# A New Notion of Generalized Closed Sets in Topological Spaces

C. Sekar<sup>#1</sup>, J. RajaKumari<sup>\*2</sup>

<sup>#1</sup>Associate Professor (Rtd), Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur- 628216, TamilNadu, India.

<sup>\*2</sup> Assistant Professor, Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur- 628216, TamilNadu, India.

**Abstract** — In this paper, a new class of sets in topological spaces namely, alpha generalized star preclosed (briefly  $\alpha g^* p$ -closed) set is introduced. This class falls strictly in between the classes of gp\*-closed and g\*p-closed sets. Also we studied the characteristics and the relationship of this class of sets with the already existing class of closed sets. Further the complement of  $\alpha g^* p$ -closed set that is  $\alpha g^* p$ -open set has been imtroduced and investigated. **Keywords** — $\alpha g^* p$ -closed set,  $\alpha g^* p$ -open set,  $\alpha g^* p$ closure,  $\alpha g^* p$ -interior,  $\alpha g^* p$ -derived set.

## I. INTRODUCTION

In 1970, Levine [7] introduced the concept of generalized closed set and discussed their properties, closed and open maps, compactness, normal and separation axioms. A.S.Mashor, M.E.Abd El-Monsef and E1-Deeb.S.N., [12] introduced preopen sets in topological spaces and investigated their properties. Later in 1998 H.Maki, T.Noiri [11] introduced a new type of generalized closed sets in topological spaces called gp-closed sets. The study on generalization of closed sets has lead to significant contribution to the theory of separation axioms, generalization of continuous and irresolute functions. H.Maki et.al. ([9],[10]) generalized  $\alpha$ -open sets in two ways and introduced generalized  $\alpha$ -closed(briefly g $\alpha$ -closed) sets and  $\alpha$ -generalized closed(briefly  $\alpha$ g-closed) sets in 1993 and 1994 respectively.

M.K.R.S.Veera kumar [21] introduced the concepts of generalized star preclosed sets and generalized star preopen sets in a topological space. Recently, P. Java kumar[6] introduced and studied gp\*-closed sets.In this paper we introduce and study a new type of closed set namely 'ag\*p-closed sets' in topological spaces. The aim of this paper is to study of  $\alpha g^* p$ -closed sets thereby contributing new innovations and concepts in the field of topology through analytical as well as research works. The notion of ag\*p-closed sets and its different characterizations are given in this paper.

Throughout this paper  $(X, \tau)$  and  $(Y,\sigma)$  represents topological spaces on which no separation axioms are assumed, unless otherwise mentioned. For a subset A of X, the closure of A and interior of A

will be denoted by cl(A) and int(A) respectively. The union of all preopen sets of X contained in A is called pre-interior of A and it is denoted by pint(A). The intersection of all preclosed sets of X containing A is called pre-closure of A and it is denoted by pcl(A).

## II. PRELIMINARIES

# Definition 2.1:

A subset A of a topological space (X,  $\tau$  ) is called

(i) preopen [12] if  $A \subseteq$  int (cl (A)) and preclosed if cl (int(A))  $\subseteq A$ .

(ii) semi-open [8] if  $A \subseteq cl$  (int (A)) and semi-closed if int (cl (A))  $\subseteq A$ .

(iii)  $\alpha$ -open [16] if  $A \subseteq$  int (cl (int (A))) and  $\alpha$ -closed if cl(int(cl(A)))  $\subseteq A$ .

(iv) semi-preopen [1] ( $\beta$ -open) if  $A \subseteq cl(int(cl(A)))$ and semi-preclosed ( $\beta$ -closed) if int (cl (int (A)))  $\subseteq A$ . (v) regular open [20] if A = int (cl(A)) and regular closed if A = cl (int (A)).

## **Definition 2.2:**

A subset A of a topological space  $(X, \tau)$  is called (i) generalized closed (briefly, g-closed)[7] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in X.

(ii) semi-generalized closed (briefly, sg-closed)[3] if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is semi-open in X.

(iii) generalized semi-closed(briefly, gs-closed)[2] if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in X.

(iv) generalized  $\alpha$ -closed(briefly,  $g\alpha$ -closed)[10] if  $\alpha$ cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\alpha$ -open in X.

(v)  $\alpha$ -generalized closed(briefly,  $\alpha$ g-closed)[9] if  $\alpha$ cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is open in X.

(vi) generalized preclosed(briefly, gp-closed)[11] if  $pcl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in X.

(vii)generalized semi-preclosed(briefly,gsp-closed)[4] if  $spcl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in X.

(viii)generalized pre regular closed(briefly,gpr-closed) [5] if  $pcl(A) \subseteq U$  whenever  $A \subseteq U$  and U is regular open in X.

(ix)weakly generalized closed (briefly, wg-closed) [14] if  $cl(int(A)) \subseteq U$  whenever  $A \subseteq U$  and U is open in X.

(x)regular weakly generalized closed (briefly, rwgclosed)[14] if  $cl(int(A)) \subseteq U$  whenever  $A \subseteq U$  and U is regular open in X.

(xi)strongly generalized closed (briefly ,g\*-closed)[23] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is g-open in X.

(xii)mildly generealized closed (briefly, mg-closed) [18] if  $cl(int(A)) \subseteq U$  whenever  $A \subseteq U$  and U is gopen in X.

(xiii)generalized star preclosed (briefly, g\*p-closed set) [21] if pcl (A)  $\subseteq$  U whenever A  $\subseteq$  U and U is gopen in X.

(xiv)generalized pre star closed (briefly gp\*-closed set) [6] if cl (A)  $\subseteq$  U whenever A  $\subseteq$  U and U is gp-open in X.

 $(xv)\alpha$ -generalized star closed (briefly,  $\alpha g^*$ -closed set) if  $\alpha cl (A) \subseteq U$  whenever  $A \subseteq U$  and U is  $\alpha g$ -open in X.

(xvi)presemi-closed set[22] if spcl (A)  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\alpha$ g-open in X.

The complements of the above mentioned closed sets are their respective open sets.

## **Definition 2.3:**[15]

Let  $(X, \tau)$  be a topological space,  $A \subseteq X$  and  $x \in X$  then x is said to be a pre-limit point of A iff every preopen set containing x contains a point of A different from x.

#### **Definition 2.4:**[15]

Let  $(X, \tau)$  be a topological space and  $A \subseteq X$ . The set of all pre-limit points of A is said to be the pre derived set of A and is denoted by  $D_p[A]$ .

## **Definition 2.5:**

Let  $(X, \tau)$  be a topological space and let A, B be two non-void subsets of X. Then A and B are said to be pre-separated if  $A \cap pcl(B) = pcl(A) \cap B = \phi$ .

#### III. αG\*P - CLOSED SETS

In this section we introduce alpha generalized star preclosed sets and investigate some of their properties.

**Definition 3.1:** A subset A of a topological space  $(X, \tau)$  is called alpha generalized star preclosed set (briefly  $\alpha g^*p$ -closed) if pcl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\alpha g$ -open in X.

**Theorem 3.2:** Let A be  $\alpha g^*p$ -closed in  $(X, \tau)$ . Then pcl  $(A) \setminus A$  does not contain any non-empty  $\alpha g$ -closed set.

**Proof:** Suppose that F is a  $\alpha$ g-closed subset of pcl (A) \ A. Since X \ F is an  $\alpha$ g-open set with A  $\subseteq$  X \ F and A is  $\alpha$ g\*p- closed, pcl (A)  $\subseteq$  X \ F. Thus implies F  $\subseteq$  (X \ pcl(A))  $\cap$  (pcl(A) \ A)  $\subseteq$  (X \ pcl(A))  $\cap$  pcl(A) =  $\phi$ . Therefore F =  $\phi$ .

**Corollary 3.3:** Let A be a  $\alpha g^*p$ -closed set in  $(X, \tau)$ . Then pcl (A) \ A does not contain any non-empty  $\alpha$ closed set.

**Theorem 3.4:** Every preclosed set is  $\alpha g^*p$ -closed. **Proof:** Let A be any preclosed set in X. Let U be any  $\alpha g$ -open set containing A. Since A is a preclosed set ,we have pcl(A) = A. Therefore  $pcl(A) \subseteq U$ . Hence A is  $\alpha g^*p$ -closed in X.

The converse of above theorem need not be true as seen from the following example.

*Example 3.5:* Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi, \{a\}, \{b\}, \{a,c\}, \{a,b,c\}, X\}$ . Then  $\{a,b,d\}$  is a  $\alpha g^*p$ -closed set but not preclosed in X.

**Theorem 3.6:** Every closed(resp.  $\alpha$ -closed, regular closed) set is  $\alpha g^*p$ -closed.

**Proof:** The proof follows from the definitions and the fact that every closed(resp.  $\alpha$ -closed, regular closed) set is preclosed.

**Example 3.7:** Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi, \{a,b\}, X\}$ . Then  $\{a,c\}$  is a  $\alpha g^*p$ -closed set but not  $\alpha$ -closed in X.

*Example 3.8:* Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, X\}$ . Then  $\{d\}$  is a  $\alpha g^*p$ -closed set but not closed in X.

*Example 3.9:* Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi, \{a\}, \{b,c\}, \{a,b,c\}, X\}$ . Then  $\{b\}$  is a  $\alpha g^*p$ -closed set but not regular closed in X.

**Theorem 3.10:** Every  $gp^*$ -closed(resp.  $\alpha g^*$ -closed) set is  $\alpha g^*$ -closed.

**Proof:** Let A be any gp\*-closed (resp.  $\alpha$ g\*-closed) set in X. Let U be  $\alpha$ g-open set containing A. Since every

 $\alpha$ g-open set is gp-open, we have pcl(A) $\subseteq$ U. Hence A is  $\alpha$ g\*p-closed.

*Example 3.11:* Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi, \{a\}, X\}$ . The set  $\{c\}$  is  $\alpha g^*p$ -closed but not  $gp^*$ -closed set.

*Example 3.12:* Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi, \{c,d\}, X\}$ . The set  $\{c\}$  is  $\alpha g^*p$ -closed but not  $\alpha g^*$ -closed.

*Theorem 3.13:* i)Every αg\*p-closed set is gp-closed. ii) Every αg\*p-closed set is a gpr-closed set.

iii) Every  $\alpha g^*p$ -closed set is a gpr closed.

iv) Every  $\alpha g^*p$ -closed set is  $g^*p$ -closed.

**Proof:** i)Let A be any  $\alpha g^*p$ -closed set in X. Let U be open set containing A. Since every open set is  $\alpha g$ -open, we have pcl(A)  $\subseteq$  U. Hence A is gp-closed. The proof of (ii) to (iv)follows from the definitions

and the fact that every open(g - open) set is  $\alpha g \text{-} open$ .

The converse of above theorem need not be true as seen from the following example.

*Example 3.14:* Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, X\}$ . Then  $\{a,d\}$  is a gp-closed set but not  $\alpha g^*p$ -closed in X.

*Example 3.15:* Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, X\}$ . Then  $\{a,b\}$  is a gpr-closed set but not  $\alpha g^*p$ -closed in X.

*Example 3.16:* Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi, \{a,b\}, X\}$ . Then  $\{a,b,d\}$  is a gsp-closed set but not  $\alpha g^*p$ -closed in X.

*Example 3.17:* Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, X\}$ . Then  $\{a,d\}$  is a g\*p-closed set but not  $\alpha$ g\*p-closed in X.

**Theorem 3.18:** i)Every  $\alpha g^*p$ -closed set is mildly generalized (mg) closed.

ii) Every  $\alpha g^*p$ -closed set is weakly generalized(wg) closed.

iii)Every  $\alpha g^*p$ -closed set is regular weakly generalized(rwg) closed.

**Proof:** i)Let A be any  $\alpha g^*p$ -closed set in X. Let U be any g-open set containing A. Since every g-open set is  $\alpha g$ -open and  $cl(int(A) \subseteq pcl(A)$ , we have  $cl(int(A)) \subseteq$  U. Hence A is mildly generalized closed.

(ii) and (iii)follows from the fact that every mg-closed set is wg-closed(rwg-closed).

The converse of above theorem need not be true as seen from the following example.

*Example 3.19:* Let  $X = \{a,b,c,d\}$  be given the topology

$$\label{eq:table} \begin{split} \tau &= \{\phi,\{a\},\{b\},\{a,b\},\{b,c\},\{a,b,c\},\ X\}. \ Then \ \{a,b,d\} \\ is mildly generalized closed set but not $\alpha g^*p$-closed in $X$. \end{split}$$

*Example 3.20:* Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi,\{a\},\{b\},\{a,b\},X\}$ .

Then {b,c} is a weakly generalized closed set but not  $\alpha g^*p$ -closed in X.

*Example 3.21:* Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi,\{a\},\{b\},\{d\},\{a,b\},\{a,d\},\{a,b,d\},\{a,b,d\},X\}$ . Then  $\{a,b\}$  is rwg-closed but not  $\alpha g^*p$ -closed.

**Theorem 3.2:** Every  $\alpha g^*p$ -closed set is pre-semi closed.

**Proof:** Let A be any  $\alpha g^*p$ -closed set in X. Let U be any g-open set containing A. Since every g-open set is  $\alpha g$ -open and every preclosed set is semi-preclosed, we have spcl(A)  $\subseteq$  pcl(A)  $\subseteq$  U. Hence A is pre-semi closed.

The converse of above theorem need not be true as seen from the following example.

*Example 3.23:* Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}, X\}$ . Then  $\{a\}$  is a pre-semi closed set but not  $\alpha g^*p$ -closed in X.

**Remark 3.24:**  $\alpha g^*p$ -closed sets are independent of semi-closed sets and semi-preclosed sets as seen from the following example.

*Example 3.25:* Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi, \{a\}, \{b\}, \{a,c\}, \{a,c\}, \{a,b,c\}, X\}$ .

In this topological space  $(X, \tau)$ , a subset {b,c} is semi-closed and semi-preclosed but not  $\alpha g^*p$ -closed and {a,b,d} is a  $\alpha g^*p$ -closed set but not semi-closed, semi-preclosed.

**Remark 3.26:** The following examples show that  $\alpha g^*p$ -closed sets are independent of g-closed,  $g^*$ -closed, gg-closed, gg-closed, gg-closed.

*Example 3.27:* Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, X\}$ .

The set {b,d} is g-closed and g\*-closed but not  $\alpha$ g\*p-closed . The set {c} is  $\alpha$ g\*p-closed but not g-closed and g\*-closed .

**Example 3.28:** Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi, \{a,b\},X\}$ . The sets  $\{a\},\{b\}$  are  $\alpha g^*p$ -closed but not sg-closed, gs-closed,  $\alpha g$ -closed and  $g\alpha$ -closed.

*Example 3.29:* Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, X\}$ . The set  $\{a,c\}$  is sg-closed and gs-closed but not  $\alpha g^*p$ -closed.

**Example 3.30:** Let  $X = \{a,b,c,d\}$  be given the topology  $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, X\}$ . The set  $\{b,d\}$  is  $\alpha$ g-closed but not  $\alpha$ g\*p-closed.

From the above discussions we have the following implications:



## IV. PROPERTIES OF aG\*P-CLOSED SETS AND aG\*P-OPEN SETS

**Theorem 4.1:** Let A be a  $\alpha g^*p$ -closed set in  $(X, \tau)$ . Then A is preclosed iff pcl (A) \ A is  $\alpha g$ -closed. **Proof:** Suppose A is preclosed in X. Then pcl(A) = A

and so pcl(A)  $\setminus A = \phi$  which is  $\alpha g$ -closed in X. Conversely, Suppose pcl(A)  $\setminus A$  is  $\alpha g$ -closed in X. Since A is  $\alpha g^*p$ -closed, pcl(A)  $\setminus A$  does not contain any non-empty  $\alpha g$ -closed set in X. That is pcl(A)  $\setminus A$ =  $\phi$ . Hence A is preclosed.

**Theorem 4.2:** If A is  $\alpha g^*p$ -closed in  $(X, \tau)$  and if  $A \subseteq B \subseteq pcl(A)$  then B is also  $\alpha g^*p$ -closed in  $(X, \tau)$ . **Proof:** Let U be an  $\alpha g$ -open set of  $(X, \tau)$  such that B  $\subseteq$  U. Since  $A \subseteq$  U and A is  $\alpha g^*p$ -closed,  $pcl(A) \subseteq$  U. Since  $B \subseteq pcl(A)$ , we have  $pcl(B) \subseteq pcl(pcl(A)) =$  pcl(A). Thus  $pcl(B) \subseteq$  U. Hence B is a  $\alpha g^*p$ -closed set of  $(X, \tau)$ .

**Remark 4.3:** Union of two  $\alpha g^*p$ -closed sets need not be  $\alpha g^*p$ -closed.

**Remark 4.4:** The intersection of two  $\alpha g^*p$ -closed set is need not be a  $\alpha g^*p$ -closed set.

**Example 4.5:** Let  $X = \{a,b,c,d\}$  with  $\tau = \{\phi, \{a,b\}, X\}$ . The sets  $\{a\}$  and  $\{b\}$  are  $\alpha g^*p$ -closed sets but their union  $\{a,b\}$  is not a  $\alpha g^*p$ -closed set.

**Theorem 4.6:** For an element  $x \in X$ , then the set  $X \setminus \{x\}$  is a  $\alpha g^*p$ -closed set (or)  $\alpha g$ -open set.

**Proof:** Let  $x \in X$ . Suppose that  $X \setminus \{x\}$  is not  $\alpha$ g-open. Then X is the only  $\alpha$ g-open set containing  $X \setminus \{x\}$ . This implies  $pcl(X \setminus \{x\}) \subseteq X$ . Hence  $X \setminus \{x\}$  is  $\alpha g^*p$ closed in X. **Theorem 4.7:** If A is both  $\alpha g$ -open and  $\alpha g^*p$ -closed in X then A is preclosed.

**Proof:** Suppose A is  $\alpha$ g-open and  $\alpha$ g\*p-closed in X. Since A  $\subseteq$  A, pcl(A)  $\subseteq$  A. But Always A  $\subseteq$  pcl (A). Therefore A = pcl (A). Hence A is preclosed.

**Corollary 4.8:** Let A be a  $\alpha g$ -open set and  $\alpha g^* p$ -closed set in X. Suppose that F is preclosed in X. Then  $A \cap F$  is  $\alpha g^* p$ -closed in X.

**Proof:** By theorem 4.7, A is preclosed. So  $A \cap F$  is preclosed and hence  $A \cap F$  is an  $\alpha g^*p$ -closed in X.

**Theorem 4.9:** If A is both open and  $\alpha$ g-closed in X, then A is  $\alpha$ g\*p-closed in X.

**Proof:** Let  $A \subseteq U$  and U be  $\alpha$ g-open in X. Now  $A \subseteq A$ . By hypothesis  $\alpha cl(A) \subseteq A$ .Since every  $\alpha$ -closed set is preclosed,  $pcl(A) \subseteq \alpha cl(A)$ . Thus  $pcl(A) \subseteq A \subseteq U$ .Hence A is  $\alpha$ g\*p-closed in X.

**Definition 4.10:** Let  $B \subseteq A \subseteq X$ . Then we say that B is  $\alpha g^*p$ -closed relative to A if  $pcl_A(B) \subseteq U$  where B  $\subseteq U$  and U is  $\alpha g$ -open in A.

**Theorem 4.11:** Let  $B \subseteq A \subseteq X$  and Suppose that B is  $\alpha g^*p$ -closed in X. Then B is  $\alpha g^*p$ -closed relative to A.

**Proof:** Given that  $B \subseteq A \subseteq X$  and B is  $\alpha g^*p$ -closed in X. Let us assume that  $B \subseteq A \cap V$ , where V is  $\alpha g$ -open in X. Since B is  $\alpha g^*p$ -closed set,  $B \subseteq V$  implies pcl (B)  $\subseteq V$ . It follows that  $pcl_A(B) = pcl(B) \cap A \subseteq V \cap A$ . Therefore B is  $\alpha g^*p$ -closed relative to A.

**Theorem 4.12:** Let A and B be  $\alpha g^*p$ -closed sets such that  $D(A) \subseteq D_p(A)$  and  $D(B) \subseteq D_p(B)$  then  $A \cup B$  is  $\alpha g^*p$ -closed.

**Proof:** Let U be an  $\alpha g$ -open set such that  $A \cup B \subseteq U$ . Then  $pcl(A) \subseteq U$  and  $pcl(B) \subseteq U$ .However, for any set E,  $D_p(E) \subseteq D(E)$ .Therefore cl(A) = pcl(A) and cl(B) = pcl(B) and this shows  $cl(A \cup B) = cl(A) \cup cl(B) = pcl(A) \cup pcl(B)$ .That is  $pcl(A \cup B) \subseteq U$ . Hence  $A \cup B$  is  $\alpha g^*p$ -closed.

**Definition 4.13:** A subset A of a topological space  $(X, \tau)$  is called  $\alpha g^*p$ -open set if and only if  $X \setminus A$  is  $\alpha g^*p$ -closed in X. We denote the family of all  $\alpha g^*p$ -open sets in X by  $\alpha g^*p$ -O(X).

**Theorem 4.14:** If pint (A)  $\subseteq$  B  $\subseteq$  A and if A is  $\alpha g^*p$ -open in X then B is  $\alpha g^*p$ -open in X.

**Proof:** Suppose that pint (A)  $\subseteq$  B  $\subseteq$  A and A is  $\alpha g^*p$ open in X. Then X \ A  $\subseteq$  X \ B  $\subseteq$  pcl (X \ A). Since X \ A is  $\alpha g^*p$ -closed in X, we have X \ B is  $\alpha g^*p$ closed in X. Hence B is  $\alpha g^*p$ -open in X.

**Remark 4.15:** The intersection of two  $\alpha g^*p$ -open sets in X is generally not  $\alpha g^*p$ -open in X.

**Example 4.16:** Let  $X = \{a,b,c,d\}$  with  $\tau = \{\phi,\{a,b\}, X\}$ . The sets  $\{a,c\}$  and  $\{b,c\}$  are  $\alpha g^*p$ -open sets but their intersection  $\{c\}$  is not  $\alpha g^*p$ -open set.

**Theorem 4.17:** A set A is  $\alpha g^*p$ -open iff  $F \subseteq pint(A)$  whenever F is  $\alpha g$ -closed and  $F \subseteq A$ .

**Proof:** <u>Necessity</u>.Let A be  $\alpha$ g\*p-open set and suppose  $F \subseteq A$  where F is  $\alpha$ g-closed. By definition,  $X \setminus A$  is  $\alpha$ g\*p-closed. Also  $X \setminus A$  is contained in the  $\alpha$ g-open set  $X \setminus F$ . This implies  $pcl(X \setminus A) \subseteq X \setminus F$ . Now  $pcl(X \setminus A) = X \setminus pint(A)$ . Hence  $X \setminus pint(A) \subseteq X \setminus F$ .That is  $F \subseteq pint(A)$ 

**Suffiency.** If F is  $\alpha$ g-closed set with  $F \subseteq pint(A)$  where  $F \subseteq A$ , it follows that  $X \setminus A \subseteq X \setminus F$  and  $X \setminus pint(A) \subseteq X \setminus F$ . That is  $pcl(X \setminus A) \subseteq X \setminus F$ . Hence  $X \setminus A$  is  $\alpha$ g\*p-closed and A becomes  $\alpha$ g\*p-open.

**Theorem 4.18:** If A and B are pre-separated  $\alpha g^*p$ -open sets then  $A \cup B$  is  $\alpha g^*p$ -open.

**Proof:** By definition,  $pcl(A \cap B) = A \cap pcl(B) = \phi$ . Let F be a  $\alpha g$ -closed set such that  $F \subseteq A \cup B$  then F  $\cap pcl(A) \subseteq pcl(A) \cap (A \cup B) \subseteq A \cup \phi = A$ . Similarly,  $F \cap pcl(B) \subseteq B$ . Hence by 4.17,  $F \cap pcl(A) \subseteq pint(A)$  and  $F \cap pcl(B) \subset pint(B)$ .

Now,  $F = F \cap (A \cup B) = (F \cap A) \cup (F \cap B) \subseteq (F \cap pcl(A)) \cup (F \cap pcl(B)) \subseteq pint(A) \cup pint(B) \subseteq pint(A \cup B)$ . Hence  $A \cup B$  is  $\alpha g^*p$ -open.

#### V. ag\*p-CLOSURE

In this section we introduce  $\alpha g^*p$ -closure in topological spaces by using the notions of  $\alpha g^*p$ -closed sets and study some of their properties.

**Definition 5.1:** For a subset A of  $(X, \tau)$ , the intersection of all  $\alpha g^*p$ -closed sets containing A is called the  $\alpha g^*p$ -closure of A and is denoted by  $\alpha g^*p$ -cl(A). That is,  $\alpha g^*p$ -cl(A) =  $\cap \{F : F \text{ is } \alpha g^*p$ -closed in X, A  $\subseteq F \}$ .

**Theorem 5.2:** If A is a  $\alpha g^*p$ -closed subset of  $(X, \tau)$  then  $\alpha g^*p$ -cl(A) = A.

**Theorem 5.3:** For a subset A of  $(X, \tau)$  and  $x \in X$ ,  $\alpha g^*p$ -cl(A) contains x iff  $V \cap A \neq \phi$  for every  $\alpha g^*p$ -open set V containing x.

**Proof:** Let  $A \subseteq X$  and  $x \in X$ , where  $(X, \tau)$  is a topological space. Suppose that there exists an  $\alpha g^*p$ -open set V containing x such that  $V \cap A = \phi$ . Since  $A \subset X \setminus V$ ,  $\alpha g^*p$ -cl $(A) \subset X \setminus V$  and then  $x \notin \alpha g^*p$ -cl(A), which is a contradiction.

Conversely, assume that  $x \notin \alpha g^*p$ -cl(A). Then there exists an  $\alpha g^*p$ -closed set F containing A such that  $x \notin F$ . Since  $x \in X \setminus F$  and  $X \setminus F$  is  $\alpha g^*p$ -open,  $(X \setminus F) \cap A = \phi$  which is a contradiction. Hence  $x \in \alpha g^*p$ -cl(A) iff  $V \cap A \neq \phi$  for every  $\alpha g^*p$ -open set V containing x.

**Theorem 5.4:** If A and B are subsets of  $(X, \tau)$  then (1)  $\alpha g^* p\text{-cl}(\phi) = \phi$  and  $\alpha g^* p\text{-cl}(X) = X$ (2)  $A \subseteq \alpha g^* p\text{-cl}(A)$ . (3) $A \subseteq B \Rightarrow \alpha g^* p\text{-cl}(A) \subseteq \alpha g^* p\text{-cl}(B)$ (4)  $\alpha g^* p\text{-cl}(\alpha g^* p\text{-cl}(A)) = \alpha g^* p\text{-cl}(A)$ (5)  $\alpha g^* p\text{-cl}(A \cup B) = \alpha g^* p\text{-cl}(A) \cup \alpha g^* p\text{-cl}(B)$ 

(6)  $\alpha g^* p$ -cl(A  $\cap$  B)  $\subseteq \alpha g^* p$ -cl(A)  $\cap \alpha g^* p$ -cl(B).

**Theorem 5.5:** Let A and B subsets of X. If A is  $\alpha g^*p$ -closed, then  $\alpha g^*p$ -cl(A  $\cap$  B)  $\subseteq$  A  $\cap \alpha g^*p$ -cl(B). **Proof:** Let A be a  $\alpha g^*p$ -closed set, then  $\alpha g^*p$ -cl(A) = A and so  $\alpha g^*p$ -cl(A $\cap$ B)  $\subseteq \alpha g^*p$ -cl(A)  $\cap \alpha g^*p$ -cl (B) = A  $\cap \alpha g^*p$ -cl (B) which is the desired result.

#### VI.aG\*P-INTERIOR

In this section we introduce  $\alpha g^*p$ -interior in topological spaces by using the notions of  $\alpha g^*p$ -open sets and study some of their properties.

**Definition 6.1:** Let A be a subset of a topological space X. A point  $x \in X$  is called a  $\alpha g^*p$ -interior point of A if there exists a  $\alpha g^*p$ -open set G such that  $x \in G \subseteq A$ . The set of all  $\alpha g^*p$ -interior points of A is called the  $\alpha g^*p$ -interior of A and is denoted by Int- $\alpha g^*p(A)$ .

**Definition 6.2:** Let A be a subset of a topological space  $(X, \tau)$ . A point  $x \in X$  is said to be  $\alpha g^*p$ -limit point of A if every  $\alpha g^*p$ -open set containing x contains a point of A different from x. The set of all  $\alpha g^*p$ -limit points of A is called the  $\alpha g^*p$ -derived set of A and is denoted by D  $_{\alpha g^*p}(A)$ .

*Remark 6.3:* Note that for a subset A of X, a point  $x \in X$  is not a  $\alpha g^*p$ -limit point of A if and only if there exists a  $\alpha g^*p$ -open set G in X such that  $x \in G$  and  $G \cap (A \setminus \{x\}) = \phi$  or, equivalently,  $x \in G$  and  $G \cap A = \phi$  or  $G \cap A = \{x\}$ .

## Example 6.4:

Let X ={a,b,c,d} with topology  $\tau = \{\phi, \{a\}, \{b\}, \{a,b\}, X\}, \tau^{c} = \{\phi, \{b,c,d\}, \{a,c,d\}, \{c,d\}, X\}.$ Then i)  $\tau_{\alpha g^{*}p} = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}, X\}.$ ii) If A = {a,c,d} then  $\alpha g^{*}p$ -cl(A) = {a,c,d}, Int- $\alpha g^{*}p(A) = \{a\}$  and D  $_{\alpha g^{*}p}(A) = \{c,d\}.$ 

**Theorem 6.5:** Let A be a subset of X and  $x \in X$ . Then the following are equivalent.

 $\begin{array}{l} (i) For \ every \ G \! \in \! \tau_{\alpha g^{\ast} p} \ , \ x \! \in \! G \ then \ A \cap G \neq \phi . \\ (ii) x \! \in \! \alpha g^{\ast} p \! - \! cl(A). \end{array}$ 

**Proof:** (i)  $\Rightarrow$ (ii) If  $x \notin \alpha g^*p$ -cl(A), then there exists a  $\alpha g^*p$ -closed set F such that  $A \subseteq F$  and  $x \notin F$ . Hence X  $\setminus F$  is a  $\alpha g^*p$ -open set containing x and  $A \cap (X \setminus F) \subseteq A \cap (X \setminus A) = \phi$ . This is a contradiction, and hence (ii) is valid.

(ii)  $\Rightarrow$  (i) Straightforward.

*Corollary 6.6:* For any subset A of X, we have  $D_{\alpha g^*p}(A) \subseteq \alpha g^*p$ -cl(A). *Proof:* Straightforward.

Theorem 6.7: For any subset A of X,

 $\begin{array}{l} \alpha g^*p\text{-cl}(A){=}A{\cup}D_{\alpha g^*p}(A).\\ \textit{Proof:} Let \ x{\in} \alpha g^*p\text{-cl}(A). \ Assume \ that \ x{\notin}A \ and \ let \\ G{\in} \ \tau \ _{\alpha g^*p} \ with \ x{\in} G. \ Then \ (G \cap A) \setminus \{x\} \neq \phi, and \ so \\ x{\in} \ D \ _{\alpha g^*p}(A). \ Hence \ \alpha g^*p\text{-cl}(A) \subseteq A \cup D \ _{\alpha g^*p}(A).\\ The \ reverse \ inclusion \ is \ by \ A \subseteq \ \alpha g^*p\text{-cl}(A) and \\ Corollary \ 6.6. \end{array}$ 

*Proposition 6.8:* For subsets A and B of X, the following assertions are valid.

(1) Int- $\alpha g^* p(A)$  is the union of all  $\alpha g^* p$ -open subsets of A.

(2) A is  $\alpha g^*p$ -open if and only if A = Int- $\alpha g^*p(A)$ .

(3) Int- $\alpha g^*p(Int-\alpha g^*p(A)) = Int-\alpha g^*p(A)$ .

(4) Int- $\alpha g^* p(A) = A \setminus D_{\alpha g^* p}(X \setminus A).$ 

(5)  $X \setminus Int-\alpha g^*p(A) = \alpha g^*p-cl(X \setminus A).$ 

(6)  $X \setminus \alpha g^* p$ -cl(A) = Int- $\alpha g^* p(X \setminus A)$ .

(7)  $A \subseteq B \Rightarrow Int \cdot \alpha g^* p(A) \subseteq Int \cdot \alpha g^* p(B)$ .

(8) Int- $\alpha g^* p(A) \cup$  Int- $\alpha g^* p(B) \subseteq$  Int- $\alpha g^* p(A \cup B)$ .

(9) Int- $\alpha g^* p(A \cap B) = Int-\alpha g^* p(A) \cap Int-\alpha g^* p(B)$ . *Proof:* 

(1) and (2) follows from the definition.

(3) It follows from (1) and (2).

(4) If  $x \in A \setminus D_{\alpha g^* p}(X \setminus A)$ , then  $x \notin D_{\alpha g^* p}(X \setminus A)$  and so there exists a  $\alpha g^* p$ -open set G containing x such that  $G \cap (X \setminus A) = \phi$ . Thus  $x \in G \subseteq A$  and hence  $x \in Int$  $-\alpha g^* p(A)$ .

This shows that  $A \setminus D_{\alpha g^* p}(X \setminus A) \subseteq \text{Int } -\alpha g^* p(A)$ . Let  $x \in \text{Int-}\alpha g^* p(A)$ .

Since  $\operatorname{Int} - \alpha g^* p(A) \in \tau_{\alpha g^* p}$  and  $\operatorname{Int} - \alpha g^* p(A) \cap (X \setminus A) = \phi$ , we have  $x \notin D_{\alpha g^* p}(X \setminus A)$ .

 $= \psi$ , we have  $X \notin D_{\alpha g^* p}(X \setminus A)$ .

Therefore Int- $\alpha g^* p(A) = A \setminus D_{\alpha g^* p}(X \setminus A).$ 

(5) Using (4) and Theorem 6.7, we have  $X \setminus Int\alpha g^*p(A) = X \setminus (A \setminus D_{\alpha g^*}(X \setminus A))$ 

$$g^{*p}(\mathbf{A}) = \mathbf{X} \setminus (\mathbf{A} \setminus \mathbf{D}_{\alpha g^* p}(\mathbf{X} \setminus \mathbf{A}))$$
$$= (\mathbf{X} \setminus \mathbf{A}) \cup \mathbf{D}_{\alpha g^* p}(\mathbf{X} \setminus \mathbf{A})$$
$$= \alpha g^* p \cdot cl(\mathbf{X} \setminus \mathbf{A}).$$

(6) Using (4) and Theorem 6.7, we get  $Int-\alpha g^*p(X \setminus A) = (X \setminus A) \setminus D_{\alpha g^*p}(A) = X \setminus (A \cup D_{\alpha g^*p}(A)) = X \setminus \alpha g^*p\text{-cl}(A).$ 

(7) Straightforward. (8) and (9) They are by (7).

#### VII. CONCLUSION

The  $\alpha g^*p$ -closed set can be used to derive continuity, irresolute function, closed map, open map, homeomorphism and new separation axioms.

#### REFERENCES

[1] D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1)(1986), 24-32.

[2] S.P. Arya and T. Nour, Characterizations of s-normal spaces, *Indian J. Pure. Appl. Math.*, 21(8)(1990),717-719.

[3] P. Bhattacharya and B.K. Lahiri, Semi-generalized closed sets in topology, *Indian J. Math.*, 29(3)(1987), 375-382.

[4] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 16(1995), 35-48.

[5] Y. Gnanambal, On generalized preregular closed sets in

topological spaces, *Indian J. Pure. Appl. Math.*, 28(3)(1997), 351-360.

[6] P. Jayakumar, K.Mariappa and S.Sekar, On generalized gp\*closed set in topological spaces, *Int. Journal of Math. Analysis*, 33(7)(2013),1635-1645.

[7] N. Levine, Generalized closed sets in topology, *Rend. Circ. Math.Palermo*, 19(2)(1970), 89-96.

[8] N.Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, 70(1963), 36-41.

[9] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized  $\alpha$ -closed sets and  $\alpha$ -generalized closed sets, *Mem. Fac. Sci. Kochi Univ. Ser.A.Math.*, 15(1994), 51-63.

[10] H. Maki, R. Devi and K. Balachandran, Generalized  $\alpha$ -closed sets in topology, *Bull. Fukuoka Univ. Ed. Part III*, 42(1993), 13-21. [11] H. Maki, J. Umehara and T. Noiri, Every topological space is

pre- $T_{1/2}$  space, *Mem. Fac. Sci. Kochi Univ. Ser.A. Math.*, 17(1996), 33-42.

[12] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak pre-continuous mapings, *Proc. Math. And Phys. Soc. Egypt*, 53(1982), 47-53.

[13] A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, α-continuous and α- open mappings., *Acta Math. Hung.*, 41(3-4)(1983), 213-218.
[14] N.Nagaveni , Studies on Generalizations of Homeomorphisms Topological spaces, *Ph.D. thesis, Bharathiar University, Coimbatore*, (1999).

[15] G.B.Navalagi, Pre-neighbourhoods, *The Mathematics Education*, Vol.XXXII, No.4, Dec. (1998), 201-206.
 [16] O.Niastad, On some classes of nearly open sets. *Pacific Proceedings*, 201-206.

[16] O.Njastad, On some classes of nearly open sets, *Pacific J.Math.*,15(1965), 961-970.

[17] N.Palaniappan and K.C.Rao, Regular generalized closed sets, *Kyungpook Math.J.*, 33(2)(1993), 211-219.

[18] J.K.Park and J.H.Park, Mildly generalized closed sets, almost normal and mildly normal spaces, *Chaos , Solutions and Fractals*, 20(2004), 1103-1111.

[19] A.Pushpalatha, Studies on Generalizations of Mappings in Topological spaces, *Ph.D .thesis, Bharathiar University, Coimbatore*,(2000).

[20] M.Stone Application of the theory of Boolean rings to general topology *.Trans.Amer.Math.Soc.*, 41(1937)374-481.

[21] M.K.R.S. Veera kumar, g\*-preclosed sets, *Indian J.Math.*, 44(2) (2002), 51-60.

[22] M.K.R.S. Veera kumar, Pre-semi closed sets, Acta ciencia

Indica (Maths) Meerut, XXVIII(M)(1) (2002), 165-181.

[23] M.K.R.S. Veera kumar, Between closed sets and g-closed sets,

Mem. Fac. Sci. Kochi Univ.(Math).,21(2000), 1-19.

[24] S.Willard, General Topology. Addison Wesley, (1970).