
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 37 Number 1- September2016

ISSN: 2231-5373 http://www.ijmttjournal.org Page 1

An Efficient Algorithm for Mining Fuzzy
Temporal Data

Fokrul Alom Mazarbhuiya

Department of Information Technology, College of Computer Science and IT,
 Albaha University, Albaha, KSA,

Abstract- Mining patterns from fuzzy temporal data
is an important data mining problem. One of these
mining task is to find locally frequent sets, In most
of the earlier works fuzziness was considered in the
time attribute of the datasets .Although a couple of
works have been done in dealing with such data,
little has been done on the implementation side. In
this article, we propose an efficient implementation
of an algorithm for extracting locally frequent item
sets from fuzzy temporal datasets. Our
implementation is a Trie-based (Prefix-tree)
implementation. The efficacy of the method is
established with an experiment conducted on a
synthetic dataset.

Keywords- Temporal dataset, Fuzzy temporal
dataset. Frequent item set, Locally frequent item set,
Core of a fuzzy number, Data mining, Fuzzy
membership function, -cut of a fuzzy number.

I. INTRODUCTION
Association rules mining problem from datasets has
been studied initially [1] by R. Agarwal et al for
application in large datasets of super markets. Such
datasets are temporal in the sense that each
transaction in dataset is associated with the time of
transaction. Frequent itemsets mining from such
dataset is an important data mining problem.
 In this paper, we consider datasets, having fuzzy
time of transaction. That is the dataset is fuzzy
temporal. In [2], authors proposed a technique of
finding locally frequent itemsets from such dataset.
In [3], authors proposed a hash tree-based
implementation of the algorithm [2]. In this article,
we propose an another type of implementation. The
implementation discussed here is a trie-based
implementation. We use here a synthetic dataset to
show the efficacy of our implementation.
 The paper is structured as follows: In section-II
we give a brief idea on the recent works in Mining
Temporal Data and Mining fuzzy temporal data. In
section-III we explain the terms and notations used
in this paper. In section-IV, we give the proposed
algorithm [2]. In section-V, we discuss the
implementation detail along with experimental
results. We conclude with conclusion and lines for
future work in section-VI.

II. RECENT WORKS
In [1], authors formulated the problem of
association rules discovery by proposing .an
algorithm of discovering association rules known as
the A priori algorithm. Temporal Data Mining is
an important extension of conventional data mining
and has recently been able to attract more people to
work in this area. Considering the time attributes,
more appealing time dependent patterns can be
extracted. Primarily there are two broad directions
of temporal data mining [4]. One concerns the
extraction of causal relationships among temporally
oriented events. The other concerns the extraction of
similar patterns within the same time sequence or
among different time sequences. The later problem
is known as sequence mining problem. In [5] the
authors devised a method of recognizing frequent
episodes in an event sequence. In temporal
association rules each rule has associated with it a
time interval in which the rule is valid. The problem
is to find frequent item sets which are frequent
certain valid time periods then extracting rules from
such frequent item sets. In [6 7, 8, 9], the problem of
temporal data mining is addressed in detail and
techniques have been proposed for this. In [10] an
algorithm for the discovery of temporal association
rules is discussed.. In [11, 12], an efficient method
for finding locally and periodically frequent sets and
periodic association rules are discussed. In [2], an
algorithm for mining locally frequent itemsets from
fuzzy temporal data is discussed. In [3]. an
implementation of [2] is given.

III. TERMS,NOTATION AND SYMBOL USED
A. Some Definitions related to Fuzziness
A fuzzy interval is in fact a fuzzy number with a flat
area. We denote a fuzzy interval A is by A = [a, b, c,
d] where a < b < c < d and A(a) = A(d) = 0, A(x) =
1 for all x [b, c]. A(x) for all x [a, b] is known as
left reference function and A(x) for x [c, d] is
known as the right reference function. [13].
An -cut of the fuzzy interval [t1-a, t1, t2, t2+a] is a
actually a closed interval [t1+(-1).a, t2+(1-).a].
The core of a fuzzy number A is defined as the set of
elements of A having membership value one i.e.
 Core(A) = {(x, A(x); A(x) = 1}
Any fuzzy set A, A =

]1,0[
 A where A(x) =. A(x)

and A is a special fuzzy set. It is to be mentioned

International Journal of Mathematics Trends and Technology (IJMTT) – Volume 37 Number 1- September 2016

ISSN: 2231-5373 http://www.ijmttjournal.org Page 2

here that a fuzzy number or fuzzy interval is
actually convex and normalized fuzzy sets
For any pair of fuzzy sets A and B and for all [0,
1], (AB) = A B and (AB) = A B
The membership functions A(x) of A and B(x) of B
are said to be similar if they satisfies the following
two conditions
i) the slope of the left reference function of A(x) is
equal to the that of B(x) and
ii) the slope of right reference of A(x) is equal that
of B(x).
Thus for any two fuzzy numbers A and B having
similar membership functions A = B,
[0, 1].

B. Some Definitions related to Association Rule
Mining over Fuzzy time period
Suppose that T = <To, T1,…………> is a sequence
of imprecise or fuzzy time stamps over which a
linear ordering < is defined. We also assume that all
the fuzzy time stamps have similar membership
functions. Let I be a finite set of items and D, the
transaction dataset is the set of transactions with the
property that each transaction has two parts, one
subset of the itemset I and the other fuzzy time-
stamp indicating the approximate time in which the
transaction had taken place. We also suppose that D
is ordered in the ascending order of the core of
fuzzy time stamps. A transaction is said to be in the
fuzzy time interval [T1-a, T1, T2, T2+a] if the -cut
of the fuzzy time stamp of the transaction is within
the -cut of [T1-a, T1, T2, T2+a] for some user’s
specified value of .
 The local support of an itemset in a fuzzy time
interval [T1-a, T1, T2, T2+a] is defined as the ratio of
the number of transactions in the time interval
[T1+(-1).a, T2+(1-).a] containing the itemset to
the total number of transactions in [T1+(-1).a,
T2+(1-).a] for the whole dataset D for a given
value of . The notation],,,[2211 aTTTaTSup (X) is
used to denote the support of the itemset X in the
fuzzy time interval [T1-a, T1, T2, T2+a]. Given a
threshold we say that an itemset X is frequent in
the fuzzy time interval [T1-a, T1, T2, T2+a] if

],,,[2211 aTTTaTSup (X) (/100)* tc where tc denotes
the total number of transactions in D that are in the
fuzzy time interval [T1-a, T1, T2, T2+a].

IV. ALGORITHM PROPOSED
A Generating Locally Frequent Sets
Before proceeding further, for the sake of
convenience, we describe the algorithm proposed in
[2].
While constructing locally frequent sets over fuzzy
temporal data, we maintain a list of fuzzy time-
intervals for each locally frequent itemset in which
the itemset is frequent. For this purpose, two user’s
specified thresholds and minthd are used. During

the algorithm execution, while making a pass
through the dataset, if for a particular itemset the -
cut of fuzzy time-stamp of current transaction,
[Lcurrent, Rcurrent] and the -cut, [Llastappear,
Rlastappear] of its fuzzy time, when it was last
appeared in the transaction, overlap then the current
transaction is included in the current time-interval
under consideration which is extended with
replacement of Rlastappear by Rcurrent;
otherwise a new time-interval is started with
Lcurrent as the start point. The support count of the
itemset in the previous time interval will be checked
to see whether it is frequent or not in that interval. If
it is frequent then it will be fuzzified and added to
the list maintained for that itemset. Also for each
locally frequent itemsets over fuzzy time intervals,
an user-specified minimum core length of the fuzzy
time interval given as minthd and fuzzy time
intervals having core length greater than or equal to
minthd are only kept. If we don't use minthd then an
item appearing once in the whole dataset will also
become locally frequent over fuzzy point of time.

Method to compute L1, the set of all locally frequent
item sets of size 1.
For each item while going through the dataset, we
always keep an -cut lastappear which is
[Llastappear, Rlastappear] that corresponds to the
fuzzy time stamp when the item was last appeared.
When an item is found in a transaction with the
fuzzy time-stamp Tm and if its -cut Tm=[LTm,
RTm] has empty intersection with [Llastappear,
Rlastappear], then a new time interval is started by
setting start of this time interval as LTm. The end
of the previous time interval will be Rlastappear.
Then the previous time interval is fuzzified if the
support of the item is greater than or equal to the
user-specified minimum support. The fuzzified
interval is then added to the list maintained for that
item provided that the length of its core is greater
than or equal to minthd. Otherwise Rlastappear is
set to RTm, the counters for counting transactions
are increased suitably and the process will be
continued.
 In below, we give the pseudo code for the
algorithm to compute L1, the list of locally frequent
sets of size 1. We assume that the number of items
in the dataset under consideration is n and there is
an ordering among the items.
Algorithm 1
C1 = {(i[k],tp[k]) : k = 1,2,…..,n}
 where i[k]= the k-th item and tp[k] points to a list of fuzzy time
intervals initially empty.}
 for(k = 1; k≤n;k++) do
 set lastappear[k]=;
 for each transactions t in the dataset with fuzzy time stamp
Tm
initially icount[k]==0; tcount[k]==0;
do
 {for(k = 1; k≤n;k++) do
 { if {i[k]} t then

International Journal of Mathematics Trends and Technology (IJMTT) – Volume 37 Number 1- September 2016

ISSN: 2231-5373 http://www.ijmttjournal.org Page 3

 { if(lastappear[k] ==)
 {lastappear[k] = firstappear[k] = Tm;
 icount[k] = tcount[k] = 1;
 }
 else
 if([Llastappear[k],Rlastappear[k]] [LTm[k], RTm[k]]!=)
 {Rlastappear[k]=RTm[k]; icount[k]++;
 tcount[k]++;
 }
 else
 { if (icount[k]/tcount[k]*100)
 fuzzify([Llastappear[k],Rlastappear[k]],[0, 1])
 if(core(fuzzified interval) minthd)
 add(fuzzified interval) to tp[k];
 icount[k] = tcount[k] = 1;
 lastappear[k] = firstappear[k] = Tm;
 }
 }
 else tcount[k]++; }
 } // end of do loop //
 for(k = 1; k≤ n; k++)
 { if (icount[k]/tcount[k]*100)
 fuzzify([Llastappear[k], Rlastappear[k]], [0, 1])
 if(core(fuzzified interval) minthd)
 add(fuzzified interval) to tp[k];
 if(tp[k] != 0) add {i[k], tp[k]} to L1

 }
 fuzzify([a1,a2],)

 { fuzzified interval=
]1,0[

21],[

 aa ;

 where [a1,a2](x) = . [a1, a2](x)
 return(fuzzified interval)
 }
Two support counts are kept, icount and tcount. If
the count percentage of an item in an -cut of a
fuzzy time interval is greater than or equal to the
user-specified minimum support only then the set is
considered as a locally frequent set over the fuzzy
time interval.
 L1 as computed above will have all 1-sized
locally frequent sets over fuzzy time intervals and
with each itemset there will be an ordered list of
fuzzy time intervals in which the itemset is frequent.
Then we apply the A priori candidate generation
algorithm to find candidate frequent itemset of size-
2. With each candidate frequent itemset of size-2,
we associate a list of fuzzy time intervals obtained
by pruning phase. In the generation phase this list is
empty. If all subsets of a candidate item set are
found to be frequent in the previous level then this
set will be constructed. The process is as follows:
when the first subset appearing in the previous level
is found then the list of this subset is taken as the list
of fuzzy time intervals associated with the set.
When subsequent subsets are found then the list of
fuzzy time intervals is reconstructed by taking all
possible pair wise intersection of the fuzzy time
intervals one from each list. Itemsets for which this
list is found to be empty are further pruned.
 Using this concept we express below the
modified A-priori algorithm for the problem under
consideration.
Algorithm 2
Modified A priori
Initialize
 k = 1;

C1 = { itemsets of size- 1}
L1 = {frequent itemsets of size 1 where
 with every itemset {i[k]} a list tp[k] is maintained which gives
all time fuzzy
intervals in which i[k] is frequent}
/* L1 is computed using algorithm 1 */
for(k = 2; Lk-1 ; k++) do
 { Ck = apriorigen(Lk-1)
 /* same as A priori candidate generation algorithm setting tp[i]
to zero i*/
 prune(Ck);
 drop all lists of fuzzy time intervals maintained with the itemsets
in Ck
 Compute Lk from Ck.
/*Lk can be computed from Ck using the similar method used for
L1* /
 k = k + 1
 }

 Answer =
k

kL

Prune(Ck)
{Let m be the number of itemsets in Ck and let the sets be s[1],
s[2],…, s[m]. Initialize the pointers tp[i] for each s[i] to null
for(i = 1; i ≤ m; i++) do
 {for each (k-1) subset a of s[i] do
 {if a Lk-1 then
 {Ck = Ck - {s[i], tp[i]}; break;}
 else
 { if (tp[i] == null) then set tp[i] to point to the list of fuzzy
time intervals maintained for a
 else
 { take all possible pair-wise intersection of fuzzy time
intervals one from each list, one list maintained with tp[i] and
the other maintained with a and take this as the list for tp[i]
delete all fuzzy time intervals whose core length is less than the
value of minthd
 if tp[i] is empty then {Ck = Ck - {s[i],tp[i]};
 break;
 }
 }
 }
 }
 }
 }

V. IMPLEMENTATION
A. Data structure used
Candidate generation, pruning and support count
requires an competent data structures in which all
candidates are stored. In general, two nice data
structures have been used for this purpose namely
hash-tree and trie data structure. In this
implementation, we have used prefix-tree (Trie)
data structure.
1. Trie data structures

 All the items are marked as a1, a2, ….an where n =
total number of items in the dataset. We also
assumed that the items in the transactions are
ordered in ascending. In a trie data structure, every
k-itemset has a node linked with it, as does its (k-1)-
prefix. The empty itemset is the root node. All the
itemsets of size-1, are attached to the root node as
its children. Every other itemset of size-k, is
attached to its (k-1)-prefix. Each node represents an
itemset. Each node is storing the last item in the
itemset it represent, a pointer to its childlist, a
pointer to its parent, a pointer time intervals list
where the itemset is frequent and a pointer to its
right sibling. The siblings of every node are

International Journal of Mathematics Trends and Technology (IJMTT) – Volume 37 Number 1- September 2016

ISSN: 2231-5373 http://www.ijmttjournal.org Page 4

implemented as linked list. So, each level consists of
a set of lists. In our implementation, we maintain all
the list in a level as a list of lists. The level-1 is a
single list consisting of all the itemsets of size-1. At
kth iteration, all the candidate itemsets of size-k are
stored at depth k in the trie. To count the supports of
itemsets in a particular level, the itemsets
represented by the nodes are found by moving
upwards towards the root using parent pointers.
Also in candidate generation procedure the join step
becomes very simple. As all itemsets of size-k with
the same (k-1)-prefix are represented as a linked list,
to create all candidate k-size itemsets with (k-1)-
prefix X we merely copy all right siblings of the
node representing X and add them as child of X.
Candidate generation method also computes pair-
wise intersection of the fuzzy time intervals lists
associated with the two itemsets that are merged to
get the candidate. If intersection of the time
intervals lists is found to be empty or the core length
of fuzzified intervals in the list is found to be less
than or equal to minthd then the newly added node
is deleted. The method also includes A-priori
pruning, which checks whether all the subsets of the
candidates are present in the previous level or not.

 B Analysis of Results
For experimented conducted in the paper, we used a
synthetic dataset which is available at
http://fimi.cs.helsinki.fi/testdata.html. As the dataset
does not have fuzzy time contents, we incorporate
the fuzzy time on it. We consider the different
transactions sizes like 20,000, 40,000,60,000,
80,000, 100,000 and execute the algorithm. We
keep the life span of dataset as one year (2012). The
results obtained by the method are given in table1
and figue1.

TABLE I
FREQUENT ITEMSETS EXTRACTED BY THE METHOD [2]

Transaction sizes Number frequent itemsets
20,000 2
40,000 2
60,000 4
80,000 5
100,000 9

0
1
2
3
4
5
6

0 100000

no. of transactions

no. of frequent sets

Fig.1: no. of transactions vs. no. of frequent itemsets

VI CONCLUSION
An implementation of the algorithm [2] is given in
this paper, The algorithm is used for finding
frequent itemsets which are frequent in certain fuzzy
time periods. The implementation discussed here is
Trie-based implementation. The effectiveness of the
implementation is given with the experiment
conducted on a synthetic data available in internet.
As the dataset does not have fuzzy temporal
features, we incorporate the fuzzy time stamp on it
to make it appropriate for our experiment. In future,
we will try to implement the same algorithm using
other type of data structures PF-tree based
implementation and compare with existing
implementations.

REFERENCES
[1] R. Agrawal, T. Imielinski and A. Swami; Mining

association rules between sets of items in large databases;
Proceedings of the ACM SIGMOD ’93, Washington, USA
(May 1993).

[2] F. A Mazharbhuiya, M. Shenify and Mohammed
Husamuddin, Finding Local and Periodic Association
Rules from Fuzzy Temporal Data, The 2014 International
Conference on Advances in Big Data Analytics July 21-24,
2014, Las Vegas, Nevada, USA.

[3] F. A. Mazarbhuiya (2016); Mining local patterns from
fuzzy temporal data, International Journal of Engineering
and Applied Sciences (IJEAS), ISSN: 2394-3661, Volume-
1, Issue-1, January 2016, INDIA, pp. 70-73.

[4] J. F. Roddick, M. Spillopoulou; A Biblography of
Temporal, Spatial and Spatio-Temporal Data Mining
Research; ACM SIGKDD (June 1999).

[5] H. Manilla, H. Toivonen and I. Verkamo; Discovering
frequent episodes in sequences; KDD’95; AAAI, 210-215
(August 1995).

[6] J. M. Ale and G.H. Rossi; An approach to discovering
temporal association rules; Proceedings of the 2000 ACM
symposium on Applied Computing (March 2000).

[7] X. Chen and I. Petrounias; A framework for Temporal Data
Mining; Proceedings of the 9th International Conference on
Databases and Expert Systems Applications, DEXA ’98,
Vienna, Austria. Springer-Verlag, Berlin; Lecture Notes in
Computer Science 1460 (1998), 796-805.

[8] X. Chen and I. Petrounias; Language support for Temporal
Data Mining; Proceedings of 2nd European Symposium on
Principles of Data Mining and Knowledge Discovery,
PKDD ’98, Springer Verlag, Berlin (1998), 282-290.

[9] X. Chen, I. Petrounias and H. Healthfield; Discovering
temporal Association rules in temporal databases;
Proceedings of IADT’98 (International Workshop on Issues
and Applications of Database Technology (1998), 312-319.

[10] J. M. Ale, and G. H. Rossi; An Approach to Discovering
Temporal Association Rules, In Proc. of 2000 ACM
symposium on Applied Computing (2000).

[11] A. K. Mahanta, F. A. Mazarbhuiya and H. K. Baruah;
Finding Locally and Periodically Frequent Sets and
Periodic Association Rules, Proceeding of 1st Int’l Conf on
Pattern Recognition and Machine Intelligence
(PreMI’05),LNCS 3776 (2005), 576-582.

[12] F. A. Mazarbhuiya Yusuf Pervaiz (2015); An Efficient
Method for Generating Local Association Rules,
International Journal of Applied Information Systems
(IJAIS), Foundation of Computer Science FCS, New York,
USA Volume 9 – No.2, June 2015.

[13] D. Dubois and H. Prade; Ranking fuzzy numbers in the
setting of possibility theory, Information Science 30(1983),
183-224.

International Journal of Mathematics Trends and Technology (IJMTT) – Volume 37 Number 1- September 2016

ISSN: 2231-5373 http://www.ijmttjournal.org Page 5

Author’s Profile

Fokrul Alom Mazarbhuiya received B.Sc. degree
in Mathematics from Assam University, India and
M.Sc. degree in Mathematics from Aligarh Muslim
University, India. After this he obtained his Ph.D.
degree in Computer Science from Gauhati
University, India. He had been serving as an
Assistant Professor in College of Computer Science
and Information Systems, King Khalid University,
Abha, kingdom of Saudi Arabia from 2008 to 2011.
Currently, he is working as an Assistant Professor,
Information Technology, College of Computer
Science aind Information Technology, Al Baha
University, Al Baha, Kingdom of Saudi Arabia. His
research interest includes Data Mining, Information
security, Fuzzy Mathematics and Fuzzy logic.

