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Abstract. In this note we obtain the condition for convolution and composite convolution operators to be
bounded and Hermition .We also find that only the compact composite convolution operator is the Zero
operator.
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Introduction. Forp =1, 2, let kp(z) denote the space of pth summable sequence of complex numbers. If p = 2
then kz(z) is Hilbert space under the inner product

¥
dgi= Sf @ and for p=121(2),
n=-¥
is a Banach space under the norm
¥
IXII= 22 X -
n=-¥

If ﬁkl(z), kaZ(z) then we form the convolution product f*[1 which is defined by
(f*f)(m)= éf(n)f(m-n).
n=-¥
If T:Z0Z is a mapping such that the transformation CT'f:k2(2)®k2(z) defined by (CT,ff):(f*f)oT is bounded
we call CT,f a composite convolution operator induced by the pair ([1,T). In case T(z) = z for all zDZ. We
write CT,f:Cf which is known as convolution operator.

In this paper we study the convolution and composite convolution operators. The Hermition ,Bounded and
Compact convolution operators are characterized. For literature concerning Composite operators and
Convolution operators , we refer to singand komal[11], komal and gupta [2],komal and sharma [3], kumar [4],
Nordgren [6], Ridge [7], gupta and komal [5], singh , gupta and komal [8].

2. Bounded convolution operators:
In this, section the convolution operators to be bounded and hermition operators be studied
*

Theorem 2.1 Let kaZ(z)be such that [ (m)= I (m). Then Cr=Ce.

Proof: For f,ngZ(z) .We have

¥ _
T Cmg( n )
n=-¥

<Cda >
¥
= 2 (D) g
n=-¥

¥ ¥
= 2 ( X f(m)f(n-m) g(n) )

n=-¥ m=-¥

¥ ¥
= 2fm = g f(m-n)

m=-¥ n=-¥

¥
= 2.f(m) g*f (m)
m=-¥
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Hence CTc :C]c .

<icrg >

Example 2.2: Let [1:z[1z be defined by f(n)= % Then kal(Z). Therefore CfTB(XZ(Z))
n

C:f)(n)

and

(CAn)

Hence Cf is Hermition.

Theorem 2.3.: C,, is Hamiltonian iff ¢ = @~

Proof.: if @ = @, thenclearly C, = C;, = C,-

Hence Cq, is Hamiltonian

Conversely, suppose €, = C,+

ISSN: 2231-5373

or IﬂqJ = Cm-

<Cff,en >

<fCe, >

¥
f(m) "C¢ (m)
=¥

Z f(m)(C, e,) (m)

¥ -
> f(m) en*f (m)

m=-¥
2Am( X e (2)(m-p))
M= P=—u
¥

T im——
m=- (m-n)
écff,enﬁ

¥

2 (Ff)(m)e, (M)
m=-¥

(F<h(n)

¥

2. f(m)f(n-m))
m=-¥

¥

X f(m) ——
m=-¥ (n-m)
¥

X f(m) ——

(C¢H() for all fix%(z) and niz.
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Now (G, eg)(m) = (e, x @) (m)
=2 _ .e.(p)o(m-p)

= ¢(m—n),

and

=(Cy *e,) (M) =" (m—n)
=¢ (n—m)

=¢ (m—n)

=(Cy ep) (M)

This is true for every m € X so that (C;, e,)=Cg*

o* €y foreveryn € Z Hence C,

a basis for I? (2).
3. Composite convolution operators

In this section we study the composite convolution operators on 1%(z).

Theorem 3.1:- Let Cg, €B( (). Then Cr, is Hamiltonian iff
D (T(m)-n) = D (T(n)-m)

Proof: suppose the condition is true n = Z, we have

(Cre €n)(m) (en ® @) (T (M)

=2 . ea(@)e(T(m) - p)

= o(T(m) —p) 1

and

2 ea()B(T() — m)

(Cro endm)

Y B(T@) —m) 2

Since 1 and 2 are equal
S0,

(Ctpen) =Crye,Y NE 2

&= —
Hence C1, = Cry

C5 . since (&, Jaes
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Since Cr,, is Hamiltonian
The proof of converse part is obvious.
1

Example 3.2 Let @: Z — Z be defined by @ = Pty and

T:Z — Z Be defined by T(m)=m+1V mE z
Then

o £1(z)and f; (m=1 YmME Z
Hence Cr, €B (I(2)).
Now (Cof)n)==Ci fe, =

=< f,(Cpo)ren =

=) ) (Cree,) T

- Z f(m)(C, = e,)T(m)

m=—o

oo

_ f(m) (Z e, (P)o(T(m) — p)

m = -

= ) fme(Tm—n)

m=—o

= ) fme@m+D -

:Zm:—mf[ :] (m— ﬂ]'z !

(Cro.H(m = <Crofe, >= 3 ___ (f*0)(T(p))e,(p)

- (£* 9) (T(n)
= Em

m=—c

f(m)e(T(n) —m)
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= ) fm) o((m+1) —m)

m=-aw

:Z ~ f(I]’Ij l:mj-n}"“ 2

From 1 and 2, we have

[:CT_@ fj [:Il:] = (C'i'c',q:u fj (Il:]

Hence Cr,, is Hermition
Theorem 3.3 Let Cr, € B(I? (z)). Then Cr, 1. Compactifand only ifie. Cr, =0
Proof. If Cr, # 0 Then f; (p) (To @) (p) # @ for some p € Z

Forne Z
|Cro eall= 2. l(en=@) (T(m)) P

=2 . foml(e,* @) (T(m)) I

<) A Z e lotm—p)F ]

m=—u

= 2 e fo(m)lo(m—n)

= 2 e Fo ()I(T, @) (m) P

= fo(p) (T, @) (P)F

This is the sequence {&,} does not converge to zero. This proves that CTJq, does not compact.
Thus if C1; is compact, then C¢, = 0

Cor3.4. Ifo(0) =0, then Cr 4 is not compact.

Proof:- From the above theorem, we can conclude that

||CT@ e, || = (0) for infinitely many n € T(z).

This proves that Ct, &, — 0 strongly. But e, — O weakly hence Ct, cannot be compact.
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