cap B) \supseteq \mbox{Ext}_N{}^\mu \\ (A) \cup \mbox{Ext}_N{}^\mu \, (B). \end{array}$
- (viii) Obvious.
- (ix) Obvious.
- (x) Let $A=\{a\}$. $Ext_N^{\mu}(\{a\})=\{b\}$ and $Ext_N^{\mu}(X - Ext_N^{\mu}(\{a\})) = \{b\}$. Hence $Ext_N^{\mu}(A) = Ext_N^{\mu}(X - Ext_N^{\mu}(A))$.
- (xi) Let $A=\{a, b\}$. Nint^{μ}($\{a, b\}$)= ϕ . Ext_N^{μ} (Ext_N^{μ}($\{a, b\}$)=X. Hence Nint^{μ}(A) \subseteq Ext_N^{μ}(Ext_N^{μ}(A).
- $\begin{array}{ll} (xii) & \mbox{ Let } A{=}\{a\}.\ Nint^{\mu}(\{a\}) = \{a\}.\ Ext_N{}^{\mu} \\ (\{a\}) = \{b\}.\ Fr_N{}^{\mu}\,(\{a\}) = \{c\}.\ Hence \\ X{=}Nint^{\mu}(A) \cup Ext_N{}^{\mu}\,(A) \cup Fr_N{}^{\mu}\,(A). \end{array}$

7. SOME SEPARATION AXIOMS.

Definition 7.1 A space (X, τ) is said to be supra N-T₀, if for x, y $\in X$ such that $x \neq y$, there exist a supra N-open set U of X containing x but not y (or) a supra N-open set V of X containing y but not x.

Definition 7.2 A space (X, τ) is said to be supra N-T₁, if for x,y $\in X$ such that $x \neq y$, there exist a supra N-open set U of X containing x but not y and a supra N-open set V of X containing y but not x.

Definition 7.3 A space (X, τ) is said to be supra N-T₂, if for x,y $\in X$ such that $x \neq y$, there exist disjoint supra N-open set U and V such that $x \in U$ and $y \in$ V.

Remark 7.4 Every supra $N-T_1$ is supra $N-T_0$, converse need not be true. It is shown by the following example.

Example 7.5 Let X={a, b, c}. $\tau = \{X, \phi, \{a, b\}, \{a, c\}\}$. supra N-open sets are $\{X, \phi, \{a, b\}, \{a, c\}, \{a\}\}$. Let x=a and y=b. Then X is supra N-T₀ space but not an supra N-T₁ space, since there is no supra N-open set containing one point but not the other.

Remark 7.6 Every supra $N-T_2$ is supra $N-T_0$, converse need not be true. It is shown by the following example.

Example 7.7 Let X={a, b, c, d}. $\tau = \{X, \phi, \{a, b\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}\}$. supra N-open sets are $\{X, \phi, \{a, b\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}, \{a, b, c\}, \{d\}, \{c\}\}$. Let x=c and y=d. Then X is supra N-T₀ space but not an supra N-T₂ space, since there is no disjoint supra N-open sets containing c and d of X.

Theorem 7.8 Let $f:(X, \tau) \to (Y, \sigma)$ be a supra Nirresolute, injective map. If Y is supra N-T₁, then X is supra N-T₁.

Proof Let Y be supra N-T₁ space. Let $x, y \in X$, such that $x \neq y$. since f is injective map, then $f(x)\neq f(y)\in Y$. Since Y is supra N-T₁ space, there exist supra N-open set U and V in Y such that $f(x)\in U$, $f(x)\notin V$ and $f(y)\notin U$, $f(y)\in V$. Since f is supra N-irresolute, then $f^{-1}(U)$ and $f^{-1}(V)$ are supra

N-open sets in X. Then $x \in f^{-1}(U)$, $x \notin f^{-1}(V)$ and $y \in f^{-1}(V)$, $y \notin f^{-1}(U)$. Hence X is supra N-T₁ space.

Theorem 7.9 Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a supra Nirresolute, injective map. If Y is supra N-T₂, then X is supra N-T₂.

Proof Let Y be supra N-T₂ space. Let $x, y \in X$, such that $x \neq y$. since f is injective map, then $f(x)\neq f(y)\in Y$. Since Y is supra N-T₂ space, there exist supra N-open set U and V in Y such that $f(x)\in U$, $f(y)\in V$. Since f is supra N-irresolute, then $f^{-1}(U)$ and $f^{-1}(V)$ are supra N-open sets in X. Then $x\in f^{-1}(U)$, $y\in f^{-1}(V)$. Hence X is supra N-T₂ space.

REFERENCES

[1] S.Balasubramaiam, C. Sandhya and P. Aruna Swathi Vyjayanthi, On v–Ti, v– Ri and v – Ci-axioms, Scientia Magna, vol.4(2008), No.4, 86-103.

[2] R.Devi, S.Sampathkumar and M.Caldas, On supra α open sets and s α -continuous maps, General Mathematics, 16(2)(2008), Pages 77-84.

[3] N.Levine, Semi-open sets and Semi-continuity in topological spaces, Amer.Math., 12(1991), Pages 5-13.

[4] Mashhour, A.S., Allam, A.A., Mahmoud F.S and Khedr, F.H., On Supra topological spaces, Indian J.Pure and Appl. Math., 14(4) (1983), Pages 502-510.

[5] T.Noiri and O.R.Sayed, On Ω closed sets and Ω s closed sets in topological spaces, Acta Math, 4(2005), Pages307-318.

[6] L.Vidyarani and M.Vigneshwaran, On Supra N-closed and sN-closed sets in Supra Topological Spaces, International Journal of Mathematical Archive, Vol- 4,Issue-2,2013,pages 255-259.