Global Domination in Permutation

 $\mathbf{S}.\mathbf{V}$ ijayakumar[†] $\mathbf{C}.\mathbf{V}.\mathbf{R}.\mathbf{H}$ arinarayanan[‡]

[†] Research Scholar, Department of Mathematics, PRIST University, Thanjavur, Tamilnadu, India.

[‡] Research Supervisor, Assistant Professor, Department of Mathematics, Government Arts College, Paramakudi, Tamilnadu, India.

September 5, 2016

Abstract

If i, j belong to a permutation π on n symbols $A = \{1, 2, ..., n\}$ and i < j then the line of i crosses the line of j in the permutation if i appears after j in the image sequence $s(\pi)$ and if the no. of crossing lines of i is less than the no. of crossing lines of j then i global dominates j. A subset D of A, whose closed neighborhood is A in π is a dominating set of π . D is a global dominating set of π if every i in A - D is global dominated by some j in D. In this paper the global domination number of a permutation is investigated by means of crossing lines.

Keywords

Perumutation - Permutation graph - Global domination.

1 Introduction

Sampathkumar introduced the Global Domination Number of a Graph. Adin and Roichman introduced the concept of permutation graphs and Peter Keevash, Po-Shen Loh and Benny Sudakov identified some permutation graphs with maximum number of edges. J.Chithra, S.P.Subbiah and V.Swaminathan introduced the concept of Domination in Permutation graphs. If i, j belongs to a permutation on n symbols $\{1, 2, ..., n\}$ and i is less than j then there is an edge between i and j in the permutation graph if i appears after j. (i. e) inverse of i is greater than the inverse of j. So the line of i crosses the line of j in the permutation. So there is a one to one correspondence between crossing of lines in the permutation and the edges of the corresponding permutation graph. In this paper we found the global domination number of a permutation and also derived the global domination number of permutation graph through the permutation.

2 Permutation Graphs

Definition 2.1.

Let π be a *permutation* on n symbols $\{a_1, a_2, ..., a_n\}$ where image of a_i is a'_i . Then the *permutation graph* G_{π} is given by (V_{π}, E_{π}) where $V_{\pi} = \{a_1, a_2, ..., a_n\}$ and $a_i, a_j \in E_{\pi}$ if $(a_i - a_j)(\pi^{-1}(a_i) - \pi^{-1}(a_j)) < 0$.

Definition 2.2.

Let π be a permutation on a finite set $A = \{a_1, a_2, a_3, ..., a_n\}$ given by

$$\pi = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \dots & a_n \\ a'_1 & a'_2 & a'_3 & a'_4 \dots & a'_n \end{pmatrix}, \text{ where } |a_{i+1} - a_i| = c, c > 0, 0 < i \le n - 1.$$

The sequence of π is given by $s(\pi) = \{a'_1, a'_2, a'_3, ..., a'_n\}$. When elements of A are ordered in L_1 and the sequence of π are represented in L_2 , then a line joining a_i in L_1 and a_i in L_2 is represented by l_i . This is known as line representation of a_i in π .

Definition 2.3.

The element a_i is said to *dominate* a_j if their lines cross each other in π . The set of collection of elements of π whose lines cross all the lines of the elements $a_1, a_2, ..., a_n$ in π is said to be a *dominating set* of π . $V = \{a_1, a_2, ..., a_n\}$ is always a dominating set.

Definition 2.4.

The subset D of $\{a_1, a_2, ..., a_n\}$ is said to be a *Minimal Dominating Set* (MDS) of π if $D - \{a_i\}$ is not a dominating set of π , for all $a_j \in D$.

Definition 2.5.

The Neighbourhood of a_i in π is a set of all elements of π whose lines cross the line of a_i and is denoted by $N_{\pi}(a_i)$.

Propositon 2.6.

The domination number of a permutation π is equal to the domination number of the corresponding permutation graph realized by π . (i.e) $\gamma(\pi) = \gamma(G_{\pi})$, the minimum cardinality of a minimal dominating set of G_{π} .

Example 2.7.

Let
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$$
, Then $G_{\pi} = (V_{\pi}, E_{\pi})$ where $V_{\pi} = \{1, 2, 3, 4, 5\}$ and
 $E_{\pi} = \{(1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5)\}$. The complement of $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 5 & 3 \end{pmatrix}$, Then
 $\bar{G}_{\pi} = (V_{\bar{\pi}}, E_{\bar{\pi}})$ where $V_{\bar{\pi}} = \{1, 2, 3, 4, 5\}$ and $E_{\bar{\pi}} = \{(1, 2), (1, 4), (3, 4), (3, 5)\}$.

Figure 1: Perumutation graph of G_{π} and \bar{G}_{π}

3 Global Domination of a Permutation

Definition 3.1.

A graph $G_{\pi} = (V_{\pi}, E_{\pi}), D \subseteq V$ is said to dominate G_{π} when every vertex in V - D is adjacent to (a neighbor of) a vertex in D. A global dominating set (GDS) is a set of vertices that dominates both G_{π} and the complement graph \bar{G}_{π} .

Definition 3.2.

Let $a_i, a_j \in A$. Then the residue of a_i and a_j in π is denoted by $Res(a_i, a_j)$ and is given by $(a_i - a_j)(\pi^{-1}(a_i) - \pi^{-1}(a_j))$.

Definition 3.3.

The neighbourhood of a_i in π is a set of all elements of π whose lines cross the line of a_i and is denoted by $N_{\pi}(a_i)$, equal to $\{a_r \in \pi/l_i \text{ crosses } l_r \text{ in } \pi\}$ and $d(a_i) = |N_{\pi}(a_i)|$ is the number of lines that cross l_i in π .

Definition 3.4.

Let $Res(a_i, a_j) < 0$ and let $d(a_i) \ge d(a_j)$ then we say a_i dominates a_j and a_j weakly dominates a_i .

Definition 3.5.

A subset D of V_{π} is said to be a *(global)* dominating set of π if $N_{\pi}[D] = V_{\pi}$ and $d(a_i) \ge d(a_j)$ such that for atleast one $a_i \in D$, $a_j \in V_{\pi} - D$, $Res(a_i, a_j) < 0$

Definition 3.6.

The *dominating number* of a permutation π is the minimum cardinality of a set in MDS(π) and is denoted by $\gamma(\pi)$.

The global dominating number of a permutation π is the minimum cardinality of a set in $MDS(\pi)$ and is denoted by $\gamma_g(\pi)$.

Theorem 3.7.

The global domination number of a permutation π is $\gamma_g(\pi) = \gamma_g(G_\pi)$, the minimum cardinality of the minimal (global) dominating sets (*MGDS*) of G_π .

Proof.

Let π be a permutation on a finite set $V = \{a_1, a_2, a_3, ..., a_n\}$ given by $\begin{aligned} \pi &= \begin{pmatrix} a_1 & a_2 & a_3 & a_4... & a_n \\ a_1' & a_2' & a_3' & a_4'... & a_n' \end{pmatrix},\\ \text{Let } G_{\pi} &= (V_{\pi}, E_{\pi}) \text{ where } V_{\pi} = V \text{ and } a_i a_j \in E_{\pi} \text{ , if } Res(a_i, a_j) < 0.\\ \text{Let } a_i \in V \text{ such that } d(a_i) &= max\{d(a_j)/a_j \in V\}.\\ \text{Then } D &= \{a_i\} \text{ and let } T = N_{\pi}(a_i).\\ \text{Let } V_1 &= V - (D \cup T).\\ \text{If there exists only one such } a_i \text{ and if } V_1 = \emptyset, \text{ then } D \text{ is } MGDS(\pi).\\ \text{If } V_1 \neq \emptyset, \text{ and } < V_1 >= \emptyset \text{ then } D_1 = D \cup V_1 \text{ is a } MGDS(\pi).\\ \text{If } V_1 \neq \emptyset, \text{ and } < V_1 >\neq \emptyset \text{ then choose } a_r \in V - D \text{ such that } d(a_r) = max\{d(a_i)/a_i \in V_1\}.\\ \text{If } d(a_r) &= max\{d(a_i)/a_i \in V_1\}.\\ \text{If } d(a_r) > d(a_i) \forall a_i \in N_{\pi}(a_r) \text{ then } D_1 = D \cup \{a_r\} \text{ and } T_1 = N_{\pi}(a_r) \text{ and } V_2 = V_1 - (D_1 \cup T_1)\\ \text{Otherwise choose } a_t \in N_{\pi}(a_r) \text{ such that } d(a_t) = max\{d(a_i)/a_i \in N_{\pi}(a_r)\}.\\ \text{Now } D_1 = D \cup \{a_t\} \text{ and } T_1 = N_{\pi}(a_t) \text{ and } V_2 = V_1 - (D_1 \cup T_1) \text{ . If } V_2 = \emptyset, \text{ then } D_1 \text{ is } MGDS(\pi).\\ \text{If } V_2 \neq \emptyset, \text{ and } < V_2 >_{\pi} = \emptyset \text{ then } D_2 = D_1 \cup V_1 \text{ is a } MGDS(\pi). \end{aligned}$ If $V_2 \neq \emptyset$, and $\langle V_2 \rangle_{\pi} \neq \emptyset$, then proceed as before to obtain a MGDS.

If there are more than one a_i such $d(a_i)$ is max then by applying the same procedure to all $a_{r_1}, a_{r_2}, ..., a_{r_m}$ where $0 \leq r_1, r_2, ..., r_m \leq n$ all $MGDS(\pi)$ are obtained. V is finite and no. of subsets of E_{π} is finite. Hence within 2^n approaches all minimal global dominating sets including minimum global dominating set are produced. The minimum cardinality of the sets in all $MGDS(\pi)$ is the global domination number of π which is $\gamma_g(\pi)$. So calculation of $\gamma_g(\pi)$ is of polynomial time. Hence by Propositon 2.6, $\gamma_g(\pi) = \gamma_g(G_{\pi})$.

Theorem 3.8.

A dominating set D of G_{π} is a global dominating set iff for each $a_j \in V_{\pi} - D$, there exists a $a_i \in D$ such that a_i is not adjacent to a_j .

Let $\bar{\gamma}(\pi) = \gamma(\bar{G}_{\pi})$ and $\bar{\gamma}_g(\pi) = \gamma_g(\bar{G}_{\pi})$. Then the permutation graph $\gamma_g(\pi) = \bar{\gamma}_g(\pi)$.

Proof

Let $f \in \gamma_g(G_\pi)$ and let $a_i, a_j \in V(G_\pi)$. Then a_i, a_j are adjacent in $\bar{G}_\pi \Leftrightarrow a_i, a_j$ are not adjacent in G_π . $\Leftrightarrow f(a_i), f(a_j)$ are not adjacent in G_π since f is an automorphism of G_π $\Leftrightarrow f(a_i), f(a_j)$ are adjacent in \bar{G}_π . Hence f is an automorphism of \bar{G}_π . There four $f \in \gamma_g(\bar{G}_\pi)$ and hence $\gamma_g(G_\pi) \subseteq \gamma_g(\bar{G}_\pi)$. Similarly $\gamma_g(\bar{G}_\pi) \subseteq \gamma_g(G_\pi)$ so that $\gamma_g(G_\pi) = \gamma_g(\bar{G}_\pi)$ Hence $\gamma_g(\pi) = \bar{\gamma}_g(\pi)$.

Propositon 3.9.

For any permutation graph G_{π}

$$\frac{\gamma(\pi) \le \gamma_g(\pi)}{\frac{\gamma(\pi) + \bar{\gamma}(\pi)}{2}} \le \gamma_g(\pi) \le \gamma(\pi) + \bar{\gamma}(\pi)$$

Note

Any complete graph does not global domination.

Example 3.10.

let $G_{\pi} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 7 & 1 & 8 & 3 & 6 & 4 \end{pmatrix}$, Here $D = \{4, 5\}$ is minimal global dominating sets. $\gamma_g(\pi) = \gamma_g(G_{\pi}) = 2.$

Figure 2: Global domination in permutation graph G_{π} and \overline{G}_{π}

4 Some Theorems of Global Domination

Theorem 4.1.

(i) For a graph G_{π} with p vertices, $\gamma_g(G_{\pi}) = p$ iff $G = K_p$ or \bar{K}_p . (ii) $\gamma_g(K_{m,n}) = 2$ for all $m, n \ge 1$ (iii) $\gamma_g(C_4) = 2, \gamma_g(C_5) = 3$ and $\gamma_g(C_n) = \lceil \frac{n}{3} \rceil$ for all $m, n \ge 6$ (iv) $\gamma_g(P_n) = 2$ for n = 2, 3 and $\gamma_g(P_n) = \lceil \frac{n}{3} \rceil$ for $n \ge 6$.

Proof

we prove only (i), and (ii)-(iv) are obvious. Clearly, $\gamma_g(K_p) = \gamma_g(\bar{K}_p) = p$. Suppose $\gamma_g(G_\pi) = p$ and $G_\pi \neq K_p$ or \bar{K}_p Then G_π has at least one edge uv and a vertex w not adjacent to, say v. Then $V_\pi - \{v\}$ is a global domination set and $\gamma_g(G_\pi) = p - 1$. For some graphs including trees, γ_g is almost equal to γ

Theorem 4.2.

Let D be a minimum dominating set of G_{π} . If there exists a vertex v in V - D adjacent to only vertices in D, then

$$\gamma_q \le \gamma + 1$$

Proof

This follows since $D \cup \{v\}$ is a global dominating set.

Corollary 4.2.1.

Let $G_{\pi} = (V_1 \cup V_2, E_{\pi})$ be a bipartite graph without isolates, where $|V_1| = m$, $|V_2| = n$ and $m \leq n$. Then $\gamma_g \leq m + 1$.

Proof

This follows from $\gamma_g \leq \gamma + 1$ since $m \leq n$

Corollary 4.2.2.

For any graph with a pendant vertex, $\gamma_g \leq \gamma + 1$ holds. In particular, $\gamma_g \leq \gamma + 1$ holds for a tree.

Corollary 4.2.3.

If V - D is independent, then $\gamma_g \leq \gamma + 1$ holds. Let α_0 and β_0 respectively denote the covering and independence number of a graph.

Theorem 4.3.

For a (p,q) graph G_{π} without isolates.

$$\frac{2q-p(p-3)}{2} \le \gamma_g \le p - \beta_0 + 1$$

Proof

Let D be a minimum global dominating set. Then every vertex in $V_{\pi} - D$ is not adjacent to atleast one vertex in D. This imlies

 $q \leq pC_2 - (p - \gamma_g)$ and the lower bound follows.

To establish the upper bound, let B be an independent set with β_0 vertices. Since G_{π} has no

isolates. V - B is a dominating set of G_{π} .

Clearly, for any $V \in B$, $(V - B) \cup \{V\}$ is a global dominating set of G_{π} , and the upper bound follows.

Since $\alpha_0 + \beta_0 = p$ for eny graph of order p without isolates.

Corollary 4.3.1.

 $\gamma_g \le \alpha_0 + 1$

The independent domination number i(G) of G_{π} is the minimum cardinality of a dominating set which is also independent. It is well-known that

$$\gamma \le i \le \beta_0$$

Corollary 4.3.2.

For any graph G_{π} of order p without isolates. (i) $\gamma + \gamma_g \leq p + 1$, (ii) $i + \gamma_g \leq p + 1$.

Theorem 4.4.

For any graph $G_{\pi} = (V_{\pi}, E_{\pi})$

$$\gamma_g \le max\{\chi(G_\pi).\chi(\bar{G}_\pi)\}$$

where $\chi(G_{\pi})$ is the chromatic number of G_{π} .

Proof

Let $\chi(G_{\pi}) = m$, $\chi(\bar{G}_{\pi}) = n$ and $m \leq n$. Consider a $\chi(G_{\pi})$ partition a_1, a_2, \dots, a_m and a $\chi(\bar{G}_{\pi})$ partition a'_1, a'_2, \dots, a'_n of v.

Cleary, no two vertices of any a_i can belong to any a'_j and conversely. We can select m vertices a_1, a_2, \dots, a_m such that

(i) $a_i \in V_{\pi}, 1 \leq i \leq m$, and (ii) a_1, a_2, \dots, a_m belong to different sets in a'_1, a'_2, \dots, a'_n , say $a_j \in V'_{\pi}, 1 \leq j \leq m$. Choose $a_j \in V'_{\pi}, m+1 \leq j \leq n$. Clearly, a_1, a_2, \dots, a_m is a dominating set of \bar{G} , and $a_1, a_2, \dots, a_m, a_{m+1}, \dots, a_n$ is a dominating set of G_{π} and \bar{G}_{π} .

Let Δ and δ respectively be the maximum and minimum degrees of a graph G_{π} , and $\bar{\Delta} = \Delta(\bar{G}_{\pi}, \bar{\delta} = \delta(\bar{G}_{\pi}).$

It is well known that $\chi(G_{\pi}) \leq \Delta + 1$ and if G_{π} is neither complete nor an odd cycle, then $\chi(G_{\pi}) \leq \Delta$.

Corollary 4.4.1.

For any graph G_{π} of order p

$$\gamma_g \le \max\{\Delta + 1, \bar{\Delta} + 1\} = \max\{p - \bar{\delta}, p - \delta\}$$

and If G_{π} is neither complete nor an odd cycle

$$\gamma_g \le \max\{\Delta, \bar{\Delta}\} = \max\{p - 1 - \bar{\delta}, p - 1 - \delta\}$$

since $\gamma \leq \gamma_g$ and $\bar{\gamma} \leq \gamma_g$

Corollary 4.4.2.

Let $t = \gamma$ or $\bar{\gamma}$. For any graph G_{π}

$$t \le \max\{\Delta + 1, \bar{\Delta} + 1\}$$

if g_π is neither complete nor an odd cycle

$$t \le max\{\Delta, \bar{\Delta}\}$$

Let k and \bar{k} respectively denote the connectivity of G_{π} and \bar{G}_{π} . it is well know that $k \leq \delta$.

Corollary 4.4.3.

For any graph G_{π} of order p

$$\gamma_q \le \max\{p-k-1, p-\bar{k}-1\}$$

For $v \in V_{\pi}$, let $N(v) = \{u \in V_{\pi} : uv \in E_{\pi}\}$ and $N[v] = (v) \cup \{v\}$. A set $D \subset V_{\pi}$ is full if $N(v) \cap V_{\pi} - D \neq \emptyset$ for all $v \in D$. Also D is g-full if $N(v) \cap V_{\pi} - D \neq \emptyset$ both in G_{π} and \overline{G}_{π} .

The full number $f = f(G_{\pi})$ of G_{π} is the maximum cardinality of a full set of G_{π} and the g- full number $f_g = f_g(G_{\pi})$ of G_{π} is the maximum cardinality of a g-full set of G_{π} . Clearly $f_g(G_{\pi}) = f_g(\bar{G}_{\pi})$

Proposition 4.5.

If G_{π} is of order $\gamma + f = p$ Analogously we have

Theorem 4.6.

If G_{π} is of order $\gamma_g + f_g = p$

ISSN: 2231-5373

Proof

Let D be a minimum global dominating set and $v \in V_{\pi} - D$. Then $N(v) \cap D \neq \emptyset$ both in G_{π} and \overline{G}_{π} .

Hence $V_{\pi} - D$ is g-full and $p - \gamma_g = |V_{\pi} - D| \le f_g$.

On the other hand,

Suppose $D V_{\pi}$ is g-full with $|D| = f_g$. Then, for all $v \in D$, $N(v) \cap V_{\pi} - D \neq \emptyset$ both in G_{π} and \bar{G}_{π} .

This implies that $V_{\pi} - D$ is a global dominating set. Hence $\gamma_g \leq |V_{\pi} - D| = p - f_g$.

5 The Global Domination Number

A partition $\{a_1, a_2, ..., a_n\}$ of V is a domination (global domination) partition of G_{π} if each V_i is a dominating set(global dominating set). The domination number $d = d(G_{\pi})$ (global domination number $d = d(G_{\pi})$) of G_{π} is the maximum order of a domination (global domination) partition of G_{π} .

Clearly, for any graph G_{π} , $d_g(G_{\pi}) = d_g(\bar{G}_{\pi})$

Propositon 5.1.

(i) $d_g(K_n) = d_g(\bar{K}_n) = 1$ (ii) For any $n \ge 1$, $d_g(C_{3n}) = 3$, and $d_g(C_{3n+1}) = d_g(C_{3n+2}) = 2$ (iii) For any $2 \le m \le n$, $d_g(K_{m,n}) = n$. when $\bar{d} = d(\bar{G}_{\pi})$ and $\bar{d}_g = d_g(\bar{G}_{\pi})$

Propositon 5.2.

If G_{π} is of order p, then $\gamma + d \leq p + 1$ and $\gamma_g + d_g \leq p + 1$ if and only if $G_{\pi} = K_p$ or \bar{K}_p .

References

- [1] **M.Murugan** *"Topics in Graph Theory and Algorithms"*, Muthali Publishing House, Chennai, India, 2003.
- [2] E.Sampathkumar "The Global Domination Number of a Graph", Journal of math. Phy. Science, Volume:23, no:5.(1989).
- [3] J.Chithra, S.P.Subbiah and V.Swaminathan "Domination in Permutation Graphs", International Journal of Computing Algorithm, Volume:03, Pages:549-553.(2014).