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Abstract 

The phase stability and phase split problems can be 

formulated as minimization problems, or as 

equivalent nonlinear equation solving problems. 

There are several versions of this two-stage 

approach  With the choice of the proper 

thermodynamic state functions, the two stage 

framework can be applied to phase equilibrium 

problems with various types of specifications (e.g. 

Constant temperature and pressure, constant 

temperature and density, isentropic, isenthalpic, 

etc.). 

For determining phase equilibrium at constant 

temperature and pressure, the case considered here 

minimum in the total Gibbs energy of the system. 

Phase stability analysis may be interpreted as a 

global optimality test that determines whether the 

phase being tested corresponds to a global 

minimum in the total Gibbs energy of the system. 

An alternative approach for solving the phase 

stability problem is the use of interval analysis 

which uses an interval Newton/generalized 

bisectionAlgorithm, NRTL Model and SAFT 

method. 
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Introduction 

In liquid mixtures, the phase splitting is related to 

thermodynamic stability of the system which 

comprises information for the projection, modelling 

and simulation of industrial processes that involve 

liquid phase separation. Phase stability analysis 

allows determination of the exact number of 

coexisting phases in stable equilibrium and also 

provides estimation of phase compositions, 

affording a suitable initialization for phase 

equilibrium calculations.In fluid mechanics, stable 

flow is best described as flow that will be 

maintained  

 

in spite of small disturbances or perturbations to the 

flow. The flow is unstable if a small disturbance 

will lead to the flow to progressively depart from 

the initial base state. 

In stability theory, flow behaviour is first 

investigated by performing a linear stability 

analysis of steady state solutions satisfying 

appropriate equations of motion and boundary 

conditions. The stability of such a system is 

determined by examining its reaction to all possible 

infinitesimal disturbances to basic steady flow. 

These results provide the groundwork for further 

investigation of development of instabilities and 

evolution of unstable waveforms. Since these 

methods of analysis involve the linearization and 

numerical integration of nonlinear partial 

differential equations of motion. 

The phase equilibrium modelling is essential in the 

design, operation, optimization and control of 

separation schemes. Phase behaviour of multi-

component systems has great impact on process 

design including energy and equipment costs of 

separation and purification strategies Phase 

equilibrium calculations are usually executed 

thousands of times in process simulators which 

becomes important in chemical, petroleum, 

petrochemical, pharmaceutical and other process 

industries where separation units are the core of 

process performance. Hence, these calculations 

must be performed reliably and efficiently, to avoid 

uncertainties and errors in process design. 

Global optimization problems has three 

applications: (i) phase stability analysis, (ii) Gibbs 

free energy minimization and (iii) estimation of 

parameters in thermodynamic models. 

 

The optimization problems of these applications 

can be defined as follows: 

 

MinimizeFobj(u) subject to hj(u) = 0 for j = 1, 2, 

…, m and u € Ω 
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whereu is a vector of n continuous variables in the 

domain Ω € R
n
, 

mis the number of equality constraints arising from 

the specific thermodynamic application, and 

Fobj(u) : Ω R is a realvaluedfunction. The 

domain Ω is defined by the upper andlower limits 

of each decision variable. 

 

 

Phase Stability Analysis 

 

The phase stability is determined using tangent 

plane analysis. A phase at specified T, P, and feed 

mole fraction z is unstable if the Gibbs energy of 

mixing versus composition surface m = 

g
M

/RTever falls below a plane tangent to the 

surface at z. That is, if the tangent plane distance 

 

    (1) 

If Equation (1) is negative, for any composition x, 

the phase is unstable. The subscript „0‟ indicates 

evaluation at x = z, and n is the number of 

components. A common approach for determining 

if D is ever negative is to minimize D subject to the 

mole fractions summing to one. It is readily shown 

that the stationary points in this optimization 

problem can be found by solving the system of 

nonlinear equations: 

 

(2) 

 

(3) 

 

If an Equation of State (EOS) model uses m, so that 

m is expressed in terms of x and v, the molar 

volume of the mixture, then (2) and (3) must be 

solved simultaneously with the EOS. The model 

used here is the generalized cubic EOS 

 

 (4) 

 

The (n+1) × (n+1) system given by equations (2)-

(4) above has a trivial root at x = z and v = v0 and 

Frequently has multiple nontrivial roots as well. 

Thus conventional equation solving techniques 

such as Newton‟s method may fail by converging 

to the trivial root or give an incorrect answer to the 

phase stability problem by converging to a 

stationary point that is not the global minimum of 

D. 

 

Interval Newton/ Generalized Bisection Method 

 

The Interval Newton/Generalized Bisection 

(IN/GB) algorithm can solve phase stability 

problems for a generalized cubic equation of state 

model efficiently and with complete reliability. 

This Interval Newton/generalized bisection 

algorithm is entirely new method for solving these 

problems, a method that can guarantee with 

mathematical certainty that the correct solutions are 

found, thus eliminating computational problems 

that are frequently encountered with currently 

available techniques. The method is initialization 

independent; it is also model independent and can 

be applied in connection with other equations of 

state or with activity coefficient models. 

 

Efficient techniques for implementing IN/GB are a 

relatively recent development, and thus such 

methods have not yet been widely applied. 

Schnepper and Stadtherr have suggested the use of 

this method for solving chemical process modelling 

problems and can be successfully applied the 

method to chemical engineering problems. 

 

Consider the solution of the system of real 

nonlinear equations f(x) = 0, where it is desired to 

find all solutions in an specified initial interval 

X(0). The basic iteration step in interval Newton 

methods is, given an interval X (k), to solve the 

linear interval equation system 

 

F‟(X
(k)

)(N
(k)

 – x
(k)

) = −f(x
(k)

) …………………(5) 

 

for a new interval N
(k)

, where k is an iteration 

counter, F‟(X
(k)

) is an interval extension of the real 

Jacobian f‟(x) of f(x) over the current interval X
(k)

, 

and x
(k)

 is a point in the interior of X
 (k)

, usually 

taken to be the midpoint. Theinterval extension 

F¢(X(k)) of the Jacobian is determined by 

substituting the interval X(k) for x in the expression 

f‟(x) for the real Jacobian, and performing interval 

operations in place of real operations. It can be 

shown that any root x* of the set of equations that 

is within the current interval, i.e. x* € X
(k)

, is also 

contained in the newly computed interval N
(k)

. This 

suggests that the next iteration for X should be the 

intersection of X(k) with N(k), i.e. X
(k+1)

 = X
(k)

 ∩ 

N
(k)

. There are various interval Newton methods, 

which differ in how they determine N
(k)

 from 

equation (5) and thus in the tightness with which 

N
(k)

 encloses the solution set of (5). 

 

NRTL Model 

 

Interval Newton method is another approach for the 

phase stability analysis which was proposed about 

10 years ago is a generalized bisection algorithm 

with some modifications and is relatively less 

sensitive to initial values, and provides all the roots 

including global optimum.  

 

The activity coefficient model of NRTL predict 

multiple roots in phase equilibrium calculations.For 
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an n component system, the NRTL equation for the 

reduced molar excess Gibbs energy is as follows, 

 

 

 

wherexkis the mole fraction for species k, and 

τikand Gikare the NRTL binary 

interactionparameters. Above equationuses the 

mole fraction weighted averages of the interaction 

parameters to improve the efficiency of the interval 

method. The parameter Gikis a function of τikand 

the parameter αik= αki, and is given by  

 

 

Statistical Associating Fluid Theory EOS 

Method 

 

For a given mixture with or without multiple 

phases, the determination of phase stability is a key 

step in phase equilibrium computations, providing 

a global optimality test for the minimization of the 

total Gibbs energy. The determination of phase 

stability is typically done using tangent plane 

analysis. For a mixture at constant T, P, and 

composition (mole fractions) x0, the tangent plane 

condition is usually expressed in terms of the molar 

Gibbs energy of the mixture as a function of molar 

composition and volume (or density). The mixture 

is not stable if the molar Gibbs energy surface 

g(X,δ)ever falls below a plane tangent to the 

surface at x0. 

 

The SAFT EOS is most conveniently expressed in 

terms of the Helmholtz energy. Here we use a 

“volume-based” formulation of tangent plane 

analysis in which the Helmholtz energy is the core 

function. For this case, the tangent plane condition 

is expressed in terms of the Helmholtz energy 

density (Helmholtz energy per unit volume of 

mixture) as a function of the molar component 

density vector ρ=(ρ1 ρ2……….ρN)
T
. A mixture (the 

“feed” or “test phase”) at constant T, P and 

composition (molar densities) ρ0 is not stable if the 

Helmholtz energy density surface α(ρ) ever falls 

below a plane tangent to the surface at ρ0. 

 

The SAFT EOS is generally expressed in terms of 

the residual Helmholtz energy per unit mole of 

mixture α
res

. There are hard sphere, dispersion, 

chain and association contributions that must be 

accounted for, so 

 

α
res

= α
hs

 + α
disp

 + α
chain

 + α
assoc

 (6) 

 

Huang and Radosz described a model for SAFT. 

The hard sphere contribution α
hs

 is based on the 

hard sphere EOS as expressed by Boublik and is 

given by 

 

                (7) 

 

Where  

 

Where is the total molar density of the mixture, xi 

is the mole fraction of compound iin the mixture, N 

is the number of components in the mixture, NA is 

Avogadro‟s number, j is an exponent, and dii is the 

temperature-dependent segment diameter given by 

 

(4) 

 

Where                             (5) 

 

Where k  is Boltzmann‟s constant, and  

is the packing fraction for close-packed spheres. 

The dispersion term α
disp

 used by Huang and 

Radosz is  

 

                 (6) 

 

Where 

 

              (7) 

 

(8) 

 

              (9) 

 

(10) 

 

(11) 

 

(12) 

(13) 

 

The Dij are the Chen and Kreglewski constants,  

e/k = 10,  

The kij are binary interaction parameters  

 

The chain term, α
chain

 byChapman is based on the 

pair correlation function,  in the form of 

Boublik and is given by 

 

               

(14) 

 

Where  
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(15) 

 

The more general pair correlation function required 

is  

 

     

(16) 

 

The association term is α
assoc

is 

      

(17) 

 

where the summation over Ai indicates summation 

over all association sites on component i. Here Mi 

is 

the number of association sites on component i, and 

X
A

i  is the mole fraction of molecules of i which are 

not bonded at the association site Ai. This is 

determined from 

 

(18) 

where the summation over Bj indicates summation 

over all association sites on component j. 

 

When there are association effects to be accounted 

for, evaluation of the SAFT EOS requires an 

“internal” iteration to solve for the “internal” 

variables X
A

i , except in some special cases in 

which it is possible to solve for these variables 

explicitly. The  strength function  is defined as 

 

 

(19) 

 

Where                                                       

(20) 

 

are SAFT parameters. 

 

Eqs. (1), (2), (6), (14) and (17) provide an 

expression for the SAFT EOS in terms of the molar 

residual 

Helmholtz energy are (x,δ) given (at constant 

temperature) as a function of composition (mole 

fraction) 

x = (x1………. xN)
T
 and total molar density δ.  

 

Thus the SAFT EOS is most conveniently 

expressed in terms of the Helmholtz energy, as 

discussed above. Here a “volume-based” 

formulation of tangent plane analysis is used in 

which the Helmholtz energy is the core function 

and hence the tangent plane condition is expressed 

in terms of the Helmholtz energy density 

(Helmholtz energy per unit volume of mixture) as a 

function of the molar component density vector ρ = 

(ρ1 ρ2……….ρN)
T
. A mixture (the “feed” or “test 

phase”) at constant T, P, and composition (molar 

densities) ρ0 is not stable if the Helmholtz energy 

density surface α(ρ) ever falls below a plane 

tangent to the surface at ρ0. 

 

CONCLUSION 

 

In molecularly-based equations of state, SAFT 

approach have become increasingly popular tools 

for the modelling of phase behaviour.Using this, or 

even much simpler models, the reliable calculation 

of phase behaviour from a given model can be a 

very challenging computational problem. A new 

methodology is described that is the first 

completely reliable technique for computing phase 

stability and equilibrium from the SAFT model. 

The method is based on interval analysis, in 

particular an interval Newton/generalized bisection 

algorithm, which provides a mathematical and 

computational guarantee of reliability. 

 

 New techniques are presented that can also be 

exploited when conventional point-valued solution 

methods are used. These include the use of a 

volume-based problem formulation, in which the 

core thermodynamic function for phase equilibrium 

at constant temperature and pressure is the 

Helmholtz energy, and an approach for dealing 

with the internal iteration needed when there are 

association effects. This provides for direct, as 

opposed to iterative, determination of the 

derivatives of the internal variables. 

 

An interval Newton/generalized bisection 

Algorithm is applied to problems modelled with 

cubic equations of state, and efforts were made to 

improve the computational efficiency of the 

approach, both for EOS models and for excess 

Gibbs energy models. 

 

Systems which are non-ideal and the local 

composition model of NRTL may have multiple 

roots, the interval method successfully has 

predictsall the stationary points in the tangent plane 

distance function. 

 

The SAFT EOS is most conveniently expressed in 

terms of the Helmholtz energy, we use a “volume-

based” formulation of the phase stability and 

equilibrium problems at constant temperature and 

pressure, in which the core thermodynamic 

function is the Helmholtz energy. 
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