Semi * generalized closed sets in Topological Spaces S.Saranya¹ and Dr.K.Bageerathi² ¹&²Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur, (T N), INDIA Abstract In this paper a new class of generalized closed sets, namely $s^{\#}g$ -closed sets is introduced in topological spaces. We prove that this class lies between the class of sg-closed sets and the class of gs-closed sets. Also we find some basic properties and characterizations of $s^{\#}g$ -closed sets. **Mathematics Subject Classification: 54A05** **Keywords:** g-closed sets, sg-closed sets, g*s-closed sets, s[#]g-closed sets. #### 1. Introduction The study of generalized closed sets in topological space was initiated by Levine in [8]. Biswas[5], Njasted[15], Mashhour[12], Robert[19], Bhattacharya[4], Arya and Nour[1], Maki, Devi and Balachandran[10, 11], Sheik John[19], Pushpalatha and Anitha[17], Gnanachandra and Velmurugan[7], Veerakumar[20] introduced and investigated semi closed, α -open and α -closed, pre-open, semi*-open, sg-closed, gs-closed, gp-closed, α -closed, g*s-closed, s*g-closed, w-closed, g*-closed respectively. In this paper we introduce a new class of sets called s[#]g-closed sets which is properly placed in between the class of gs-closed sets and the class of sg-closed sets. We give characterizations of s[#]g-closed sets also investigate many fundamental properties of s[#]g-closed set. # 2.Preliminaries Throughout this paper (X, τ) represents a topological space on which no separation axiom is assumed unless otherwise mentioned. For a subset A of a topological space X, cl(A) and int(A) denote the closure of A and the interior of A respectively. (X, τ) will be replaced by X if there is no changes of confusion. We recall the following definitions and results. **Definition 2.1.** Let (X, τ) be a topological space. A subset A of X is said to be generalized closed [8] (briefly g-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an open in (X, τ) . **Definition 2.2.** Let (X, τ) be a topological space and $A \subseteq X$. The generalized closure of A [6], denoted by $cl^*(A)$ and is defined by the intersection of all g- closed sets containing A and generalized interior of A[6], denoted by int*(A) and is defined by union of all g-open sets contained in A. **Definition 2.3.** Let (X, τ) be a topological space. A subset A of the space X is said to be - 1. semi-open [9] if $A \subseteq cl(int(A))$ and semi-closed [3] if $int(cl(A)) \subseteq A$. - 2. α -open [13] if $A \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$ and α -closed if $\operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))) \subseteq A$. - 3. pre-open [14] if $A \subseteq int(cl(A))$ and preclosed if $cl(int(A)) \subseteq A$. - 4. semi*-open [16] if $A \subseteq cl^*(int(A))$ and semi*-closed if $int^*(cl(A)) \subseteq A$. **Definition 2.4.** Let (X, τ) be a topological space and $A \subseteq X$. The semi-closure of A[4], denoted by scl(A) and is defined by the intersection of all semi-closed sets containing A. **Definition 2.5.** Let (X, τ) be a topological space. A subset A of X is said to be - 1. semi-generalized closed [4] (briefly sgclosed) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is a semi-open in (X, τ) . - generalized semi-closed [1] (briefly gsclosed) if scl(A) ⊆ U whenever A ⊆ U and U is an open in (X, τ). - α-generalized closed [10] (briefly αg-closed) if αcl(A) ⊆ U whenever A ⊆ U and U is an open in (X, τ). - 4. g*s-closed set [15] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is a gs-open in (X, τ) . - 5. semi*generalized closed [7] (briefly semi*g-closed) if $s*cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a semi*-open in (X, τ) . - 6. w-closed [19] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a semi-open in (X, τ) . - 7. *g-closed [20] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a w-open in (X, τ) . - wg-closed [2] if cl(int(A)) ⊆ U whenever A ⊆ U and U is an open in (X, τ). - 9. $\operatorname{wg}\alpha$ -closed [14] if $\operatorname{\alpha cl}(\operatorname{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) . - 10. w α -closed [3] if α cl(A) \subseteq U whenever A \subseteq U and U is a w-open in (X, τ) . - 11. gw α -closed [2] if α cl(A) \subseteq U whenever A \subseteq U and U is w α -open in (X, τ). The complements of the above mentioned closed sets are their respective open sets. ## Remark 2.6. **Theorem 2.7.**[16] Intersection of semi*-closed sets is semi*-closed set. # 3. Semi # generalized closed set **Definition 3.1.** A subset A of a space (X, τ) is called semi [#] generalized closed set (briefly, s[#] g-closed) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi*-open in (X, τ) . **Theorem 3.2.** Every closed set is s[#]g-closed. **Proof:** Let A be a closed set. Let $A \subseteq U$, U is semi*-open. Since A is closed, $cl(A) = A \subseteq U$. But $scl(A) \subseteq cl(A)$. Thus we have $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi*-open. Therefore, A is a $s^{\#}g$ -closed set. **Remark 3.3.** The converse of the above theorem is not true, as seen from the following example. **Example 3.4.** Let $X = \{a,b,c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$. Consider $A = \{a\}$. A is not a closed set, However A is a s[#]g-closed set. **Theorem 3.5.** Every semi-closed set is s[#]g-closed. **Proof:** Let A be a semi-closed set. Let $A \subseteq U$, U is semi*-open. Since A is semi-closed, $scl(A) = A \subseteq U$. Therefore, A is $s^{\#}g$ -closed set. **Remark 3.6.** The converse of the above theorem is not true, as seen from the following example. **Example 3.7.** Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. Consider $A = \{b\}$. A is not a semi-closed set. However A is a $s^{\#}g$ -closed set. **Theorem 3.8.** Every semi*-closed set is s[#]g-closed. **Proof:** Let A be a semi*-closed set. Let $A \subseteq U$, U is semi*-open. Since A is semi*-closed set, int*(cl(A)) \subseteq A. But scl (A) \subseteq int*(cl(A)) \subseteq A. Thus we have scl(A) \subseteq U whenever $A \subseteq U$ and U is semi*-open. Therefore, A is s*g-closed set. **Remark 3.9.** The converse of the above theorem is not true, as seen from the following example. **Example 3.10.** Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. Consider $A = \{b\}$. A is not a semi*-closed set. However A is a s[#]g-closed set. **Theorem 3.11.** Every sg-closed set is s[#]g-closed. **Proof:** Let A be a sg-closed set. Let $A \subseteq U$, U is semi*-open. Then U is semi-open. Since A is sg-closed, $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi*-open. Therefore, A is $s^{\#}g$ -closed set. **Remark 3.12.** The converse of the above theorem is not true, as seen from the following example. **Example 3.13.** Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}\}$. Here $A = \{a, c\}$ is not a sg-closed set. Whereas A is a s[#]g-closed set. **Theorem 3.14.** Every s[#]g-closed set is gs-closed. **Proof:** Let A be a $s^{\#}g$ -closed set. Let $A \subseteq U$, U is open. Then U is semi*-open. Since A is $s^{\#}g$ -closed, $scl(A) \subseteq U$. Thus, we have $scl(A) \subseteq U$ whenever A $\subseteq U$ and U is open. Therefore, A is gs-closed set. **Remark 3.15.** The converse of the above theorem is not true, as seen from the following example. **Example 3.16.** Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. Consider $A = \{a, c\}$. A is not a $s^{\#}g$ -closed set. However A is a gs-closed set. **Theorem 3.17.** Every w-closed set is s[#]g-closed set. **Proof:** Let A be a w-closed set. Let $A \subseteq U$, U is semi*-open. Then U is semi-open. Since A is w-closed, $cl(A) \subseteq U$. But $scl(A) \subseteq cl(A)$. Thus, we have $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi*-open. Therefore, A is $s^{\#}g$ -closed. **Remark 3.18.** The converse of the above theorem is not true, as seen from the following example. **Example 3.19.** Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$. Here $A = \{a\}$ is not a w-closed set, whereas A is a s[#]g-closed set. **Theorem 3.20.** Every g*s-closed set is s*g-closed set. **Proof:** Let A be a g*s-closed set. Let $A \subseteq U$, U is semi*-open. Then U is gs-open. Since A is g*s-closed, $scl(A) \subseteq U$. Thus, we have $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi*-open. Therefore, A is $s^{\#}g$ -closed. **Remark 3.21.** The converse of the above theorem need not be true, as seen from the following example. **Example 3.22.** Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}\}$. Consider $A = \{a, b\}$. A is not a g*s-closed set. However A is a s*g-closed set. **Theorem 3.23.** Every semi*g-closed set is s[#]g-closed set. **Proof:** Let A be a semi*g-closed set. Let $A \subseteq U$, U is semi*-open. Since A is semi* g-closed, s*cl(A) $\subseteq U$. But scl(A) \subseteq s*cl(A). Thus, we have scl(A) $\subseteq U$ whenever $A \subseteq U$ and U is semi*-open. Therefore, A is a s*g-closed. **Remark 3.24.** The converse of the above theorem is not true, as seen from the following example. **Example 3.25.** Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}\}$. Consider $A = \{a, c\}$. A is not a semi*g-closed set. However A is a s[#]g-closed set. Remark 3.26. **Remark 3.27.** The following example shows that $s^{\#}g$ -closed sets are independent from αg -closed set, g-closed set, $wg\alpha$ -closed set, $wg\alpha$ -closed set, $wg\alpha$ -closed set and wg-closed set. **Example 3.28.** Let $X = \{a, b, c\}$ and $Y = \{a, b, c, d\}$ be the topological spaces. - (i) Consider the topology $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. Then the set $\{a, c\}$ is an αg -closed set but not $s^{\#}g$ -closed in (X, τ) . - (ii) Consider the topology $\tau = \{\phi, Y, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Then the sets $\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}$ are $s^{\#}g$ -closed sets but not an αg -closed in (X, τ) . - (iii) Consider the topology $\tau = \{\phi, X, \{a\}, \{a, b\}\}\}$. Then the set $\{b\}$ is $s^{\#}g$ -closed set but not g-closed, also the set $\{a, c\}$ is g-closed set but not a $s^{\#}g$ -closed in (X, τ) . - (iv) Consider the topology $\tau = \{\phi, Y, \{c\}, \{a, b\}, \{a, b, c\}\}$. Then the set $\{b\}$ is a $wg\alpha$ -closed and $gw\alpha$ -closed but not $s^{\#}g$ -closed set also $\{c\}$, $\{a, b\}$ are $s^{\#}g$ -closed sets but not a $wg\alpha$ -closed and $gw\alpha$ -closed. - (v) Consider the topology $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. Then the set $\{a, c\}$ is wg-closed set but not a s[#]g-closed in (X, τ) . - (vi) Consider the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then the sets $\{a\}, \{b\}$ are $s^{\#}g$ -closed set but not a wg-closed in (X, τ) . - (vii) Consider the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then the sets $\{a\}, \{b\}$ are $s^{\#}g$ -closed but not a *g-closed in (X, τ) . - (viii) Consider the topology $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. Then the sets $\{a, b\}, \{a, c\}$ are *g-closed but not a s[#]g-closed in (X, τ) . **Remark 3.29.** The above discussions are summarized in the following implications ### 4. Characterisation **Theorem 4.1.** Let $A \subseteq X$. If A is $s^{\#}g$ -closed in (X, τ) , then $scl(A)\backslash A$ does not contain any non empty semi*-closed set in (X, τ) . **Proof:** Let F be any semi*-closed set such that $F \subseteq scl(A)\backslash A$. Then $A \subseteq X\backslash F$ and $X\backslash F$ is semi*-open in (X, τ) . Since A is $s^{\#}g$ -closed in X, $scl(A) \subseteq X\backslash F$, $F \subseteq X\backslash scl(A)$. Thus $F \subseteq (scl(A)\backslash A) \cap (X\backslash scl(A)) = \phi$. **Theorem 4.2.** Let A be any s[#]g-closed set in (X, τ) . Then A is semi-closed in (X, τ) iff $scl(A)\A$ is semi*closed. **Proof:** Necessity: Since A is semi-closed set in (X, τ) , scl(A) = A. Then $scl(A) \setminus A = \phi$, which is a semi*-closed set in (X, τ) . Sufficiency: Since A is $s^{\#}g$ -closed set in (X, τ) , by above theorem, $scl(A) \setminus A$ does not contains any non-empty semi*-closed set. Therefore, $scl(A) \setminus A = \phi$. Hence scl(A) = A. Thus A is semi-closed set in (X, τ) . **Theorem 4.3.** Let A be any $s^{\#}g$ -closed set in (X, τ) . If $A \subseteq B \subseteq scl(A)$, then B is also a $s^{\#}g$ -closed set. **Proof:** Let $B \subseteq U$ where U is semi*-open in (X, τ) . Then $A \subseteq U$. Also since A is $s^{\#}g$ -closed, $scl(A) \subseteq U$. Since $B \subseteq scl(A)$, $scl(B) \subseteq scl(scl(A)) = scl(A) \subseteq U$. This implies, $scl(B) \subseteq U$. Thus B is a $s^{\#}g$ -closed set. **Remark 4.4.** Intersection of any two s[#]g-closed sets in (X, τ) need not be a s[#]g-closed set, as seen from the following example. **Example 4.5.** Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}\}$. Consider $\{a, b\}$ and $\{a, c\}$ are $s^{\#}g$ -closed sets. But their intersection $\{a\}$ is not a $s^{\#}g$ -closed set. **Theorem 4.6.** If A is $s^{\#}g$ -closed set in X and B is closed set in X, then $A \cap B$ is $s^{\#}g$ -closed. **Proof:** Let U be semi*-open such that $A \cap B \subset U$. Then $U \cup (X-B)$ is semi*-open containing A. Since A is $s^{\#}g$ -closed, $scl(A) \subseteq U \cup (X-B)$. Now $scl(A \cap B) \subseteq scl(A) \cap scl(B) \subseteq scl(A) \cap cl(A) = scl(A) \cap B \subseteq (U \cap (X-B)) \cap B = U \cap B \subseteq U$. Thus we have $scl(A) \subseteq U$, U is semi*-open and $A \cap B \subseteq U$. Therefore $A \cap B$ is $s^{\#}g$ -closed **Remark 4.7.** Union of any two s[#]g-closed sets in (X, τ) need not be a s[#]g-closed set, as seen from the following example. **Example 4.8.** Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Consider $\{a\}$ and $\{b\}$ are $s^{\#}g$ -closed sets. But their union $\{a, b\}$ is not a $s^{\#}g$ -closed set. **Theorem 4.9.** Let A and B be $s^{\#}g$ -closed sets in (X, τ) such that cl(A) = scl(A) and cl(B) = scl(B), then $A \cup B$ is $s^{\#}g$ -closed. **Proof:** Let $A \cup B \subset U$, where U is semi*-open. Then $A \subset U$ and $B \subset U$. Since A and B are $s^{\#}g$ -closed, $scl(A) \subset U$ and $scl(B) \subset U$. Now $cl(A \cup B) = cl(A) \cup cl(B) = scl(A) \cup scl(B) \subset U$. But $scl(A \cup B) \subset cl(A \cup B)$. So, $scl(A \cup B) \subset cl(A \cup B) \subset U$. Therefore $scl(A \cup B) \subset U$ whenever $A \cup B \subset U$, U is $semi^*$ -open. Hence $A \cup B$ is $s^{\#}g$ -closed. **Theorem 4.10.** For every element x in a space X, $X - \{x\}$ is $s^{\#}g$ -closed or semi*-open. **Proof:** Suppose $X-\{x\}$ is not semi*-open. Then X is the only semi*-open set containing $X - \{x\}$. This implies $scl(X - \{x\}) \subseteq X$. Hence $X - \{x\}$ is $s^{\#}g$ -closed. **Theorem 4.11.** If A is both semi*-open and s[#]g-closed set in X, then A is semi-closed set. **Proof:** Since A is semi*-open and s*g-closed in X, $scl(A) \subseteq A$. But always $A \subseteq scl(A)$. Therefore, A = scl(A). Hence A is a semi-closed set. **Theorem 4.12.** If $A \subseteq Y \subseteq X$ and A is $s^{\#}g$ -closed in X then A is $s^{\#}g$ -closed relative to Y. **Proof:** Given that $A \subseteq Y \subseteq X$ and A is a $s^{\#}g$ -closed set in X. To prove that A is $s^{\#}g$ -closed set relative to Y. Let us assume that $A \subseteq Y \cap U$, where U is semi*-open in X. Since A is $s^{\#}g$ - closed set, $A \subseteq U$. This implies $scl(A) \subseteq U$. It follows that $Y \cap scl(A) \subseteq Y \cap U$. That is, A is $s^{\#}g$ - closed set relative to Y. **Theorem 4.13.** Every subset is s[#]g-closed in X iff every semi*-open set is semi-closed. **Proof:** Necessity: Let A be a semi*-open in X. Then by hypothesis A is $s^{\#}g$ -closed in X. By theorem 4.12, A is a semi-closed set. Sufficiency: Let A be a subset of X and U a semi*-open set such that $A \subseteq U$. Then by hypothesis, U is semi-closed. This implies that $scl(A) \subseteq scl(U) = U$. Hence A is a $s^{\#}g$ -closed set. #### Conclusion The present chapter has introduced a new concept called s[#]g-closed set in topological spaces. It also analyzed some of the properties. The implication shows the relationship between s[#]g-closed sets and the other existing sets. #### References - S.P. Arya and T. Nour, Characterizations of S- nomal spaces, Indian J. Pure. Appl. Math., 21(8)(1990), 717-719. - [2] S. S. Benchalli, P.G. Patil and P.M. Nalwad, Generalized wαclosed set in topological spaces, Journal of new results in science(2014), 7-19. - [3] S. S. Benchalli, P.G. Patil and T. D. Rayangaudar, wα-closed sets in topological spaces, The Global. J. Appl. Math. Sci., 2, 2009, 53-63. - [4] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in Topology, Indian J. Math., 29(1987), 376-382. - [5] N. Biswas, On characterizations of semi-continuous functions, Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. 48(8)1970, 399-402. - [6] Dunham. W., A New Closure Operator for Non-T₁ Topologies, Kyunpook Math. J., 22(1982), 55-60. - [7] P. Gnanachandra and L. Velmurugan, Semi* Generalized closed sets and Semi*- T_{1/2} Spaces, Asian Journal of Current Engineering and Maths 1,(2012), 337-339. - [8] . Levine, Generalized closed sets in topology, Rand. Circ. Mat. Palermo, 19(2)(1970), 89-96. - [9] N. Levine, Semi-open sets and semi-continuity in Topological Spaces, Amer. Mat. Monthly 70(1)(1963), 36-41. - [10] H. Maki, R. Devi and K. Balachandran, Associated Topologies of Generalized α – closed sets and α – Generalized closed sets Mem. Sci. Kochi. Univ. Ser. A. Math., 15(1994), 51-63. - [11] H. Maki, J. Umehara and T. Noiri, Every topological spaces in pre-T_{1/2}, Mem. Fac. Sci. Kochi. Univ. Ser. A, Math., 17(1996), 33-42. - [12] N. Nagaveni, Studies on Generalizations of Homeomophisms in Topological spaces, Ph. D., Thesis, Bharathiar University, Coim-batore (1999). - [13] O. Njastad, Some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970. - [14] Palaniappan. N., and Rao. K. C., Regular generalized closed sets, Kyungpook. Math. J., 33(1993), 211-219. - [15] Pushpalatha .P and Anitha .K, g*s- closed sets in topological spaces, Int. J. contemp. Math. Sciences, vol. 6., March 2011, no 19, 917- 929. - [16] Robert. A and Pious Missier. S, A New Class of Nearly open sets, International Journal of Mathematical Archive. - [17] A. Robert and S. Pious Missier, On semi*- closed sets, Asian Journal of Current Engineering and Maths, 4(2012), 173-176. - [18] P. Sundaram, and N. Navalagi, On weakly Generalized continuous maps, weakly Generalized closed maps andweakly Irrosolute maps, Far East. J. Math Sci., 6, 1998. - [19] P. Sundaram and M. Shrik John, On w- closed sets in topology, Acta Ciencia Indica, 4(2000), 389-392. - [20] Veerakumar M. K. R. S, Between g*closed sets and g-closed sets, Antartica J. Math. Vol(3) (1) (2006), 43-65.