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Abstract:

the isomorphism between the bicomplex

In this paper we define
Hilbert spaces. We also give some sim-
ple and basic results on bicomplex isomor-
phism with respect to hyperbolic-valued

norm on the bicomplex Hilbert spaces.
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1 Introduction and pre-

liminaries

Firstly, we give some basic definitions and
important properties of bicomplex num-
bers and bicomplex holomorphic func-
tions. Let ¢, j be two imaginary units such
that i = ji,i> = j2 = —1. The set of
bicomplex numbers BC is defined as

BC={Z=z+jw:z,weC(i)}.

Let Z; = z + jw and Zs = s + jt, be any
two bicomplex numbers. Then the addi-
tion and multiplication of bicomplex num-
bers is defined as 7, + Z; = (z + jw) +
(s+jt)=(z+s)+jw+t), Z1.Z5 =
(z4+jw)(s+jt) = (zs—wt)+j(ws+ zt).
With respect to above binary operations a
bicomplex number set turn out to be a ring
and is a module over itself. A bicomplex
number is a combination of two complex
numbers. The set of complex numbers is a
subring of bicomplex numbers. If we de-
note the real number z by x and imaginary
number w by ¢y such that ¢ = k, then the
set of hyperbolic numbers is defined as

D = {z+ky:k*=1withk ¢ R}.

i;] and

are zero divisiors and are lin-

The bicomplex numbers e; =
1-ij
2
early independent in the complex plane and

€y =

have the following properties: e; + e3 =

s _ 2 _ 2 _
l,e1—eo =1j,e1.e9 =0,61° = e1,€9° =
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eo. Thus, the bicomplex number is not a
division algebra. The numbers e; and es
are also known as hyperbolic numbers and
form the basis for bicomplex numbers. For
any bicomplex number Z = z + jw, the
three kind of congugations can be defined
as follows: (1) Z% = z+jw, (ii) Z" = 2—
jw, (iii) Z* = Z — jw, where Z,w denote
the complex congugates to z,w € C(i).
For each congugation, a bicomplex modu-
lus is defined by

|2 = 2.2%, |21} = .21, |2} = 2.2".

If Z = z + jw, then the idempotent rep-
resentation of a bicomplex number can be

written as
Z =e1z1 + es29,

where {z; = z —iw and 20 = z + iw}
are in C(7). By the above representation of

bicomplex number, we can write
BC =¢;BC + ¢;,BC.

There is a vast literature on bicomplex
analysis, see [1], [7] and [15] for de-
tails. Now, we begin with the definition
of norms, Inner products on BC-modules.
We refer to [1], [6], [7] for following defi-
nitions.

Definition 1.1 Let X be a BC-module
and Xy and X5 be the complex linear

spaces, ( see [17]) then we can write
X = e1 X1 + e X,

and is called the idempotent decomposition
of X.

If X; and X, are normed linear spaces
with norms |.||; and |.||]2 respectively.
Then for each x = ejx1 + esxs € X, for
all z; € X and x5 € X5, we have

z]|? = |leiz1 + exzal?
= lerz1 |} + llea2|3
= le1Pllzal|F + lea|?[|z2]I3

= s(lzal} + =)

It is well known that ||.|| defines a real-
valued norm on X and ||azx|| < v2|a]|z]|
for any x € X, a € BC. This norm shows
that for any bicomplex numbers Z; and Zs,

|Z1.Z2| < \/§|Z1||Z2|

Since, the inner product square is positive
hyperbolic number so it gives an idea of
hyperbolic-valued (D-valued) norm of a
BC-module and is defined as:

lzlt, = lleix: + eawal

= ez} + eallz2l3

= €1 <T1,T] >1 +ex < To,To >2

= < e1xr) +e3xT2,e1T1 + €3T2 >p

<,y >pD.

A BC-module X endowed with a bicom-
plex inner product < .,. > is called BC-
inner product module. Let X; and X5 be
two linear spaces. Assume that X; and X»
are inner product spaces with inner product
< ..>and < .,.
corresponding norms |.||; and ||.||2. Then

>9, respectively and

forany z,y € X,

< z,y >x=< e1r; + exxa,e1y1 +
€Yz >x= €1 +ex <
Zo,1Ys >o defines a bicomplex inner prod-

< Z1,Y1 >1

uct on the bicomplex module X. Moreover,
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the above bicomplex inner product norm
introduces a hyperbolic-valued norm on in-

ner product BC-module X defined as

1
z[lp = e1lz1+ezl|z2l|p =< 2,2 >2 .

(1

Theorem 1.2 [9, Theorem 3.5] Let X be a
BC-module. Then X = e1 X1 + €2 X5 is
a bicomplex Banach-module if and only if

X1, Xo are complex Banach spaces.

Definition 1.3 [I, P. 53] A BC-module
X with inner product < .,. >x is said to
be a bicomplex Hilbert space if it is com-
plete with respect to the D-valued norm
generated by the bicomplex inner product.
Thus X = e1X1 + ex Xy is bicomplex
Hilbert space if and only if (X1,< .,. >1)
and (X9, < ..

spaces.

>5) are complex Hilbert

Definition 1.4 Let X and Y be two BC-
modules with hyperbolic norms. A map-
ping T : X — Y is said to be bicomplex
linear operator on X if

T(ax +vy) = aT(x) + T (y), for all
z,y € X and o,y € BC. The idempotent

representation of T' is given by
T =eTh + exTh, (2)

where T1,Ts are complex linear opera-
tors and ey, ey form basis of bicomplex
numbers and so called idempotent basis
of bicomplex numbers.The set B(X,Y) de-
notes the space of all D-bounded BC- lin-
ear operators and the norm for each T €
B(X,Y) (see [1] ) is defined as

ITlIp = sup{|IT(2)|p,z € X, [|lz[lp <" 1}

and is called hyperbolic norm on T and so

we can write

1Tl = lleiTi+e1Tz|lp = er]|T[[1+e2|| T2,

where ||.||1 and ||.||2 are usual norms de-
fined on complex linear operators Ty and

T5 respectively.

Definition 1.5 Let X and Y be two bi-
complex Hilbert spaces with inner prod-
uct < .. >x and < ..

tively. Then the bicomplex adjoint operator

>y respec-

T* .Y — X for a bounded linear opera-
torT : X —'Y is defined by

<Tz,y>y=<uz,T"y >x .

The bicomplex adjoint operator T* can be

written as
T* = €1T1* —|— 62T2*,

where T} and T3 are the complex adjoint

operators of Ty and T, respectively.

Definition 1.6 Let X be a bicomplex
Hilbert space and T € B(X). Then T is

said to be a
(a) bicomplex self adjoint if T' = T™,
(b) bicomplex normal operator if TT* =
TT,

(c) bicomplex unitary if TT* = T*T =
I, where I is an identity operator on
X.

For systematic study of bicomplex func-
tional analysis, we refer to [1], [2], [6], [7],
[8], [11], [12] and references therein.
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2 Bicomplex isomorphism

In this section, we investigate bicomplex
isometry between the bicomplex Hilbert

spaces..

Definition 2.1 A bicomplex isomorphism
T of a bicomplex Hilbert space X onto
Xisa bicomplex bijective linear operator
T : X — X which preserves the bicom-
plex inner product, i.e., forall x,y € X

<Tzx, Ty >=<z,y >

X is said to be the bicomplex isomorphic
10 X. X and X are called bicomplex iso-

morphic inner product spaces.

We can easily prove the following proposi-
tion.

Proposition 2.2 Let X be a bicomplex
Hilbert space and T € B(X), the space
of all bicomplex D-bounded linear opera-
tors from X to itself. Then T is bicomplex
isometric on X if and only if T\ and T are
isometric on X.

Proposition 2.3 Let X be a bicomplex
Hilbert space with hyperbolic norm ||.||p
and T € B(X). Then T is a bicomplex
isometry if and only if < Tx, Ty >x=<
x,y >x; forallz,y € X.

Proof. Since T € B(X), so we can
write T' = e 17 + exT5, where T and T
are complex linear operators. Also for any
x,y € X, we have x = ejxy + eaxs and
Yy = e1y1 + eay2.

Suppose < Tz, Ty >x=< z,y >x .

ISSN: 2231-5373
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Then
|Tz||*p =< Tz, Tx >x
= <z, >x
< e1T1 + €2%9,61T1 + €209 >x

61 <T1,r1 >x +ea < To,T2 >x

= elllz1)®p + ezllz2 )’

= |lz/P*p-
Hence T is isometry.

Conversely, if z,y € X and o € BC, then
|z +ayl*p = Tz + oTy|’p

= < z+4ay,z+ay >x=< Tz +
aly,Tx+ aTy >x

=< e1(z1 + a1y1) + e2(x2 + azy2),
e1(z1 + a1y1) + e2(w2 + agya) >x

=< ei(Tixy + arTiyr) + ea(Toxe +
aoToys),e1(Tix1 + a1 Tyr) + ea(Txo +
aTys) >x

= e <T1+o1y1,T1 + o1y >1 +eg <
To + QoY2, T2 + oYz >2

=e1 <Txi+ai1 Ty, Tizr+aiTiys >
+eo < Tazo+aoToys, Towa+asTays >2

= e <T1,r1 >1 +e1 < T1,01Y1 >1
+eq <
a1Y1, Y1 >1 +eg < T2, T2 >2

+ea < T2, Y2 >2 te2 < agys, Ty >2
tex < QaY2, Q2Ya >2

=e1 < Tz, Tizy >1 +e1 < Tz,
arTiyr >1 +er < aiTiy, Thiry >
+e1 < anTiyr, Ty >1 +e2 < Taxa,
Toxe >9 4 €3 < Toxs, asToys >0 +eo
< agTays, Tawe >2 +e2 < aTays,

a1Y1, L1 >1 “+e1 <

aThys >9
= ezl +  eallz2l®p) +
(erlaaP[lyal*p + ealazl?[ly2)*D) + €1

Page 221



K DURAISAMY
Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 36 Number 3- August 2016


K DURAISAMY
Text Box
ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 221



International Journal of Mathematics Trends and Technology (IJMTT) - Volume 36 Number 3- August 2016

< T1,01Y1 >1 tea < Ta,Qolz >9
+e1 < ayi, T1 >1 +ex < oy, T2 >2
=  (a|TialPp + e Toaz|’p) +
(er]en P Ty [*p + e2]az|?|| Toy: )
+e1 < Thxy, 01Ty >1 +eo < Thxa,
aoToys >9 +e1 < ar1Thyr, Tixy >1

Feo < agThys, Toxe >o

= [lzI*p + [allyllPp+ < ez +
€22, e101Y1+e200y2 >x + < e1qiy1+
€202Y2, €121 + €2T2 >x
= |Tz|Pp + |al?| Ty’ p+ < exThzs +
e Towa, e1arTiyr + e2a0Toys >x

+ < era1Tiyr + esanToys, e1Tizy +
exToxrs >x

= lz|’p + lafyl’p+ < 2,0y >x
+ <oy, >x

= |Tz|?p +|al| Ty’ D+ < Tz, Ty
>x +<aly,Tx >x

= [lz*p + [a*[ly|*D + 2Re

a< T,y >x
= [|Tz|?’p + |al?|Ty[’p + 2Re a <
Tz, Ty >x
=><zy>x=<Tx,Ty >x . [ ]

Proposition 2.4 Let T € B(X) such that
T = e1T1 + exTs be its idempotent de-
composition with I = e1I; + exIs. Then
following conditions are equivalent:

(i) Tis a bicomplex isometry;

(ii) T*T = I;

ISSN: 2231-5373
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(iii) < Tz, Ty >x=< =,y >x
; forallx,y e X.

Proof. By Proposition 2.3, (4) and (#i)
are equivalent. Further, for any z,y € X,
we have

<Tx, Ty >x=<x,Yy>x

& <eTixy 4+ eThxs, e Ty
+eaThys >x

= <eir; +exx2,e1y1 +exy2 >x

& e1 <Tixy, Thy; >1 +ex < Thxo,
Tayz >2

= e <T1,Y1 >1 +ex < T2, Y2 >2

& e < T{‘Tlxl,yl >1 +eg < TQ*TQ.TQ,
Y2 >2

= e <Iiw1,y1 >1 +tez < laxa,y2 >2

& < (TyTh — I)x1,y1 >1=0and
< (T2*T2 — [Q)l‘g,yg >9=10

=4 Tl*lell ande*nglg
& THT =1.
Hence (i) < (4i) condition holds. ]

The next result is the immediate conse-
quence of Proposition 2.4.

Corollary 2.5 Let X be a bicomplex
Hilbert space and T € B(X). Then fol-
lowing conditions are equivalent:

) T*T=TT* =1,

(ii) T is bicomplex normal isometry;

(iii) T is bicomplex isometry.

Proposition 2.6 If X is a
bicomplex Hilbert space and T € B(X)
such that

< Tx,x >x= 0; forall x € X, then
T=0.
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Proof. Since T € B(X), using (2) we
write 7' = e 11 + e2T5. Further, for any
complex operators 7; for [ = 1,2 such that
< Tix;,x; >x= 0, we have T; = 0 for
=12

Now < Tz,x >x=0

=< eiThz +exlhxs, e121 +e2xy >x=
0

=e1 <Tixy,21 >1 +ex < Toxo, T >9
=0
= e < Thz,xy >1= 0 and ex <
Toxo,xe >2=10

= T7 = 0 and 7> = 0 which gives T' =
e1T1 + exT5 = 0and hence T' = 0. |

The following proposition follows easily.

Proposition 2.7 Let X be a bicomplex
Hilbert space with real valued norm ||.|| x
and T € B(X). Then T is bicomplex isom-
etry on X if and only if

<Tx,Ty>x=<ax,y >x; foral z,yec X.

Lemma 2.1 Let X be a bicomplex Hib-
ert space with D-valued norm and T €
B(X). If T is self-adjoint, i.e., T* = T,
then ||T||p = sup{| < Tw,z > [;[|z|lp =

1.

Proof. We can write T' = e T + exTh,
where 77 : X; — Xy and T : X5 —
X, are complex linear operators. Also, any
bicomplex Hilbert space can be written as
X =e1 X1 +exXo.

Now sup{| < Tz, > |;[|z|]p = 1}

[z1lp =1, [|22llp = 1}

International Journal of Mathematics Trends and Technology (IJMTT) - Volume 36 Number 3- August 2016

sup{|er < Thz1,21 > ez < Thwa, 2 > |;

epsup{| < Thz1, 71 >1 [;[|21]lp = 1}

+  easup{< Towa, 22 > |;||22(D = 1}
= €1||T1||D + €2HT2||D
= |ITp.
||
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