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Introduction. For p = 1, 2, let 
p
(z) denote the space of pth summable sequence of complex numbers. If p = 2 

then 
2
(z) is Hilbert space under the inner product  

 áf,gñ= 

n=-¥

¥
 f

n
g 

n
 and  for p=1,

1
(z),  

is a Banach space under the norm  

 ||x||= 

n=-¥

¥
 |x

n
|. 

If fÎ
1

(z), fÎ
2

(z)  then we form the convolution product f* which is defined by  

 (f*f)(m)= 

n=-¥

¥
 f(n)f(m-n). 

If T:ZZ is a mapping such that the transformation C
T,f

:
2

(z)®
2

(z)  defined by (C
T,f

f)=(f*f)oT  is bounded 

we call C
T,f

 a composite convolution operator induced by the pair (,T). In case T(z) = z for all zZ. We 

write C
T,f

=C
f

 which is known as convolution operator. 

In this paper we study the convolution and composite convolution operators. The Hermition ,Bounded and 

Compact convolution operators are characterized. For literature concerning Composite operators and 

Convolution operators , we refer to singand komal[11], komal and gupta [2],komal and sharma [3], kumar [4], 

Nordgren [6], Ridge [7], gupta and komal [5], singh , gupta and komal [8].  

 

2.  Bounded convolution operators: 

 In this, section the convolution operators to be bounded and hermition operators be studied  

Theorem 2.1 Let fÎ
2

(z)be such that  (m)=  (m). Then C
*

f
=C

f*
. 

Proof: For f,gÎ
2

(z) .We have  
 

 < >C
f
f,g  = 

n=-¥

¥
 C

f
f(n)g(  n  ) 

  = 

n=-¥

¥
 (f*f)(n)  g(n)   

  = 

n=-¥

¥
 ( 

m=-¥

¥
 f(m)f(n-m)  g(n)  ) 

  = 

m=-¥

¥
 f(m) 

n=-¥

¥
   g(n)    f(m-n)   

  = 

m=-¥

¥
 f(m)  g*f  (m) 
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  = < >f,C
*

f
g .  

Hence C
*

f
=C

*

f
 . 

Example 2.2: Let :zz be defined by f(n)= 
1

n
2

 .Then fÎ
1

(Z). Therefore C
f
ÎB(

2
(Z))  

 

 C
*

f
f)(n)   = < >C

*

f
f,e

n
 

  = < >f,C
f
e
n

 

  = 

m=-¥

¥
 f(m)  C

f
 (m) 

       

  = 

m=-¥

¥
 f(m)  e

n
*f  (m) 

              

  = 

m=-¥

¥
 f(m) 

1

(m-n)
2

 

 

 

and  
 

 (C
f
f)(n) = ác

f
f,e

n
ñ  

  = 

m=-¥

¥
 (f*f)(m)e

n
(m) 

  = (f*f)(n) 

  = 

m=-¥

¥
 f(m)f(n-m)) 

  = 

m=-¥

¥
 f(m) 

1

(n-m)
2

 

  = 

m=-¥

¥
 f(m) 

1

(m-n)
2

 

  = (C
*

f
f)(n) for all fÎ

2
(z) and nÎZ. 

Hence C
f
 is Hermition. 

 

 

Theorem 2.3.: is Hamiltonian iff  

Proof.: if  , then clearly  

Hence is Hamiltonian  

Conversely, suppose    or    
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Now   (   ) (m)  =  (  x ) (m) 

  

=   ,       

 and  

= (  * ) (m)  =  

=  

=  

= (   ) (m) 

This is true for every m  X so that (   ) =     for every n  Z. Hence , since   is 

a basis for l
2
 (z). 

3. Composite convolution operators  

In this section we study the composite convolution operators on l
2
(z). 

Theorem 3.1:- Let       B ( l
2
(z)). Then  is Hamiltonian iff   

 (T(m)-n)  =   (T(n)-m) 

Proof: suppose the condition is true n  Z, we have  

(m)   =   ( )  (T (m)) 

  

--------------------------------------    1 

and  

(m)   =    

=     ------------------------------------ 2 

Since 1 and 2 are equal 

so,  

∀  n   z 

Hence   
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Since  is Hamiltonian  

The proof of converse part is obvious. 

Example 3.2 Let  be defined by   and  

 Be defined by T(m)= m+1 ∀   m   z 

Then 

  and  (m)=1  ∀ m  Z 

Hence        B ( l
2
(z)). 

Now          

                            

    

 

 

 

 

    -------------------------------------1 

 ( )(m)  =    

    =  
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    ------------------------------------------------2 

From 1 and 2, we have 

   

Hence  is Hermition 

Theorem 3.3  Let (l
2
 (z)). Then . Compact if and only if i.e.   

Proof. If   Then  (p) (Tn ) (p)  for some p  Z 

For n  Z 

 = 
2
 

= 
2
 

≤    
2
 

2 
   

 = 
2
 

= 
2
 

2
 

This is the sequence { } does not converge to zero. This proves that does not compact. 

Thus if is compact, then  

Cor 3.4.    If , then is not compact. 

Proof:-  From the above theorem, we can conclude that 

 for infinitely many n ∈ T(z).  

This proves that strongly. But  weakly hence  cannot be compact. 
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