A note on Bicomplex Linear operators on bicomplex Hilbert spaces

Khalid Manzoor
Department of Mathematics
Central University of Jammu
Jammu-180 011, INDIA

Abstract

In this paper we define the isomorphism between the bicomplex Hilbert spaces. We also give some simple and basic results on bicomplex isomorphism with respect to hyperbolic-valued norm on the bicomplex Hilbert spaces.

Keywords: Bicomplex numbers, hyperbolic norm, bicomplex isomerty.

1 Introduction and preliminaries

Firstly, we give some basic definitions and important properties of bicomplex numbers and bicomplex holomorphic functions. Let i, j be two imaginary units such that $i j=j i, i^{2}=j^{2}=-1$. The set of bicomplex numbers $\mathbf{B C}$ is defined as

$$
\mathbf{B C}=\{Z=z+j w: z, w \in \mathbf{C}(i)\} .
$$

Let $Z_{1}=z+j w$ and $Z_{2}=s+j t$, be any two bicomplex numbers. Then the addition and multiplication of bicomplex numbers is defined as $Z_{1}+Z_{2}=(z+j w)+$ $(s+j t)=(z+s)+j(w+t), Z_{1} \cdot Z_{2}=$ $(z+j w)(s+j t)=(z s-w t)+j(w s+z t)$. With respect to above binary operations a bicomplex number set turn out to be a ring and is a module over itself. A bicomplex number is a combination of two complex numbers. The set of complex numbers is a subring of bicomplex numbers. If we denote the real number z by x and imaginary number w by $i y$ such that $i j=k$, then the set of hyperbolic numbers is defined as

$$
\mathbf{D}=\left\{x+k y: k^{2}=1 \text { with } k \notin \mathbf{R}\right\} .
$$

The bicomplex numbers $e_{1}=\frac{1+i j}{2}$ and $e_{2}=\frac{1-i j}{2}$ are zero divisiors and are linearly independent in the complex plane and have the following properties: $e_{1}+e_{2}=$ $1, e_{1}-e_{2}=i j, e_{1} \cdot e_{2}=0, e_{1}{ }^{2}=e_{1}, e_{2}{ }^{2}=$
e_{2}. Thus, the bicomplex number is not a division algebra. The numbers e_{1} and e_{2} are also known as hyperbolic numbers and form the basis for bicomplex numbers. For any bicomplex number $Z=z+j w$, the three kind of congugations can be defined as follows: $(i) Z^{\sharp}=\bar{z}+j \bar{w},(i i) Z^{\dagger}=z-$ $j w,($ iii $) Z^{\ddagger}=\bar{z}-j \bar{w}$, where \bar{z}, \bar{w} denote the complex congugates to $z, w \in \mathbf{C}(i)$. For each congugation, a bicomplex modulus is defined by
$|Z|_{j}^{2}=Z . Z^{\sharp},|Z|_{i}^{2}=Z . Z^{\dagger},|Z|_{k}^{2}=Z . Z^{\ddagger}$.
If $Z=z+j w$, then the idempotent representation of a bicomplex number can be written as

$$
Z=e_{1} z_{1}+e_{2} z_{2},
$$

where $\left\{z_{1}=z-i w\right.$ and $\left.z_{2}=z+i w\right\}$ are in $\mathbf{C}(i)$. By the above representation of bicomplex number, we can write

$$
\mathbf{B C}=e_{1} \mathbf{B C}+e_{2} \mathbf{B C} .
$$

There is a vast literature on bicomplex analysis, see [1], [7] and [15] for details. Now, we begin with the definition of norms, Inner products on BC-modules. We refer to [1], [6], [7] for following definitions.

Definition 1.1 Let X be a BC-module and X_{1} and X_{2} be the complex linear spaces, (see [17]) then we can write

$$
X=e_{1} X_{1}+e_{2} X_{2}
$$

and is called the idempotent decomposition of X.

If X_{1} and X_{2} are normed linear spaces with norms $\|.\|_{1}$ and $\|\cdot\|_{2}$ respectively. Then for each $x=e_{1} x_{1}+e_{2} x_{2} \in X$, for all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$, we have

$$
\begin{aligned}
\|x\|^{2} & =\left\|e_{1} x_{1}+e_{2} x_{2}\right\|^{2} \\
& =\left\|e_{1} x_{1}\right\|_{1}^{2}+\left\|e_{2} x_{2}\right\|_{2}^{2} \\
& =\left|e_{1}\right|^{2}\left\|x_{1}\right\|_{1}^{2}+\left|e_{2}\right|^{2}\left\|x_{2}\right\|_{2}^{2} \\
& =\frac{1}{2}\left(\left\|x_{1}\right\|_{1}^{2}+\left\|x_{2}\right\|_{2}^{2}\right) .
\end{aligned}
$$

It is well known that $\|$.$\| defines a real-$ valued norm on X and $\|\alpha x\| \leq \sqrt{2}|\alpha|\|x\|$ for any $x \in X, \alpha \in \mathbf{B C}$. This norm shows that for any bicomplex numbers Z_{1} and Z_{2},

$$
\left|Z_{1} \cdot Z_{2}\right|<\sqrt{2}\left|Z_{1}\right|\left|Z_{2}\right|
$$

Since, the inner product square is positive hyperbolic number so it gives an idea of hyperbolic-valued (D-valued) norm of a $\mathbf{B C}$-module and is defined as:

$$
\begin{aligned}
\|x\|_{\mathbf{D}}^{2} & =\left\|e_{1} x_{1}+e_{2} x_{2}\right\|_{\mathbf{D}}^{2} \\
& =e_{1}\left\|x_{1}\right\|_{1}^{2}+e_{2}\left\|x_{2}\right\|_{2}^{2} \\
& =e_{1}<x_{1}, x_{1}>_{1}+e_{2}<x_{2}, x_{2}>_{2} \\
& =<e_{1} x_{1}+e_{2} x_{2}, e_{1} x_{1}+e_{2} x_{2}>_{\mathbf{D}} \\
& =<x, y>_{\mathbf{D}} .
\end{aligned}
$$

A BC-module X endowed with a bicomplex inner product $<., .>$ is called $\mathbf{B C}$ inner product module. Let X_{1} and X_{2} be two linear spaces. Assume that X_{1} and X_{2} are inner product spaces with inner product $<., .>_{1}$ and $<., .>_{2}$, respectively and corresponding norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$. Then for any $x, y \in X$,
$<x, y>_{X}=<e_{1} x_{1}+e_{2} x_{2}, e_{1} y_{1}+$ $e_{2} y_{2}>_{X}=e_{1}<x_{1}, y_{1}>_{1}+e_{2}<$ $x_{2}, y_{2}>_{2}$ defines a bicomplex inner product on the bicomplex module X. Moreover,
the above bicomplex inner product norm introduces a hyperbolic-valued norm on inner product BC-module X defined as
$\|x\|_{\mathbf{D}}=e_{1}\left\|x_{1}\right\|+e_{2}\left\|x_{2}\right\|_{\mathbf{D}}=<x, x>^{\frac{1}{2}}$.

Theorem 1.2 [9, Theorem 3.5] Let X be a BC-module. Then $X=e_{1} X_{1}+e_{2} X_{2}$ is a bicomplex Banach-module if and only if X_{1}, X_{2} are complex Banach spaces.

Definition 1.3 [1, P. 53] A BC-module X with inner product $<., .>_{X}$ is said to be a bicomplex Hilbert space if it is complete with respect to the \mathbf{D}-valued norm generated by the bicomplex inner product. Thus $X=e_{1} X_{1}+e_{2} X_{2}$ is bicomplex Hilbert space if and only if $\left(X_{1},<., .>_{1}\right)$ and $\left(X_{2},<., .>_{2}\right)$ are complex Hilbert spaces.

Definition 1.4 Let X and Y be two BCmodules with hyperbolic norms. A mapping $T: X \rightarrow Y$ is said to be bicomplex linear operator on X if
$T(\alpha x+\gamma y)=\alpha T(x)+\gamma T(y)$, for all $x, y \in X$ and $\alpha, \gamma \in \mathbf{B C}$. The idempotent representation of T is given by

$$
\begin{equation*}
T=e_{1} T_{1}+e_{2} T_{2}, \tag{2}
\end{equation*}
$$

where T_{1}, T_{2} are complex linear operators and e_{1}, e_{2} form basis of bicomplex numbers and so called idempotent basis of bicomplex numbers.The set $B(X, Y)$ denotes the space of all \mathbf{D}-bounded $\mathbf{B C}$ - linear operators and the norm for each $T \in$ $B(X, Y)$ (see [1]) is defined as
$\|T\|_{\mathbf{D}}=\sup \left\{\|T(x)\|_{\mathbf{D}}, x \in X,\|x\|_{\mathbf{D}}<^{\prime} 1\right\}$
and is called hyperbolic norm on T and so we can write
$\|T\|_{\mathbf{D}}=\left\|e_{1} T_{1}+e_{1} T_{2}\right\|_{\mathbf{D}}=e_{1}\|T\|_{1}+e_{2}\|T\|_{2}$,
where $\|.\|_{1}$ and $\|\cdot\|_{2}$ are usual norms defined on complex linear operators T_{1} and T_{2} respectively.

Definition 1.5 Let X and Y be two bicomplex Hilbert spaces with inner product $<., .>_{X}$ and $<., .>_{Y}$ respectively. Then the bicomplex adjoint operator $T^{*}: Y \rightarrow X$ for a bounded linear operator $T: X \rightarrow Y$ is defined by

$$
<T x, y>_{Y}=<x, T^{*} y>_{X}
$$

The bicomplex adjoint operator T^{*} can be written as

$$
T^{*}=e_{1} T_{1}^{*}+e_{2} T_{2}^{*}
$$

where T_{1}^{*} and T_{2}^{*} are the complex adjoint operators of T_{1} and T_{2} respectively.

Definition 1.6 Let X be a bicomplex Hilbert space and $T \in B(X)$. Then T is said to be a
(a) bicomplex self adjoint if $T=T^{*}$,
(b) bicomplex normal operator if $T T^{*}=$ $T^{*} T$,
(c) bicomplex unitary if $T T^{*}=T^{*} T=$ I, where I is an identity operator on X.

For systematic study of bicomplex functional analysis, we refer to [1], [2], [6], [7], [8], [11], [12] and references therein.

2 Bicomplex isomorphism

In this section, we investigate bicomplex isometry between the bicomplex Hilbert spaces.

Definition 2.1 A bicomplex isomorphism T of a bicomplex Hilbert space X onto \tilde{X} is a bicomplex bijective linear operator $T: X \rightarrow \tilde{X}$ which preserves the bicomplex inner product, i.e., for all $x, y \in X$

$$
<T x, T y>=<x, y>
$$

\tilde{X} is said to be the bicomplex isomorphic to $X . X$ and \tilde{X} are called bicomplex isomorphic inner product spaces.

We can easily prove the following proposition.

Proposition 2.2 Let X be a bicomplex Hilbert space and $T \in B(X)$, the space of all bicomplex \mathbf{D}-bounded linear operators from X to itself. Then T is bicomplex isometric on X if and only if T_{1} and T_{2} are isometric on X.

Proposition 2.3 Let X be a bicomplex Hilbert space with hyperbolic norm $\|.\|_{\mathbf{D}}$ and $T \in B(X)$. Then T is a bicomplex isometry if and only if $<T x, T y>_{X}=<$ $x, y>_{X} ;$ for all $x, y \in X$.

Proof. Since $T \in B(X)$, so we can write $T=e_{1} T_{1}+e_{2} T_{2}$, where T_{1} and T_{2} are complex linear operators. Also for any $x, y \in X$, we have $x=e_{1} x_{1}+e_{2} x_{2}$ and $y=e_{1} y_{1}+e_{2} y_{2}$.
Suppose $<T x, T y>_{X}=<x, y>_{X}$.

Then

$$
\begin{aligned}
& \|T x\|^{2} \mathbf{D}=<T x, T x>_{X} \\
& \quad=<x, x>_{X} \\
& =<e_{1} x_{1}+e_{2} x_{2}, e_{1} x_{1}+e_{2} x_{2}>_{X} \\
& =e_{1}<x_{1}, x_{1}>_{X}+e_{2}<x_{2}, x_{2}>_{X} \\
& =e_{1}\left\|x_{1}\right\|^{2} \mathbf{D}+e_{2}\left\|x_{2}\right\|^{2} \mathbf{D} \\
& =\|x\|^{2} \mathbf{D} .
\end{aligned}
$$

Hence T is isometry.
Conversely, if $x, y \in X$ and $\alpha \in \mathbf{B C}$, then $\|x+\alpha y\|^{2} \mathbf{D}=\|T x+\alpha T y\|^{2} \mathbf{D}$ $\Rightarrow \quad<x+\alpha y, x+\alpha y>_{X}=<T x+$ $\alpha T y, T x+\alpha T y>_{X}$
$\Rightarrow<e_{1}\left(x_{1}+\alpha_{1} y_{1}\right)+e_{2}\left(x_{2}+\alpha_{2} y_{2}\right)$,
$e_{1}\left(x_{1}+\alpha_{1} y_{1}\right)+e_{2}\left(x_{2}+\alpha_{2} y_{2}\right)>_{X}$
$=<e_{1}\left(T_{1} x_{1}+\alpha_{1} T_{1} y_{1}\right)+e_{2}\left(T_{2} x_{2}+\right.$ $\left.\alpha_{2} T_{2} y_{2}\right), e_{1}\left(T_{1} x_{1}+\alpha_{1} T y_{1}\right)+e_{2}\left(T x_{2}+\right.$ $\left.\alpha_{2} T y_{2}\right)>_{X}$
$\Rightarrow e_{1}<x_{1}+\alpha_{1} y_{1}, x_{1}+\alpha_{1} y_{1}>_{1}+e_{2}<$
$x_{2}+\alpha_{2} y_{2}, x_{2}+\alpha_{2} y_{2}>_{2}$
$=e_{1}<T_{1} x_{1}+\alpha_{1} T_{1} y_{1}, T_{1} x_{1}+\alpha_{1} T_{1} y_{1}>_{1}$
$+e_{2}<T_{2} x_{2}+\alpha_{2} T_{2} y_{2}, T_{2} x_{2}+\alpha_{2} T_{2} y_{2}>_{2}$
$\Rightarrow e_{1}<x_{1}, x_{1}>_{1}+e_{1}<x_{1}, \alpha_{1} y_{1}>_{1}$
$+e_{1}<\alpha_{1} y_{1}, x_{1} \quad>_{1} \quad+e_{1}<$
$\alpha_{1} y_{1}, \alpha_{1} y_{1}>_{1}+e_{2}<x_{2}, x_{2}>_{2}$
$+e_{2}<x_{2}, \alpha_{2} y_{2}>_{2}+e_{2}<\alpha_{2} y_{2}, x_{2}>_{2}$
$+e_{2}<\alpha_{2} y_{2}, \alpha_{2} y_{2}>{ }_{2}$
$=e_{1}<T_{1} x_{1}, T_{1} x_{1}>_{1}+e_{1}<T_{1} x_{1}$,
$\alpha_{1} T_{1} y_{1}>_{1}+e_{1}<\alpha_{1} T_{1} y_{1}, T_{1} x_{1}>_{1}$
$+e_{1}<\alpha_{1} T_{1} y_{1}, \alpha_{1} T_{1} y_{1}>_{1}+e_{2}<T_{2} x_{2}$,
$T_{2} x_{2}>_{2}+e_{2}<T_{2} x_{2}, \alpha_{2} T_{2} y_{2}>_{2}+e_{2}$
$<\alpha_{2} T_{2} y_{2}, T_{2} x_{2}>_{2}+e_{2}<\alpha_{2} T_{2} y_{2}$,
$\alpha_{2} T_{2} y_{2}>_{2}$
$\Rightarrow \quad\left(e_{1}\left\|x_{1}\right\|^{2} \mathbf{D} \quad+\quad e_{2}\left\|x_{2}\right\|^{2} \mathbf{D}\right) \quad+$
$\left(e_{1}\left|\alpha_{1}\right|^{2}\left\|y_{1}\right\|^{2} \mathbf{D}+e_{2}\left|\alpha_{2}\right|^{2}\left\|y_{2}\right\|^{2} \mathbf{D}\right)+e_{1}$

$$
\begin{aligned}
& <x_{1}, \alpha_{1} y_{1}>_{1}+e_{2}<x_{2}, \alpha_{2} y_{2}>_{2} \\
& +e_{1}<\alpha_{1} y_{1}, x_{1}>_{1}+e_{2}<\alpha_{2} y_{2}, x_{2}>_{2} \\
& =\left(e_{1}\left\|T_{1} x_{1}\right\|^{2} \mathbf{D}+e_{2}\left\|T_{2} x_{2}\right\|^{2} \mathbf{D}\right)+ \\
& \left(e_{1}\left|\alpha_{1}\right|^{2}\left\|T_{1} y_{1}\right\|^{2} \mathbf{D}+e_{2}\left|\alpha_{2}\right|^{2}\left\|T_{2} y_{2}\right\|^{2} \mathbf{D}\right) \\
& +e_{1}<T_{1} x_{1}, \alpha_{1} T_{1} y_{1}>_{1}+e_{2}<T_{2} x_{2}, \\
& \alpha_{2} T_{2} y_{2}>_{2}+e_{1}<\alpha_{1} T_{1} y_{1}, T_{1} x_{1}>_{1} \\
& +e_{2}<\alpha_{2} T_{2} y_{2}, T_{2} x_{2}>_{2} \\
& \Rightarrow\|x\|^{2} \mathbf{D}+|\alpha|^{2}\|y\|^{2} \mathbf{D}+\quad<e_{1} x_{1}+ \\
& e_{2} x_{2}, e_{1} \alpha_{1} y_{1}+e_{2} \alpha_{2} y_{2}>_{X}+<e_{1} \alpha_{1} y_{1}+ \\
& e_{2} \alpha_{2} y_{2}, e_{1} x_{1}+e_{2} x_{2}>_{X} \\
& =\|T x\|^{2} \mathbf{D}+|\alpha|^{2}\|T y\|^{2} \mathbf{D}+<e_{1} T_{1} x_{1}+ \\
& e_{2} T_{2} x_{2}, e_{1} \alpha_{1} T_{1} y_{1}+e_{2} \alpha_{2} T_{2} y_{2}>_{X} \\
& +<e_{1} \alpha_{1} T_{1} y_{1}+e_{2} \alpha_{2} T_{2} y_{2}, e_{1} T_{1} x_{1}+ \\
& e_{2} T_{2} x_{2}>_{X} \\
& \Rightarrow\|x\|^{2} \mathbf{D}+|\alpha|^{2}\|y\|^{2} \mathbf{D}+<x, \alpha y>_{X} \\
& +<\alpha y, x>_{X} \\
& =\|T x\|^{2} \mathbf{D}+|\alpha|^{2}\|T y\|^{2} \mathbf{D}+<T x, \alpha T y \\
& >_{X}+<\alpha T y, T x>_{X} \\
& \Rightarrow\|x\|^{2} \mathbf{D}+|\alpha|^{2}\|y\|^{2} \mathbf{D}+2 R e \\
& \alpha<x, y>_{X} \\
& =\|T x\|^{2} \mathbf{D}+|\alpha|^{2}\|T y\|^{2} \mathbf{D}+2 R e \alpha< \\
& T x, T y>_{X} \\
& \Rightarrow<x, y>_{X}=<T x, T y>_{X} .
\end{aligned}
$$

Proposition 2.4 Let $T \in B(X)$ such that $T=e_{1} T_{1}+e_{2} T_{2}$ be its idempotent decomposition with $I=e_{1} I_{1}+e_{2} I_{2}$. Then following conditions are equivalent:
(i) T is a bicomplex isometry;
(ii) $T^{*} T=I$;
(iii) $<$ Tx,Ty $\quad>_{X}=<x, y \quad>_{X}$; for all $x, y \in X$.

Proof. By Proposition 2.3, (i) and (iii) are equivalent. Further, for any $x, y \in X$, we have

$$
<T x, T y>_{X}=<x, y>_{X}
$$

$$
\Leftrightarrow \quad<e_{1} T_{1} x_{1}+e_{2} T_{2} x_{2}, e_{1} T_{1} y_{1}
$$

$$
+e_{2} T_{2} y_{2}>_{X}
$$

$$
=<e_{1} x_{1}+e_{2} x_{2}, e_{1} y_{1}+e_{2} y_{2}>_{X}
$$

$$
\Leftrightarrow \quad e_{1}<T_{1} x_{1}, T_{1} y_{1}>_{1}+e_{2}<T_{2} x_{2},
$$

$$
T_{2} y_{2}>_{2}
$$

$$
=e_{1}<x_{1}, y_{1}>_{1}+e_{2}<x_{2}, y_{2}>_{2}
$$

$$
\Leftrightarrow \quad e_{1}<T_{1}^{*} T_{1} x_{1}, y_{1}>_{1}+e_{2}<T_{2}^{*} T_{2} x_{2},
$$

$$
y_{2}>_{2}
$$

$$
=e_{1}<I_{1} x_{1}, y_{1}>_{1}+e_{2}<I_{2} x_{2}, y_{2}>_{2}
$$

$$
\Leftrightarrow \quad<\left(T_{1}^{*} T_{1}-I_{1}\right) x_{1}, y_{1}>_{1}=0 \text { and }
$$

$$
<\left(T_{2}^{*} T_{2}-I_{2}\right) x_{2}, y_{2}>_{2}=0
$$

$$
\Leftrightarrow \quad T_{1}^{*} T_{1}=I_{1} \text { and } T_{2}^{*} T_{2}=I_{2}
$$

$$
\Leftrightarrow \quad T^{*} T=I .
$$

Hence $(i i) \Leftrightarrow(i i i)$ condition holds.
The next result is the immediate consequence of Proposition 2.4.

Corollary 2.5 Let X be a bicomplex Hilbert space and $T \in B(X)$. Then following conditions are equivalent:
(i) $T^{*} T=T T^{*}=I$;
(ii) T is bicomplex normal isometry;
(iii) T is bicomplex isometry.

Proposition 2.6 If X is a bicomplex Hilbert space and $T \in B(X)$ such that
$<T x, x>_{X}=0$; for all $x \in X$, then $T=0$.

Proof. Since $T \in B(X)$, using (2) we write $T=e_{1} T_{1}+e_{2} T_{2}$. Further, for any complex operators T_{l} for $l=1,2$ such that $<T_{l} x_{l}, x_{l}>_{X}=0$, we have $T_{l}=0$ for $l=1,2$.
Now $<T x, x>_{X}=0$
$\Rightarrow<e_{1} T_{1} x_{1}+e_{2} T_{2} x_{2}, e_{1} x_{1}+e_{2} x_{2}>_{X}=$ 0
$\Rightarrow e_{1}<T_{1} x_{1}, x_{1}>_{1}+e_{2}<T_{2} x_{2}, x_{2}>_{2}$
$=0$
$\Rightarrow e_{1}<T_{1} x_{1}, x_{1}>_{1}=0$ and $e_{2}<$ $T_{2} x_{2}, x_{2}>_{2}=0$
$\Rightarrow T_{1}=0$ and $T_{2}=0$ which gives $T=$ $e_{1} T_{1}+e_{2} T_{2}=0$ and hence $T=0$.

The following proposition follows easily.

Proposition 2.7 Let X be a bicomplex Hilbert space with real valued norm $\|\cdot\|_{X}$ and $T \in B(X)$. Then T is bicomplex isometry on X if and only if
$<T x, T y>_{X}=<x, y>_{X} ;$ for all $x, y \in X$.

Lemma 2.1 Let X be a bicomplex Hibert space with \mathbf{D}-valued norm and $T \in$ $B(X)$. If T is self-adjoint, i.e., $T^{*}=T$, then $\|T\|_{\mathbf{D}}=\sup \left\{|<T x, x>| ;\|x\|_{\mathbf{D}}=\right.$ $1\}$.

Proof. We can write $T=e_{1} T_{1}+e_{2} T_{2}$, where $T_{1}: X_{1} \rightarrow X_{1}$ and $T_{2}: X_{2} \rightarrow$ X_{2} are complex linear operators. Also, any bicomplex Hilbert space can be written as $X=e_{1} X_{1}+e_{2} X_{2}$.

$$
\begin{aligned}
& \text { Now } \sup \left\{|<T x, x>| ;\|x\|_{\mathbf{D}}=1\right\} \\
&= \sup \left\{\left|e_{1}<T_{1} x_{1}, x_{1}>+e_{2}<T_{2} x_{2}, x_{2}>\right| ;\right. \\
&\left.\left\|x_{1}\right\|_{\mathbf{D}}=1,\left\|x_{2}\right\|_{\mathbf{D}}=1\right\} \\
&= e_{1} \sup \left\{\left|<T_{1} x_{1}, x_{1}>_{1}\right| ;\left\|x_{1}\right\|_{\mathbf{D}}=1\right\} \\
&+ e_{2} \sup \left\{<T_{2} x_{2}, x_{2}>_{2} \mid ;\left\|x_{2}\right\|_{\mathbf{D}}=1\right\} \\
&= e_{1}\left\|T_{1}\right\|_{\mathbf{D}}+e_{2}\left\|T_{2}\right\|_{\mathbf{D}} \\
&=\|T\|_{\mathbf{D}}
\end{aligned}
$$

References

[1] D. Alpay, M. E. Lunna-Elizarrarars, M. Shapiro and D. C. Struppa, Basics of Functional Analysis with Bicomplex scalars and Bicomplex Schur Analysis, Springer Briefs in Mathematic, 2014.
[2] F. Colombo, I. Sabadin and D. C. Struppa, Bicomplex holomorphic functional calculus, Math. Nachr. 287, No. 13 (2013), 1093-1105.
[3] F. Colombo, I. Sabadin, D. C. Struppa, A. Vajiac and M. B. Vajiac, Singularities of functions of one and several bicomplex variables, Ark. Mat. 49, (2011), 277-294.
[4] J. B. Conway, A course in Functional Analysis, 2nd Edition, Springer. Berlin, 1990.
[5] C. C. Cowen and B. D. MacCluer, Composition operators on Spaces of

Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1995.
[6] R. Gervais Lavoie, L. Marchildon and D. Rochon, Infinite-dimensional bicomplex Hilbert spaces, Ann. Funct. Anal, 1, No. 2 (2010), 75-91.
[7] R. Gervais Lavoie, L. Marchildon and D. Rochon, Finite-dimensional bicomplex Hilbert spaces, Adv. Appl. Clifford Algebr. 21, No. 3 (2011), 561-581.
[8] R. Kumar, R. Kumar and D. Rochon, The fundamental theorems in the framework of bicomplex topological modules,(2011), arXiv:1109.3424v1.
[9] R. Kumar, K. Singh, Bicomplex linear operators on bicomplex Hilbert spaces and Littlewood's subordination theorem, Adv. Appl. Clifford Algebras, 25, (2015), 591-610.
[10] Romesh Kumar, Kulbir Singh, Heera Saini, Sanjay Kumar, Bicomplex Weighted Hardy spaces and Bicomplex C^{*}-algebras, Adv. Appl. Clifford Algebras 26, (2016), 217-235.
[11] M. E. Lunna-Elizarrarars, C. O. Perez-Regalado and M. Shapiro, On linear functionals and Hahn-Banach theorems for hyperbolic and bicomplex modules, Adv. Appl. Clifford Algebr. 24, (2014), 1105-1129.
[12] M. E. Lunna-Elizarrarars, C. O. Perez-Regalado and M. Shapiro, On the bicomplex Gleason-Kahane Ze lazko Theorem, Complex Anal. Oper. Theory, 10, No. 2 (2016), 327-352.
[13] M. E. Lunna-Elizarrarars, M. Shapiro and D. C. Struppa, On Clifford analysis for holomorphic mappings, $A d v$. Geom. 14, No. 3 (2014), 413-426.
[14] M. E. Lunna-Elizarrarars, M. Shapiro, D. C. Struppa and A. Vajiac, Bicomplex numbers and their elementary functions, Cubo 14, No. 2 (2012), 61-80.
[15] G. B. Price, An introduction to Multicomplex Spaces and Functions, 3rd Edition, Marcel Dekker, New York, 1991.
[16] D. Rochon and M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oradea, Fasc. Math. 11 (2004), 71110.
[17] D. Rochon and S. Tremblay, Bicomplex Quantum Mechanics II: The Hilbert space, Advances in Applied Clifford Algebras, 16 No. 2 (2006), 135-157.
[18] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New-York, 1993.

