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Abstract- Mining patterns from fuzzy temporal data 
is an important data mining problem. One of these 
mining task is to find locally frequent sets, In most 
of the earlier works fuzziness was considered in the  
time attribute of the datasets .Although a couple of 
works have been done in dealing with such data, 
little has been done on the implementation side. In 
this article, we propose an efficient  implementation 
of an algorithm for extracting locally frequent item 
sets from fuzzy temporal datasets. Our 
implementation is a Trie-based (Prefix-tree) 
implementation. The efficacy of the method is 
established with an experiment conducted on a 
synthetic dataset. 
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I. INTRODUCTION 
Association rules mining problem from datasets has 
been studied initially [1] by R. Agarwal et al for 
application in large datasets of super markets. Such 
datasets are temporal in the sense that each 
transaction in dataset is associated with the time of 
transaction. Frequent itemsets mining from such 
dataset is an important data mining problem. 
     In this paper, we consider datasets, having fuzzy 
time of transaction. That is the dataset is fuzzy 
temporal. In [2], authors proposed a technique of 
finding locally frequent itemsets from such dataset. 
In [3], authors proposed a hash tree-based 
implementation of the algorithm [2]. In this article, 
we propose an another type of implementation. The 
implementation discussed here is a trie-based 
implementation. We use here a synthetic dataset to 
show the efficacy of our implementation.   
     The paper is structured as follows: In section-II 
we give a brief idea on the recent works in Mining 
Temporal Data and Mining fuzzy temporal data. In 
section-III we explain the terms and notations used 
in this paper. In section-IV, we give the proposed 
algorithm [2]. In section-V, we discuss the 
implementation detail along with experimental 
results. We conclude with conclusion and lines for 
future work in section-VI. 
 
 

II. RECENT WORKS 
In [1], authors formulated the problem of 
association rules discovery by proposing .an 
algorithm of discovering association rules  known as 
the A priori algorithm.    Temporal Data Mining is 
an important extension of conventional data mining 
and has recently been able to attract more people to 
work in this area. Considering the time attributes, 
more appealing time dependent patterns can be 
extracted. Primarily there are two broad directions 
of temporal data mining [4]. One concerns the 
extraction of causal relationships among temporally 
oriented events. The other concerns the extraction of 
similar patterns within the same time sequence or 
among different time sequences. The later problem 
is known as sequence mining problem. In [5] the 
authors devised a method of recognizing frequent 
episodes in an event sequence. In temporal 
association rules each rule has associated with it a 
time interval in which the rule is valid. The problem 
is to find frequent item sets which are frequent 
certain valid time periods then extracting rules from 
such frequent item sets. In [6 7, 8, 9], the problem of 
temporal data mining is addressed in detail and 
techniques have been proposed for this. In [10] an 
algorithm for the discovery of temporal association 
rules is discussed.. In [11, 12], an efficient method 
for finding locally and periodically frequent sets and 
periodic association rules are discussed. In [2], an 
algorithm for mining locally frequent itemsets from 
fuzzy temporal data is discussed. In [3]. an 
implementation of [2] is given. 

 
III. TERMS,NOTATION AND SYMBOL USED 
A.  Some Definitions related to Fuzziness 
A fuzzy interval is in fact a fuzzy number with a flat 
area. We denote a fuzzy interval A is by A = [a, b, c, 
d] where a < b < c < d and A(a) = A(d) = 0,  A(x) = 
1 for all x [b, c]. A(x) for all x [a, b] is known as 
left reference  function and  A(x) for x  [c, d] is 
known as the right reference function. [13].  
An -cut of the fuzzy interval [t1-a, t1, t2, t2+a] is a 
actually a closed interval [t1+(-1).a, t2+(1-).a]. 
The core of a fuzzy number A is defined as the set of 
elements of A having membership value one i.e.  
 Core(A) = {(x, A(x); A(x) = 1} 
Any fuzzy set A, A = 

]1,0[
 A  where A(x) =. A(x) 

and A is a special fuzzy set. It is to be mentioned 
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here that a fuzzy number or fuzzy interval is 
actually convex and normalized fuzzy sets 
For any pair of fuzzy sets A and B and for all [0, 
1],     (AB) = A B and  (AB) = A B 
The membership functions A(x) of A and B(x) of B 
are said to be similar if they satisfies the following 
two conditions 
i) the slope of the left reference function of A(x) is 
equal to the that of B(x) and  
ii) the slope of right reference of A(x) is equal that 
of B(x).  
Thus for any two fuzzy numbers A and B having 
similar membership functions  A = B, 
[0, 1].  
 
B. Some Definitions related to Association Rule 
Mining over Fuzzy time period 
Suppose that  T = <To, T1,…………>  is a sequence 
of imprecise or fuzzy time stamps over which a 
linear ordering < is defined. We also assume that all 
the fuzzy time stamps have similar membership 
functions. Let I be a finite set of items and D, the 
transaction dataset is the set of transactions with the 
property that each transaction has two parts, one 
subset of the itemset I and the other fuzzy time-
stamp indicating the approximate time in which the 
transaction had taken place. We also suppose that D 
is ordered in the ascending order of the core of 
fuzzy time stamps. A transaction is said to be in the 
fuzzy time interval [T1-a, T1, T2, T2+a] if the -cut 
of the fuzzy time stamp of the transaction is within 
the -cut of [T1-a, T1, T2, T2+a] for some user’s 
specified value of . 
     The local support of an itemset in a fuzzy time 
interval [T1-a, T1, T2, T2+a] is defined as the ratio of 
the number of transactions in the time interval 
[T1+(-1).a, T2+(1-).a] containing the itemset to 
the total number of transactions in [T1+(-1).a, 
T2+(1-).a] for the whole dataset D for a given 
value of . The notation ],,,[ 2211 aTTTaTSup  (X) is 
used to denote the support of the itemset X in the 
fuzzy time interval [T1-a, T1, T2, T2+a]. Given a 
threshold  we say that an itemset X is frequent in 
the fuzzy time interval [T1-a, T1, T2, T2+a] if 

],,,[ 2211 aTTTaTSup  (X)  (/100)* tc where tc denotes 
the total number of transactions in D that are in the 
fuzzy time interval [T1-a, T1, T2, T2+a].   
 

IV. ALGORITHM PROPOSED 
A Generating Locally Frequent Sets 
Before proceeding further, for the sake of 
convenience, we describe the algorithm proposed in 
[2]. 
While constructing locally frequent sets over fuzzy 
temporal data, we maintain a list of fuzzy time-
intervals for each locally frequent itemset in which 
the itemset is frequent. For this purpose, two user’s 
specified thresholds  and minthd are used. During 

the algorithm execution, while making a pass 
through the dataset, if for a particular itemset the -
cut of fuzzy time-stamp of current transaction, 
[Lcurrent, Rcurrent] and the -cut, [Llastappear, 
Rlastappear] of its fuzzy time, when it was last 
appeared in the transaction, overlap then the current 
transaction is included in the current time-interval 
under consideration which is extended with 
replacement of Rlastappear by Rcurrent; 
otherwise a new time-interval is started with 
Lcurrent as the start point. The support count of the 
itemset in the previous time interval will be checked 
to see whether it is frequent or not in that interval. If 
it is frequent then it will be fuzzified and added to 
the list maintained for that itemset. Also for each 
locally frequent itemsets over fuzzy time intervals, 
an user-specified minimum core length of the fuzzy 
time interval given as minthd and fuzzy time 
intervals having core length greater than or equal to 
minthd are only kept. If we don't use minthd then an 
item appearing once in the whole dataset will also 
become locally frequent over fuzzy point of time. 
 
Method to compute L1, the set of all locally frequent 
item sets of size 1. 
For each item while going through the dataset, we 
always keep an -cut lastappear which is 
[Llastappear, Rlastappear] that corresponds to the 
fuzzy time stamp when the item was last appeared. 
When an item is found in a transaction with the 
fuzzy time-stamp Tm and if its -cut Tm=[LTm, 
RTm] has empty intersection with [Llastappear, 
Rlastappear], then a new time interval is started by 
setting start of this time interval as LTm.  The end 
of the previous time interval will be Rlastappear. 
Then the previous time interval is fuzzified if the 
support of the item is greater than or equal to the 
user-specified minimum support. The fuzzified 
interval is then added to the list maintained for that 
item provided that the length of its core is greater 
than or equal to minthd. Otherwise Rlastappear is 
set to RTm, the counters for counting transactions 
are increased suitably and the process will be 
continued.  
     In below, we give the pseudo code for the 
algorithm to compute L1, the list of locally frequent 
sets of size 1. We assume that the number of items 
in the dataset under consideration is n and there is 
an ordering among the items. 
Algorithm 1 
C1 = {(i[k],tp[k]) : k = 1,2,…..,n}  
   where i[k]= the k-th item and tp[k] points to a list of fuzzy time 
intervals initially empty.} 
 for( k = 1; k≤n;k++) do 
       set lastappear[k]=; 
      for each transactions t in the dataset with fuzzy time stamp 
Tm 
initially  icount[k]==0;  tcount[k]==0; 
do 
  {for( k = 1; k≤n;k++) do 
     { if {i[k]}  t then 
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     { if(lastappear[k] == ) 
      {lastappear[k] = firstappear[k] = Tm; 
      icount[k] = tcount[k] = 1; 
       } 
   else 
   if([Llastappear[k],Rlastappear[k]] [LTm[k], RTm[k]]!=)   
       {Rlastappear[k]=RTm[k];  icount[k]++;     
  tcount[k]++; 
      } 
 else 
 { if (icount[k]/tcount[k]*100  ) 
  fuzzify([Llastappear[k],Rlastappear[k]],[0, 1]) 
   if(core(fuzzified interval) minthd) 
    add(fuzzified interval) to tp[k]; 
    icount[k] = tcount[k] = 1; 
    lastappear[k] = firstappear[k] = Tm; 
    } 
   } 
  else tcount[k]++;   }                      
 } // end of do loop // 
 for( k = 1; k≤ n; k++) 
 { if (icount[k]/tcount[k]*100) 
   fuzzify([Llastappear[k], Rlastappear[k]], [0, 1]) 
    if(core(fuzzified interval) minthd) 
   add(fuzzified interval) to tp[k]; 
   if(tp[k] != 0) add {i[k], tp[k]} to L1 

     } 
  fuzzify([a1,a2], ) 

     { fuzzified interval= 
]1,0[

21 ],[


 aa ; 

        where [a1,a2](x) = . [a1, a2](x) 
        return(fuzzified interval) 
     }  
Two support counts are kept, icount and tcount. If 
the count percentage of an item in an -cut of a 
fuzzy time interval is greater than or equal to the 
user-specified minimum support only then the set is 
considered as a locally frequent set over the fuzzy 
time interval. 
      L1 as computed above will have all 1-sized 
locally frequent sets over fuzzy time intervals and 
with each itemset there will be an ordered list of 
fuzzy time intervals in which the itemset is frequent. 
Then we apply the A priori candidate generation 
algorithm to find candidate frequent itemset of size-
2. With each candidate frequent itemset of size-2, 
we associate a list of fuzzy time intervals obtained 
by pruning phase. In the generation phase this list is 
empty. If all subsets of a candidate item set are 
found to be frequent in the previous level then this 
set will be constructed. The process is as follows: 
when the first subset appearing in the previous level 
is found then the list of this subset is taken as the list 
of fuzzy time intervals associated with the set. 
When subsequent subsets are found then the list of 
fuzzy time intervals is reconstructed by taking all 
possible pair wise intersection of the fuzzy time 
intervals one from each list. Itemsets for which this 
list is found to be empty are further pruned. 
     Using this concept we express below the 
modified A-priori algorithm for the problem under 
consideration. 
Algorithm 2 
Modified A priori 
Initialize  
  k = 1; 

C1 = { itemsets of size- 1} 
L1 = {frequent itemsets of size 1 where 
 with every itemset {i[k]} a list tp[k] is maintained  which gives 
all time fuzzy   
intervals in which i[k] is frequent} 
/* L1 is computed using algorithm 1 */ 
for(k = 2; Lk-1   ; k++) do 
       { Ck = apriorigen(Lk-1) 
 /* same as A priori candidate generation algorithm setting tp[i] 
to zero i*/ 
         prune(Ck); 
 drop all lists of fuzzy  time intervals maintained with the itemsets 
in Ck 
  Compute Lk from Ck. 
/*Lk can be computed from Ck using the similar method used for 
L1* / 
       k = k + 1 
      } 

 Answer = 
k

kL  

Prune(Ck) 
{Let m be the number of itemsets in Ck and let the sets be s[1], 
s[2],…, s[m]. Initialize the pointers tp[i] for each  s[i] to null 
for( i = 1; i ≤ m; i++) do 
     {for each (k-1) subset a of s[i] do 
          {if a  Lk-1 then 
              {Ck = Ck - {s[i], tp[i]}; break;} 
          else 
       { if (tp[i] == null) then set tp[i] to point to the list of fuzzy 
time intervals maintained for a 
       else 
             {  take all possible pair-wise intersection of fuzzy time 
intervals one from each list, one list  maintained with tp[i] and 
the other maintained with a and take this as  the list for tp[i] 
delete all fuzzy time intervals whose core length is less than the 
value of minthd      
 if tp[i] is empty then {Ck = Ck - {s[i],tp[i]}; 
                                break; 
                                 } 
                     } 
                 } 
              } 
           } 
         }         

V. IMPLEMENTATION 
A.  Data structure used 
Candidate generation, pruning and support count 
requires an competent data structures in which all 
candidates are stored. In general, two nice data 
structures have been used for this purpose namely 
hash-tree and trie data structure. In this 
implementation, we have used prefix-tree (Trie) 
data structure. 
1. Trie data structures 

 All the items are marked as a1, a2, ….an where n = 
total number of items in the dataset. We also 
assumed that the items in the transactions are 
ordered in ascending. In a trie data structure, every 
k-itemset has a node linked with it, as does its (k-1)-
prefix. The empty itemset is the root node. All the 
itemsets  of size-1, are attached to the root node as 
its children. Every other itemset of size-k, is 
attached to its (k-1)-prefix. Each node represents an 
itemset. Each node is storing the last item in the 
itemset it represent, a pointer to its childlist, a 
pointer to its parent, a pointer time intervals list 
where the itemset is frequent and a pointer to its 
right sibling. The siblings of every node are 
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implemented as linked list. So, each level consists of 
a set of lists. In our implementation, we maintain all 
the list in a level as a list of lists. The level-1 is a 
single list consisting of all the itemsets of size-1. At 
kth iteration, all the candidate itemsets of size-k are 
stored at depth k in the trie. To count the supports of 
itemsets in a particular level, the itemsets 
represented by the nodes are found by moving 
upwards towards the root using parent pointers. 
Also in candidate generation procedure the join step 
becomes very simple. As all itemsets of size-k with 
the same (k-1)-prefix are represented as a linked list, 
to create all candidate k-size itemsets with (k-1)-
prefix X we merely copy all right siblings of the 
node representing X and add them as child of X. 
Candidate generation method also computes pair-
wise intersection of the fuzzy time intervals lists 
associated with the two itemsets that are merged to 
get the candidate. If intersection of the time 
intervals lists is found to be empty or the core length 
of fuzzified intervals in the list is found to be less 
than or equal to minthd then the newly added node 
is deleted. The method also includes A-priori 
pruning, which checks whether all the subsets of the 
candidates are present in the previous level or not. 

    B Analysis of Results 
For experimented conducted in the paper, we used a 
synthetic dataset which is available at 
http://fimi.cs.helsinki.fi/testdata.html. As the dataset 
does not have fuzzy time contents, we incorporate 
the fuzzy time on it. We consider the different 
transactions sizes like 20,000, 40,000,60,000, 
80,000, 100,000 and execute the algorithm. We 
keep the life span of dataset as one year ( 2012). The 
results obtained by the method are given in table1 
and figue1. 

TABLE I 
FREQUENT ITEMSETS EXTRACTED BY THE METHOD [2] 

Transaction sizes Number frequent itemsets 
20,000 2 
40,000 2 
60,000 4 
80,000 5 
100,000 9 

 

0
1
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5
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0 100000

no. of transactions

no. of frequent sets

Fig.1: no. of transactions vs. no. of frequent itemsets 
 

VI CONCLUSION 
An implementation of the algorithm [2] is given in 
this paper, The algorithm is used for finding 
frequent itemsets which are frequent in certain fuzzy 
time periods. The implementation discussed here is 
Trie-based implementation. The effectiveness of the 
implementation is given with the experiment 
conducted on a synthetic data available in internet. 
As the dataset does not have fuzzy temporal 
features, we incorporate the fuzzy time stamp on it 
to make it appropriate for our experiment. In future,  
we will try to implement the same  algorithm using 
other type of data structures PF-tree based 
implementation and compare with existing 
implementations.  
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