A new multidimensional integral transform concerning the multivariable

Aleph-function

F.Y. AY ANT ${ }^{1}$

1 Teacher in High School, France

ABSTRACT

In the present document, we use the multidimensional integral transform introduced by Chandel et al [2] concerning the multivariable Aleph-function defined by Ayant [1]. Some interesting special cases are also discussed.

KEYWORDS : Aleph-function of several variables, multidimensional integral transform, Multivariable I-function, Aleph-function of two variables, Ifunction of two variables.

1.Introduction

Chandel et al [2] introduce a new multidimensional integral transform defined by :
$R_{\alpha_{1}, \cdots, \alpha_{r}}^{(a, b)}\{ \}=\frac{\Gamma\left(\alpha_{1}+\cdots \alpha_{r}\right) \Gamma\left(1 / 2+a-b+\alpha_{1}+\cdots \alpha_{r}\right) 2^{2 a+2 \alpha_{1}+\cdots+2 \alpha_{r}-1}}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{r}\right) \Gamma\left(2 a+2 \alpha_{1}+\cdots+2 \alpha_{r}\right) \Gamma\left(1 / 2-\left(a+b+\alpha_{1}+\cdots+\alpha_{r}\right)\right)}$
$\int_{0}^{\infty} \cdots \int_{0}^{\infty}\left(x_{1}+\cdots+\alpha_{r}\right)^{a}\left(1+x_{1}+\cdots+x_{r}\right)^{-1 / 2}\left[\left(x_{1}+\cdots+x_{r}\right)^{1 / 2}+\left(1+x_{1}+\cdots+x_{r}\right)^{1 / 2}\right]^{2 b}$
$x_{1}^{\alpha_{1}-1} \cdots x_{r}^{\alpha_{r}-1}\{ \} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{r}$
where $0<\operatorname{Re}\left(a+\alpha_{1}+\cdots+\alpha_{r}\right)<1 / 2-\operatorname{Re}(b), \operatorname{Re}\left(\alpha_{i}\right)>0, i=1, \cdots, r$
and give two dimentional integral transforms concerning the multivariable H -function defined by Srivastava et al [6]. Here in the present document, we extend this work with the multivariable Aleph-function. The Aleph-function of several variables generalize the multivariable I-function defined by Sharma and Ahmad [4], itself is an a generalisation of G and H -functions of multiple variables. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

We have : $\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{p_{i}, q_{i}, \tau_{i} ; R: p_{i}(1), q_{i}(1), \tau_{i(1)} ; R^{(1)} ; \cdots ; p_{i}(r), q_{i}(r) ; \tau_{i}(r) ; R^{(r)}}^{0, \mathfrak{n}: m_{1}, n_{1}, \cdots, m_{r}, n_{r}}\left(\begin{array}{c}\mathrm{z}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r}\end{array}\right)$

$\left.\left.\left[\left(c_{j}^{(1)}\right), \gamma_{j}^{(1)}\right)_{1, n_{1}}\right],\left[\tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)}, \gamma_{j i(1)}^{(1)}\right)_{n_{1}+1, p_{i}^{(1)}}\right] ; \cdots ; ;\left[\left(c_{j}^{(r)}\right), \gamma_{j}^{(r)}\right)_{1, n_{r}}\right],\left[\tau_{i(r)}\left(c_{j i(r)}^{(r)}, \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i}^{(r)}}\right]$ $\left.\left.\left[\left(\mathrm{d}_{j}^{(1)}\right), \delta_{j}^{(1)}\right)_{1, m_{1}}\right],\left[\tau_{i^{(1)}}\left(d_{j i^{(1)}}^{(1)}, \delta_{j i(1)}^{(1)}\right)_{m_{1}+1, q_{i}^{(1)}}\right] ; \cdots ; ;\left[\left(\mathrm{d}_{j}^{(r)}\right), \delta_{j}^{(r)}\right)_{1, m_{r}}\right],\left[\tau_{i^{(r)}}\left(d_{j i^{(r)}}^{(r)}, \delta_{j i^{(r)}}^{(r)}\right)_{m_{r}+1, q_{i}^{(r)}}\right]$
$=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r}$
with $\omega=\sqrt{-} 1$

For more details, see Ayant [1]. The reals numbers τ_{i} are positives for $i=1, \cdots, R, \tau_{i}(k)$ are positives for $i^{(k)}=1, \cdots, R^{(k)}$. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi, \quad$ where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i^{(k)}} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{m_{k}} \delta_{j}^{(k)}-\tau_{i^{(k)}} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)}>0, \text { with } k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)} \tag{1.3}
\end{align*}
$$

The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function. We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}}, \cdots,\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}}, \cdots,\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow \infty$
where, with $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will use these following notations in this paper
$U=p_{i}, q_{i}, \tau_{i} ; R ; V=m_{1}, n_{1} ; \cdots ; m_{r}, n_{r}$
$\mathrm{W}=p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i^{(r)}} ; R^{(r)}$
$A=\left\{\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, n}\right\},\left\{\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{n+1, p_{i}}\right\}$
$B=\left\{\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right\}$
$\left.\left.C=\left\{\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right\}, \tau_{i(1)}\left(c_{j i^{(1)}}^{(1)} ; \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i(1)}}\right\}, \cdots,\left\{\left(c_{j}^{(r)} ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right\}, \tau_{i^{(r)}}\left(c_{j i(r)}^{(r)} ; \gamma_{j i^{(r)}}^{(r)}\right)_{n_{r}+1, p_{i}(r)}\right\}$
$\left.\left.D=\left\{\left(d_{j}^{(1)} ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right\}, \tau_{i(1)}\left(d_{j i(1)}^{(1)} ; \delta_{j i(1)}^{(1)}\right)_{m_{1}+1, q_{i}(1)}\right\}, \cdots,\left\{\left(d_{j}^{(r)} ; \delta_{j}^{(r)}\right)_{1, m_{r}}\right\}, \tau_{i(r)}\left(d_{j i}^{(r)} ; \delta_{j i(r)}^{(r)}\right)_{m_{r}+1, q_{i}(r)}\right\}$
The multivariable Aleph-function write :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{U: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A}: \mathrm{C} \\ \cdot & \mathrm{C} \\ \cdot & \cdot \\ \cdot & \cdot \\ \mathrm{z}_{r} & \mathrm{~B}: \mathrm{D}\end{array}\right)$

2. Required formulas

$R_{\alpha_{1}, \cdots, \alpha_{r}}^{(a, b)}\{1\}=1$
$R_{\alpha_{1}, \cdots, \alpha_{r}}^{(a, b)}\left\{\left(x_{1}+\cdots+x_{r}\right)^{\zeta_{1}+\cdots+\zeta_{r}}\left[\left(x_{1}+\cdots+x_{r}\right)^{1 / 2}+\left(1+x_{1}+\cdots+x_{r}\right)^{1 / 2}\right]^{-2\left(\eta_{1}+\cdots+\eta_{r}\right)}\right\}$
$=\frac{\Gamma\left(1 / 2+a-b+\alpha_{1}+\cdots+\alpha_{r}\right)}{4 \zeta_{1}+\cdots+\zeta_{r} \Gamma\left(2 a+2 \alpha_{1}+\cdots+2 \alpha_{r}\right) \Gamma\left(1 / 2-\left(a+b+\alpha_{1}+\cdots+\alpha_{r}\right)\right)} \times$
$\frac{\Gamma\left(2\left(a+\alpha_{1}+\cdots+\alpha_{r}+\zeta_{1}+\cdots+\zeta_{r}\right)\right) \Gamma\left(1 / 2-\left(a+b+\alpha_{1}+\cdots+\alpha_{r}\right)+\eta_{1}-\zeta_{1}+\cdots+\eta_{r}-\zeta_{r}\right)}{\Gamma\left(1 / 2+a-b+\alpha_{1}+\zeta_{1}+\eta_{1}+\cdots+\alpha_{r}+\zeta_{r}+\eta_{r}\right)}$
$R_{\alpha_{1}, \cdots, \alpha_{r}}^{(a, b)}\left\{x_{1}^{\lambda_{1}} \cdots x_{r}^{\lambda_{r}}\left(x_{1}+\cdots+x_{r}\right)^{\zeta_{1}+\cdots+\zeta_{r}}\right.$
$\left.\left[\left(x_{1}+\cdots+x_{r}\right)^{1 / 2}+\left(1+x_{1}+\cdots+x_{r}\right)^{1 / 2}\right]^{-2\left(\eta_{1}+\cdots+\eta_{r}\right)}\right\}$
$=\frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{r}\right) \prod_{i=1}^{r} \Gamma\left(\alpha_{i}+\lambda_{i}\right) \Gamma\left(1 / 2+a-b+\alpha_{1}+\cdots+\alpha_{r}\right) 4^{-\left(\zeta_{1}+\lambda+1+\cdots+\zeta_{r}+\lambda_{r}\right)}}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{r}\right) \Gamma\left(\alpha_{1}+\lambda_{1}+\cdots+\alpha_{r}+\lambda_{r}\right) \Gamma\left(2\left(a+\alpha_{1}+\cdots+\alpha_{r}\right)\right) \Gamma\left(1 / 2-a-\alpha_{1}-\cdots-\alpha_{r}\right)}$
$\Gamma\left(2\left(a+\alpha_{1}+\zeta_{1}+\lambda_{1}+\cdots+\alpha_{r}+\zeta_{r}+\lambda_{r}\right)\right)$
$\frac{\Gamma\left(1 / 2-a b+\alpha_{1}-\lambda_{1}-\alpha_{r}-\lambda_{r}+\eta_{1}-\zeta_{1}+\cdots+\eta_{r}-\zeta_{r}\right)}{\Gamma\left(1 / 2+a-b+\alpha_{1}+\lambda_{1}+\zeta_{1}+\eta_{1}+\cdots+\alpha_{r}+\lambda_{r}+\zeta_{r}+\eta_{r}\right)}$
valid if $0<\operatorname{Re}\left(a+\zeta_{1}+\alpha_{1}+\lambda_{1}+\cdots+\zeta_{r}+\alpha_{r}+\lambda_{r}\right)<\operatorname{Re}\left(1 / 2-b+\eta_{1}+\cdots+\eta_{r}\right)$
$\operatorname{Re}\left(\alpha_{i}\right)>0, \operatorname{Re}\left(\lambda_{i}\right)>0, i=1, \cdots, r$

3. Main integrals

In this section, making an appeal to (2.2) and (2.3), we derive the following results involving the multivariable Alephfunction defined by Ayant [1]
$R_{\alpha_{1}, \cdots, \alpha_{r}}^{(a, b)}\left\{\left.\begin{array}{c}\aleph_{U: W}^{0, n: V} \\ \\ \mathrm{z}_{1}\left(x_{1}+\cdots+x_{r}\right)^{\zeta_{1}}\left[\left(x_{1}+\cdots+x_{r}\right)^{1 / 2}+\left(1+x_{1}+\cdots+x_{r}\right)^{1 / 2}\right]^{-2 \eta_{1}} \\ \cdot \\ \cdot \\ \mathrm{z}_{r}\left(x_{1}+\cdots+x_{r}\right)^{\zeta_{r}}\left[\left(x_{1}+\cdots+x_{r}\right)^{1 / 2}+\left(1+x_{1}+\cdots+x_{r}\right)^{1 / 2}\right]^{-2 \eta_{r}}\end{array} \right\rvert\,\right.$
$\left.\begin{array}{c}\text { A : C } \\ \cdots \\ \text { B : } \\ \text { B D }\end{array}\right\}=\frac{\Gamma\left(1 / 2+a-b+\alpha_{1}+\cdots+\alpha_{r}\right)}{\Gamma\left(2 a+2 \alpha_{1}+\cdots+2 \alpha_{r}\right) \Gamma\left(1 / 2-a-b-\alpha_{1}-\cdots-\alpha_{r}\right)} \aleph_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\left.\begin{array}{c}4^{-\zeta_{1}} z_{1} \\ \cdot \\ \cdot \\ 4^{-\dot{\zeta}_{r}} z_{r}\end{array} \right\rvert\,\right.$

$$
\begin{equation*}
\left(1 / 2-\mathrm{a}+\mathrm{b}-\alpha_{1}-\cdots-\alpha_{r} ; \zeta_{1}+\eta_{1}, \cdots, \zeta_{r}+\eta_{r}\right), B: D \tag{3.1}
\end{equation*}
$$

where $U_{21}=p_{i}+2 ; q_{i}+1 ; \tau_{i} ; R$
Provided that
a) $0<\operatorname{Re}\left(a+\alpha_{1}+\cdots+\alpha_{r}\right)<1 / 2-\operatorname{Re}(b), \operatorname{Re}\left(\alpha_{i}\right)>0, i=1, \cdots, r$
b) $\left|\frac{\arg z_{k}}{4^{\zeta_{k}}}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is given in (1.3)
$R_{\alpha_{1}, \cdots, \alpha_{r}}^{(a, b)}\left\{\aleph_{U: W}^{0, \mathrm{n}: V}\left(\left.\begin{array}{c}\mathrm{z}_{1} x_{1}^{\lambda_{1}}\left(x_{1}+\cdots+x_{r}\right)^{\zeta_{1}}\left[\left(x_{1}+\cdots+x_{r}\right)^{1 / 2}+\left(1+x_{1}+\cdots+x_{r}\right)^{1 / 2}\right]^{-2 \eta_{1}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r} x_{r}^{\lambda_{r}}\left(x_{1}+\cdots+x_{r}\right)^{\zeta_{r}}\left[\left(x_{1}+\cdots+x_{r}\right)^{1 / 2}+\left(1+x_{1}+\cdots+x_{r}\right)^{1 / 2}\right]^{-2 \eta_{r}}\end{array} \right\rvert\,\right.\right.$
$\left.\begin{array}{c}A: C \\ \cdots \\ B \cdot \\ B: D\end{array}\right\}$
$=\frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{r}\right) \prod_{i=1}^{r} \Gamma\left(\alpha_{i}+\lambda_{i}\right) \Gamma\left(1 / 2+a-b+\alpha_{1}+\cdots+\alpha_{r}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{r}\right) \Gamma\left(\alpha_{1}+\lambda_{1}+\cdots+\alpha_{r}+\lambda_{r}\right) \Gamma\left(2\left(a+\alpha_{1}+\cdots+\alpha_{r}\right)\right) \Gamma\left(1 / 2-a-b-\alpha_{1}-\cdots-\alpha_{r}\right)}$
$\aleph_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|c}4^{-\zeta_{1}-\lambda_{1}} z_{1} & \left(1-2 \mathrm{a}-2 \alpha_{1}-\cdots-2 \alpha_{r} ; 2\left(\zeta_{1}+\lambda_{1}\right), \cdots, 2\left(\zeta_{r}+\lambda_{r}\right)\right), \\ \cdot & \cdots \\ \cdot & \cdot \\ \cdot & \left(1 / 2-\mathrm{a}+\mathrm{b}-\alpha_{1}-\cdots-\alpha_{r} ; \zeta_{1}+\eta_{1}+\lambda_{1}, \cdots, \zeta_{r}+\eta_{r}+\lambda_{r}\right)\end{array}\right.$
$\left.\left(1 / 2+\mathrm{a}+\mathrm{b}+\alpha_{1}+\cdots+\alpha_{r} ; \eta_{1}-\zeta_{1}-\lambda_{1}, \cdots, \eta_{r}-\zeta_{r}-\lambda_{r}\right), A: C\right)$
B.
where $U_{21}=p_{i}+2 ; q_{i}+1 ; \tau_{i} ; R$
Provided that
a) $0<\operatorname{Re}\left(a+\alpha_{1}+\cdots+\alpha_{r}\right)<1 / 2-\operatorname{Re}(b), \operatorname{Re}\left(\alpha_{i}\right)>0, \operatorname{Re}\left(\lambda_{i}\right)>0, i=1, \cdots, r$
b) $\left|\frac{\arg z_{k}}{4 \zeta_{k}+\lambda_{k}}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is given in (1.3)

4. Special cases

a) For $\lambda_{i}=0, i=1, \cdots, r$, (3.2) reduces to (3.1)
b) For $\eta_{i}=\zeta_{i}, i=1, \cdots, r$, (3.1) reduces
$R_{\alpha_{1}, \cdots, \alpha_{r}}^{(a, b)}\left\{\left.\begin{array}{c}\aleph_{U: W}^{0, n}: V \\ \mathrm{z}_{1}\left(x_{1}+\cdots+x_{r}\right)^{\zeta_{1}}\left[\left(x_{1}+\cdots+x_{r}\right)^{1 / 2}+\left(1+x_{1}+\cdots+x_{r}\right)^{1 / 2}\right]^{-2 \zeta_{1}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r}\left(x_{1}+\cdots+x_{r}\right)^{\zeta_{r}}\left[\left(x_{1}+\cdots+x_{r}\right)^{1 / 2}+\left(1+x_{1}+\cdots+x_{r}\right)^{1 / 2}\right]^{-2 \zeta_{r}}\end{array} \right\rvert\,\right.$
$\left.\begin{array}{c}\text { A : C } \\ \cdots \\ \text { ․ } \\ \text { B : D }\end{array}\right\}=\frac{\Gamma\left(1 / 2+a-b+\alpha_{1}+\cdots+\alpha_{r}\right)}{\Gamma\left(2 a+2 \alpha_{1}+\cdots+2 \alpha_{r}\right) \Gamma\left(1 / 2-a-b-\alpha_{1}-\cdots-\alpha_{r}\right)} \aleph_{U_{11}: W}^{0, \mathfrak{n}+1: V}\left(\begin{array}{c}4^{-\zeta_{1}} z_{1} \\ \cdot \\ \cdot \\ 4^{-\dot{\zeta}_{r}} z_{r}\end{array}\right)$
$\left.\begin{array}{c}\left(1-2 \mathrm{a}-2 \alpha_{1}-\cdots-2 \alpha_{r} ; 2 \zeta_{1}, \cdots, 2 \zeta_{r}\right), A: C \\ \cdots \\ \cdots \\ \left(1 / 2-\mathrm{a}+\mathrm{b}-\alpha_{1}-\cdots-\alpha_{r} ; 2 \zeta_{1}, \cdots, 2 \zeta_{r}\right), B: D\end{array}\right)$
where $U_{11}=p_{i}+1 ; q_{i}+1 ; \tau_{i} ; R$
Provided that
a) $0<\operatorname{Re}\left(a+\alpha_{1}+\cdots+\alpha_{r}\right)<1 / 2-\operatorname{Re}(b), \operatorname{Re}\left(\alpha_{i}\right)>0, i=1, \cdots, r$
b) $\left|\frac{\arg z_{k}}{4 \zeta_{k}}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is given in (1.3)

5.Multivariable I-function

If $\tau_{i}, \tau_{i^{(1)}}, \cdots, \tau_{i^{(r)}} \rightarrow 1$, the Aleph-function of several variables degenere to the I-function of several variables. The two formulas have been derived in this section for multivariable I-functions defined by Sharma et al [3].
$R_{\alpha_{1}, \cdots, \alpha_{r}}^{(a, b)}\left\{I_{U: W}^{0, \mathrm{n}: V}\left(\left.\begin{array}{c}\mathrm{z}_{1}\left(x_{1}+\cdots+x_{r}\right)^{\zeta_{1}}\left[\left(x_{1}+\cdots+x_{r}\right)^{1 / 2}+\left(1+x_{1}+\cdots+x_{r}\right)^{1 / 2}\right]^{-2 \eta_{1}} \\ \cdot \\ \cdot \\ \\ \mathrm{z}_{r}\left(x_{1}+\cdots+x_{r}\right)^{\zeta_{r}}\left[\left(x_{1}+\cdots+x_{r}\right)^{1 / 2}+\left(1+x_{1}+\cdots+x_{r}\right)^{1 / 2}\right]^{-2 \eta_{r}}\end{array} \right\rvert\,\right.\right.$
$\left.\begin{array}{l}\text { A : C } \\ \text {. } \\ \text { B } \cdot \\ \text { B D }\end{array}\right\}=\frac{\Gamma\left(1 / 2+a-b+\alpha_{1}+\cdots+\alpha_{r}\right)}{\Gamma\left(2 a+2 \alpha_{1}+\cdots+2 \alpha_{r}\right) \Gamma\left(1 / 2-a-b-\alpha_{1}-\cdots-\alpha_{r}\right)} I_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c}4^{-\zeta_{1}} z_{1} \\ \cdot \\ \cdot \\ 4^{-\dot{\zeta}_{r}} z_{r}\end{array}\right)$
$\left.\begin{array}{c}\left(1-2 \mathrm{a}-2 \alpha_{1}-\cdots-2 \alpha_{r} ; 2 \zeta_{1}, \cdots, 2 \zeta_{r}\right),\left(1 / 2+a+b+\alpha_{1}+\cdots+\alpha_{r} ; \eta_{1}-\zeta_{1}, \cdots, \eta_{r}-\zeta_{r}\right), A: C \\ \cdots \\ \cdots \\ \left(1 / 2-\mathrm{a}+\mathrm{b}-\alpha_{1}-\cdots-\alpha_{r} ; \zeta_{1}+\eta_{1}, \cdots, \zeta_{r}+\eta_{r}\right), B: D\end{array}\right)$
under the same notations and conditions that (3.1)
$R_{\alpha_{1}, \cdots, \alpha_{r}}^{(a, b)}\left\{I_{U: W}^{0, \mathfrak{n}: V}\left(\left.\begin{array}{c}\mathrm{z}_{1} x_{1}^{\lambda_{1}}\left(x_{1}+\cdots+x_{r}\right)^{\zeta_{1}}\left[\left(x_{1}+\cdots+x_{r}\right)^{1 / 2}+\left(1+x_{1}+\cdots+x_{r}\right)^{1 / 2}\right]^{-2 \eta_{1}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r} x_{r}^{\lambda_{r}}\left(x_{1}+\cdots+x_{r}\right)^{\zeta_{r}}\left[\left(x_{1}+\cdots+x_{r}\right)^{1 / 2}+\left(1+x_{1}+\cdots+x_{r}\right)^{1 / 2}\right]^{-2 \eta_{r}}\end{array} \right\rvert\,\right.\right.$

A: C

B : D
$=\frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{r}\right) \prod_{i=1}^{r} \Gamma\left(\alpha_{i}+\lambda_{i}\right) \Gamma\left(1 / 2+a-b+\alpha_{1}+\cdots+\alpha_{r}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{r}\right) \Gamma\left(\alpha_{1}+\lambda_{1}+\cdots+\alpha_{r}+\lambda_{r}\right) \Gamma\left(2\left(a+\alpha_{1}+\cdots+\alpha_{r}\right)\right) \Gamma\left(1 / 2-a-b-\alpha_{1}-\cdots-\alpha_{r}\right)}$
$I_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|c}4^{-\zeta_{1}-\lambda_{1}} z_{1} & \left(1-2 \mathrm{a}-2 \alpha_{1}-\cdots-2 \alpha_{r} ; 2\left(\zeta_{1}+\lambda_{1}\right), \cdots, 2\left(\zeta_{r}+\lambda_{r}\right)\right), \\ \cdot & \cdots \\ \cdot & \cdots \\ 4^{-\zeta_{r}-\lambda_{r}} z_{r} & \left(1 / 2-\mathrm{a}+\mathrm{b}-\alpha_{1}-\cdots-\alpha_{r} ; \zeta_{1}+\eta_{1}+\lambda_{1}, \cdots, \zeta_{r}+\eta_{r}+\lambda_{r}\right)\end{array}\right.$
$\left.\left(1 / 2+\mathrm{a}+\mathrm{b}+\alpha_{1}+\cdots+\alpha_{r} ; \eta_{1}-\zeta_{1}-\lambda_{1}, \cdots, \eta_{r}-\zeta_{r}-\lambda_{r}\right), A: C\right)$

B : D
under the same conditions and notations that (3.2) with $\tau_{i}, \tau_{i^{(1)}}, \cdots, \tau_{i(r)} \rightarrow 1$

6. Aleph-function of two variables

If $r=2$, we obtain the Aleph-function of two variables defined by K.Sharma [5], and we have the following two relations.

$$
\begin{align*}
& R_{\alpha_{1}, \alpha_{2}}^{(a, b)}\left\{\aleph_{U: W}^{0, n: V}\left(\begin{array}{c|c}
\mathrm{z}_{1}\left(x_{1}+x_{2}\right)^{\zeta_{1}}\left[\left(x_{1}+2\right)^{1 / 2}+\left(1+x_{1}+x_{2}\right)^{1 / 2}\right]^{-2 \eta_{1}} & \mathrm{~A}: \mathrm{C} \\
\cdot & \cdots \\
\cdot & \cdots \\
\mathrm{z}_{2}\left(x_{1}+x_{2}\right)^{\zeta_{2}}\left[\left(x_{1}+x_{2}\right)^{1 / 2}+\left(1+x_{1}+x_{2}\right)^{1 / 2}\right]^{-2 \eta_{2}} & \mathrm{~B}: \mathrm{D}
\end{array}\right\}\right. \\
& =\frac{\Gamma\left(1 / 2+a-b+\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(2 a+2 \alpha_{1}+2 \alpha_{2}\right) \Gamma\left(1 / 2-a-b-\alpha_{1}-\alpha_{2}\right)} \aleph_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c}
4^{-\zeta_{1}} z_{1} \\
\cdot \\
\cdot \\
4^{-\zeta_{2}} z_{2}
\end{array}\right) \\
& \left.\left(1-2 \mathrm{a}-2 \alpha_{1}-2 \alpha_{2} ; 2 \zeta_{1}, 2 \zeta_{2}\right),\left(1 / 2+a+b+\alpha_{1}+\alpha_{2} ; \eta_{1}-\zeta_{1}, \eta_{2}-\zeta_{2}\right), A: C\right) \\
& \left(1 / 2-\mathrm{a}+\mathrm{b}-\alpha_{1}-\alpha_{2} ; \dot{\zeta_{1}}+\eta_{1}, \zeta_{2}+\eta_{2}\right), B: D \tag{6.1}
\end{align*}
$$

under the same notations and conditions that (3.1) with $r=2$

$$
\begin{aligned}
& R_{\alpha_{1}, \alpha_{2}}^{(a, b)}\left\{\begin{array}{c|c|c}
\mathrm{z}_{1} x_{1}^{\lambda_{1}}\left(x_{1}+x_{2}\right)^{\zeta_{1}}\left[\left(x_{1}+2\right)^{1 / 2}+\left(1+x_{1}+x_{2}\right)^{1 / 2}\right]^{-2 \eta_{1}} & \mathrm{~A}: \mathrm{C} \\
\cdot & \begin{array}{c}
\text { n }: V \\
\cdot \\
\cdot \\
\mathrm{z}_{2} x_{2}^{\lambda_{2}}\left(x_{1}+x_{2}\right)^{\zeta_{2}}\left[\left(x_{1}+x_{2}\right)^{1 / 2}+\left(1+x_{1}+x_{2}\right)^{1 / 2}\right]^{-2 \eta_{2}}
\end{array} & \mathrm{~B}: \mathrm{D}
\end{array}\right\} \\
& =\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right) \prod_{i=1}^{2} \Gamma\left(\alpha_{i}+\lambda_{i}\right) \Gamma\left(1 / 2+a-b+\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{1}+\lambda_{1}+\alpha_{2}+\lambda_{2}\right) \Gamma\left(2\left(a+\alpha_{1}+\alpha_{2}\right)\right) \Gamma\left(1 / 2-a-b-\alpha_{1}-\alpha_{2}\right)} \\
& \aleph_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|c}
4^{-\zeta_{1}-\lambda_{1}} z_{1} & \left(1-2 \mathrm{a}-2 \alpha_{1}-2 \alpha_{2} ; 2\left(\zeta_{1}+\lambda_{1}\right), 2\left(\zeta_{2}+\lambda_{2}\right)\right), \\
\cdot & \cdots \\
\cdot & \cdots \\
\cdot & \left(1 / 2-\mathrm{a}+\mathrm{b}-\alpha_{1}-\alpha_{2} ; \zeta_{1}+\eta_{1}+\lambda_{1}, \zeta_{2}+\eta_{2}+\lambda_{2}\right)
\end{array}\right.
\end{aligned}
$$

$$
\left.\begin{array}{c}
\left(1 / 2+\mathrm{a}+\mathrm{b}+\alpha_{1}+\alpha_{2} ; \eta_{1}-\zeta_{1}-\lambda_{1}, \eta_{2}-\zeta_{2}-\lambda_{2}\right), A: C \tag{6.2}\\
\cdots \\
\cdots \cdot \\
\mathrm{~B}: \mathrm{D}
\end{array}\right)
$$

under the same conditions and notations that (3.2) with $r=2$

7. I-function of two variables

If $\tau_{i}, \tau_{i}^{\prime}, \tau_{i}^{\prime \prime} \rightarrow 1$, then the Aleph-function of two variables degenere in the I-function of two variables defined by sharma et al [4] and we obtain the same formulas with the I-function of two variables.

$$
\begin{align*}
& R_{\alpha_{1}, \alpha_{2}}^{(a, b)}\left\{\begin{array}{c|c|c}
I_{U: W}^{0, n}: V \\
\mathrm{z}_{1}\left(x_{1}+x_{2}\right)^{\zeta_{1}}\left[\left(x_{1}+2\right)^{1 / 2}+\left(1+x_{1}+x_{2}\right)^{1 / 2}\right]^{-2 \eta_{1}} & \mathrm{~A}: \mathrm{C} \\
\cdot & \cdot \\
\cdot & \cdots \\
\mathrm{z}_{2}\left(x_{1}+x_{2}\right)^{\zeta_{2}}\left[\left(x_{1}+x_{2}\right)^{1 / 2}+\left(1+x_{1}+x_{2}\right)^{1 / 2}\right]^{-2 \eta_{2}} & \mathrm{~B}: \mathrm{D}
\end{array}\right\} \\
& =\frac{\Gamma\left(1 / 2+a-b+\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(2 a+2 \alpha_{1}+2 \alpha_{2}\right) \Gamma\left(1 / 2-a-b-\alpha_{1}-\alpha_{2}\right)} I_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c}
4^{-\zeta_{1}} z_{1} \\
\cdot \\
\cdot \\
4^{-\dot{\zeta}_{2}} z_{2}
\end{array}\right) \\
& \left.\left(1-2 \mathrm{a}-2 \alpha_{1}-2 \alpha_{2} ; 2 \zeta_{1}, 2 \zeta_{2}\right),\left(1 / 2+a+b+\alpha_{1}+\alpha_{2} ; \eta_{1}-\zeta_{1}, \eta_{2}-\zeta_{2}\right), A: C\right) \\
& \left(1 / 2-\mathrm{a}+\mathrm{b}-\alpha_{1}-\alpha_{2} ; \dot{\zeta}_{1}+\eta_{1}, \zeta_{2}+\eta_{2}\right), B: D \tag{7.1}
\end{align*}
$$

under the same notations and conditions that (3.1) with $r=2$
$R_{\alpha_{1}, \alpha_{2}}^{(a, b)}\left\{\left.\begin{array}{c}I_{U: W}^{0, \mathrm{n}: V} \\ \left.\mathrm{z}_{1} x_{1}^{\lambda_{1}}\left(x_{1}+x_{2}\right)^{\zeta_{1}}\left[\left(x_{1}+\right)^{2}\right)^{1 / 2}+\left(1+x_{1}+x_{2}\right)^{1 / 2}\right]^{-2 \eta_{1}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{2} x_{2}^{\lambda_{2}}\left(x_{1}+x_{2}\right)^{\zeta_{2}}\left[\left(x_{1}+x_{2}\right)^{1 / 2}+\left(1+x_{1}+x_{2}\right)^{1 / 2}\right]^{-2 \eta_{2}}\end{array} \right\rvert\, \begin{array}{c}\mathrm{B}: \mathrm{C} \\ \cdots \\ \cdots\end{array}\right\}$

$$
\left.\begin{array}{c}
=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right) \prod_{i=1}^{2} \Gamma\left(\alpha_{i}+\lambda_{i}\right) \Gamma\left(1 / 2+a-b+\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{1}+\lambda_{1}+\alpha_{2}+\lambda_{2}\right) \Gamma\left(2\left(a+\alpha_{1}+\alpha_{2}\right)\right) \Gamma\left(1 / 2-a-b-\alpha_{1}-\alpha_{2}\right)} \\
I_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c}
4^{-\zeta_{1}-\lambda_{1}} z_{1} \\
\cdot \\
\cdot \\
\cdot \\
4^{-\zeta_{2}-\lambda_{2}} z_{2}
\end{array}\right)\left(1-2 \mathrm{a}-2 \alpha_{1}-2 \alpha_{2} ; 2\left(\zeta_{1}+\lambda_{1}\right), 2\left(\zeta_{2}+\lambda_{2}\right)\right), \\
\cdots \tag{7.2}\\
\cdots \\
\left(1 / 2-\mathrm{a}+\mathrm{b}-\alpha_{1}-\alpha_{2} ; \zeta_{1}+\eta_{1}+\lambda_{1}, \zeta_{2}+\eta_{2}+\lambda_{2}\right) \\
\left(1 / 2+\mathrm{a}+\mathrm{b}+\alpha_{1}+\alpha_{2} ; \eta_{1}-\zeta_{1}-\lambda_{1}, \eta_{2}-\zeta_{2}-\lambda_{2}\right), A: C \\
\cdots \\
\cdots
\end{array}\right)
$$

under the same conditions and notations that (3.2) with $r=2$

8. Conclusion

In this paper we have evaluated two multidimensional integral transform concerning the multivariable Aleph-function. The formulas established in this paper is of very general nature as it contains multivariable Aleph-function, which is a general function of several variables studied so far. Thus, the integral established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

[1] Ayant F.Y. An integral associated with the Aleph-functions of several variables. International Journal of Mathematics Trends and Technology (IJMTT). 2016 Vol 31 (3), page 142-154.
[2] Chandel R.C.S. And Chauhan S.S. A new multidimensional integral transform. Jour. Pure. Math. Vol 23 (2006), page 101-119.
[3] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113116.
[4] C.K. Sharma and P.L. mishra : On the I-function of two variables and its properties. Acta Ciencia Indica Math , 1991 Vol 17 page 667-672.
[5] Sharma K. On the integral representation and applications of the generalized function of two variables, International Journal of Mathematical Engineering and Sciences, Vol 3 , issue1 (2014), page1-13.
[6] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE

