Global Domination in Permutation

S.Vijayakumar ${ }^{\dagger}$ C.V.R.Harinarayanan ${ }^{\ddagger}$
\dagger Research Scholar, Department of Mathematics, PRIST University, Thanjavur,Tamilnadu, India.
\ddagger Research Supervisor, Assistant Professor,Department of Mathematics, Government Arts College, Paramakudi,Tamilnadu,India.

September 5, 2016

Abstract

If i, j belong to a permutation π on n symbols $A=\{1,2, \ldots, n\}$ and $i<j$ then the line of i crosses the line of j in the permutation if i appears after j in the image sequence $s(\pi)$ and if the no. of crossing lines of i is less than the no. of crossing lines of j then i global dominates j. A subset D of A, whose closed neighborhood is A in π is a dominating set of π. D is a global dominating set of π if every i in $A-D$ is global dominated by some j in D. In this paper the global domination number of a permutation is investigated by means of crossing lines.

Keywords

Perumutation - Permutation graph - Global domination.

1 Introduction

Sampathkumar introduced the Global Domination Number of a Graph. Adin and Roichman introduced the concept of permutation graphs and Peter Keevash, Po-Shen Loh and Benny Sudakov identified some permutation graphs with maximum number of edges. J.Chithra, S.P.Subbiah and V.Swaminathan introduced the concept of Domination in Permutation graphs. If i, j belongs to a permutation on n symbols $\{1,2, \ldots, n\}$ and i is less than j then there is an edge between i and j in the permutation graph if i appears after j. (i. e) inverse of i is greater than the inverse of j. So the line of i crosses the line of j in the permutation. So there is a one to one correspondence between crossing of lines in the permutation and the edges of the corresponding permutation graph. In this paper we found the global domination number of a
permutation and also derived the global domination number of permutation graph through the permutation.

2 Permutation Graphs

Definition 2.1.

Let π be a permutation on n symbols $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ where image of a_{i} is a_{i}^{\prime}.
Then the permutation graph G_{π} is given by $\left(V_{\pi}, E_{\pi}\right)$ where $V_{\pi}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $a_{i}, a_{j} \in E_{\pi}$ if $\left(a_{i}-a_{j}\right)\left(\pi^{-1}\left(a_{i}\right)-\pi^{-1}\left(a_{j}\right)\right)<0$.

Definition 2.2.

Let π be a permutation on a finite set $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ given by $\pi=\left(\begin{array}{ccccc}a_{1} & a_{2} & a_{3} & a_{4} \ldots & a_{n} \\ a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} & a_{4}^{\prime} \ldots & a_{n}^{\prime}\end{array}\right)$, where $\left|a_{i+1}-a_{i}\right|=c, c>0,0<i \leq n-1$.

The sequence of π is given by $s(\pi)=\left\{a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{n}^{\prime}\right\}$. When elements of A are ordered in L_{1} and the sequence of π are represented in L_{2}, then a line joining a_{i} in L_{1} and a_{i} in L_{2} is represented by l_{i}. This is known as line representation of a_{i} in π.

Definition 2.3.

The element a_{i} is said to dominate a_{j} if their lines cross each other in π. The set of collection of elements of π whose lines cross all the lines of the elements $a_{1}, a_{2}, \ldots, a_{n}$ in π is said to be a dominating set of $\pi . V=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is always a dominating set.

Definition 2.4.

The subset D of $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is said to be a Minimal Dominating Set (MDS) of π if $D-\left\{a_{i}\right\}$ is not a dominating set of π, for all $a_{j} \in D$.

Definition 2.5.

The Neighbourhood of a_{i} in π is a set of all elements of π whose lines cross the line of a_{i} and is denoted by $N_{\pi}\left(a_{i}\right)$.

Propositon 2.6.

The domination number of a permutation π is equal to the domination number of the corresponding permutation graph realized by π. (i.e) $\gamma(\pi)=\gamma\left(G_{\pi}\right)$, the minimum cardinality of a
minimal dominating set of G_{π}.

Example 2.7.

Let $\pi=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2\end{array}\right)$, Then $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where $V_{\pi}=\{1,2,3,4,5\}$ and $E_{\pi}=\{(1,3),(1,5),(2,3),(2,4),(2,5),(4,5)\}$. The complement of $\pi=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 5 & 3\end{array}\right)$, Then $\bar{G}_{\pi}=\left(V_{\bar{\pi}}, E_{\bar{\pi}}\right)$ where $V_{\bar{\pi}}=\{1,2,3,4,5\}$ and $E_{\bar{\pi}}=\{(1,2),(1,4),(3,4),(3,5)\}$.

Figure 1: Perumutation graph of G_{π} and \bar{G}_{π}

3 Global Domination of a Permutation

Definition 3.1.

A graph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right), D \subseteq V$ is said to dominate G_{π} when every vertex in $V-D$ is adjacent to (a neighbor of) a vertex in D. A global dominating set (GDS) is a set of vertices that dominates both G_{π} and the complement graph \bar{G}_{π}.

Definition 3.2.

Let $a_{i}, a_{j} \in A$. Then the residue of a_{i} and a_{j} in π is denoted by $\operatorname{Res}\left(a_{i}, a_{j}\right)$ and is given by $\left(a_{i}-a_{j}\right)\left(\pi^{-1}\left(a_{i}\right)-\pi^{-1}\left(a_{j}\right)\right)$.

Definition 3.3.

The neighbourhood of a_{i} in π is a set of all elements of π whose lines cross the line of a_{i} and is denoted by $N_{\pi}\left(a_{i}\right)$, equal to $\left\{a_{r} \in \pi / l_{i}\right.$ crosses l_{r} in $\left.\pi\right\}$ and $d\left(a_{i}\right)=\left|N_{\pi}\left(a_{i}\right)\right|$ is the number of lines that cross l_{i} in π.

Definition 3.4.

Let $\operatorname{Res}\left(a_{i}, a_{j}\right)<0$ and let $d\left(a_{i}\right) \geq d\left(a_{j}\right)$ then we say a_{i} dominates a_{j} and a_{j} weakly dominates a_{i}.

Definition 3.5.

A subset D of V_{π} is said to be a (global) dominating set of π if $N_{\pi}[D]=V_{\pi}$ and $d\left(a_{i}\right) \geq d\left(a_{j}\right)$ such that for atleast one $a_{i} \in D, a_{j} \in V_{\pi}-D, \operatorname{Res}\left(a_{i}, a_{j}\right)<0$

Definition 3.6.

The dominating number of a permutation π is the minimum cardinality of a set in $\operatorname{MDS}(\pi)$ and is denoted by $\gamma(\pi)$.
The global dominating number of a permutation π is the minimum cardinality of a set in $\operatorname{MDS}(\pi)$ and is denoted by $\gamma_{g}(\pi)$.

Theorem 3.7.

The global domination number of a permutation π is $\gamma_{g}(\pi)=\gamma_{g}\left(G_{\pi}\right)$, the minimum cardinality of the minimal (global) dominating sets $(M G D S)$ of G_{π}.

Proof.

Let π be a permutation on a finite set $V=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ given by
$\pi=\left(\begin{array}{ccccc}a_{1} & a_{2} & a_{3} & a_{4} \ldots & a_{n} \\ a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} & a_{4}^{\prime} \ldots & a_{n}^{\prime}\end{array}\right)$,
Let $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where $V_{\pi}=V$ and $a_{i} a_{j} \in E_{\pi}$, if $\operatorname{Res}\left(a_{i}, a_{j}\right)<0$.
Let $a_{i} \in V$ such that $d\left(a_{i}\right)=\max \left\{d\left(a_{j}\right) / a_{j} \in V\right\}$.
Then $D=\left\{a_{i}\right\}$ and let $T=N_{\pi}\left(a_{i}\right)$.
Let $V_{1}=V-(D \cup T)$.
If there exists only one such a_{i} and if $V_{1}=\emptyset$, then D is $\operatorname{MGDS(\pi)\text {.}}$
If $V_{1} \neq \emptyset$, and $<V_{1}>=\emptyset$ then $D_{1}=D \cup V_{1}$ is a $M G D S(\pi)$.
If $V_{1} \neq \emptyset$, and $<V_{1}>\neq \emptyset$ then choose $a_{r} \in V-D$ such that
$d\left(a_{r}\right)=\max \left\{d\left(a_{i}\right) / a_{i} \in V_{1}\right\}$.
If $d\left(a_{r}\right)>d\left(a_{i}\right) \forall a_{i} \in N_{\pi}\left(a_{r}\right)$ then $D_{1}=D \cup\left\{a_{r}\right\}$ and $T_{1}=N_{\pi}\left(a_{r}\right)$ and $V_{2}=V_{1}-\left(D_{1} \cup T_{1}\right)$
Otherwise choose $a_{t} \in N_{\pi}\left(a_{r}\right)$ such that $d\left(a_{t}\right)=\max \left\{d\left(a_{i}\right) / a_{i} \in N_{\pi}\left(a_{r}\right)\right\}$.
Now $D_{1}=D \cup\left\{a_{t}\right\}$ and $T_{1}=N_{\pi}\left(a_{t}\right)$ and $V_{2}=V_{1}-\left(D_{1} \cup T_{1}\right)$. If $V_{2}=\emptyset$, then D_{1} is $\operatorname{MGDS}(\pi)$. If $V_{2} \neq \emptyset$, and $<V_{2}>_{\pi}=\emptyset$ then $D_{2}=D_{1} \cup V_{1}$ is a $\operatorname{MGDS}(\pi)$.

If $V_{2} \neq \emptyset$, and $<V_{2}>_{\pi} \neq \emptyset$, then proceed as before to obtain a MGDS.
If there are more than one a_{i} such $d\left(a_{i}\right)$ is max then by applying the same procedure to all $a_{r_{1}}, a_{r_{2}}, \ldots, a_{r_{m}}$ where $0 \leq r_{1}, r_{2}, \ldots, r_{m} \leq n$ all $M G D S(\pi)$ are obtained. V is finite and no. of subsets of E_{π} is finite. Hence within 2^{n} approaches all minimal global dominating sets including minimum global dominating set are produced. The minimum cardinality of the sets in all $\operatorname{MGDS}(\pi)$ is the global domination number of π which is $\gamma_{g}(\pi)$. So calculation of $\gamma_{g}(\pi)$ is of polynomial time. Hence by Propositon 2.6, $\gamma_{g}(\pi)=\gamma_{g}\left(G_{\pi}\right)$.

Theorem 3.8.

A dominating set D of G_{π} is a global dominating set iff for each $a_{j} \in V_{\pi}-D$, there exists a $a_{i} \in D$ such that a_{i} is not adjacent to a_{j}.
Let $\bar{\gamma}(\pi)=\gamma\left(\bar{G}_{\pi}\right)$ and $\bar{\gamma}_{g}(\pi)=\gamma_{g}\left(\bar{G}_{\pi}\right)$. Then the permutation graph $\gamma_{g}(\pi)=\bar{\gamma}_{g}(\pi)$.

Proof

Let $f \in \gamma_{g}\left(G_{\pi}\right)$ and let $a_{i}, a_{j} \in V\left(G_{\pi}\right)$.
Then a_{i}, a_{j} are adjacent in $\bar{G}_{\pi} \Leftrightarrow a_{i}, a_{j}$ are not adjacent in G_{π}.
$\Leftrightarrow f\left(a_{i}\right), f\left(a_{j}\right)$ are not adjacent in G_{π}
since f is an automorphism of G_{π}
$\Leftrightarrow f\left(a_{i}\right), f\left(a_{j}\right)$ are adjacent in \bar{G}_{π}
Hence f is an automorphism of \bar{G}_{π}.
There four $f \in \gamma_{g}\left(\bar{G}_{\pi}\right)$ and hence $\gamma_{g}\left(G_{\pi}\right) \subseteq \gamma_{g}\left(\bar{G}_{\pi}\right)$.
Similarly $\gamma_{g}\left(\bar{G}_{\pi}\right) \subseteq \gamma_{g}\left(G_{\pi}\right)$ so that $\gamma_{g}\left(G_{\pi}\right)=\gamma_{g}\left(\bar{G}_{\pi}\right)$
Hence $\gamma_{g}(\pi)=\bar{\gamma}_{g}(\pi)$.

Propositon 3.9.

For any permutation graph G_{π}

$$
\begin{gathered}
\gamma(\pi) \leq \gamma_{g}(\pi) \\
\frac{\gamma(\pi)+\bar{\gamma}(\pi)}{2} \leq \gamma_{g}(\pi) \leq \gamma(\pi)+\bar{\gamma}(\pi)
\end{gathered}
$$

Note

Any complete graph does not global domination.

Example 3.10.

let $G_{\pi}=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 7 & 1 & 8 & 3 & 6 & 4\end{array}\right)$, Here $D=\{4,5\}$ is minimal global dominating sets. $\gamma_{g}(\pi)=\gamma_{g}\left(G_{\pi}\right)=2$.

Figure 2: Global domination in permutation graph G_{π} and \bar{G}_{π}

4 Some Theorems of Global Domination

Theorem 4.1.

(i) For a graph G_{π} with p vertices, $\gamma_{g}\left(G_{\pi}\right)=p$ iff $G=K_{p}$ or \bar{K}_{p}.
(ii) $\gamma_{g}\left(K_{m, n}\right)=2$ for all $m, n \geq 1$
(iii) $\gamma_{g}\left(C_{4}\right)=2, \gamma_{g}\left(C_{5}\right)=3$ and $\gamma_{g}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$ for all $m, n \geq 6$
(iv) $\gamma_{g}\left(P_{n}\right)=2$ for $n=2,3$ and $\gamma_{g}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$ for $n \geq 6$.

Proof

we prove only (i), and (ii)-(iv) are obvious. Clearly, $\gamma_{g}\left(K_{p}\right)=\gamma_{g}\left(\bar{K}_{p}\right)=p$. Suppose $\gamma_{g}\left(G_{\pi}\right)=p$ and $G_{\pi} \neq K_{p}$ or \bar{K}_{p} Then G_{π} has at least one edge $u v$ and a vertex w not adjacent to, say v. Then $V_{\pi}-\{v\}$ is a global domination set and $\gamma_{g}\left(G_{\pi}\right)=p-1$.

For some graphs including trees, γ_{g} is almost equal to γ

Theorem 4.2.

Let D be a minimum dominating set of G_{π}. If there exists a vertex v in $V-D$ adjacent to only verticesin D, then

$$
\gamma_{g} \leq \gamma+1
$$

Proof

This follows since $D \cup\{v\}$ is a global dominating set.

Corollary 4.2 .1 .

Let $G_{\pi}=\left(V_{1} \cup V_{2}, E_{\pi}\right)$ be a bipartite graph without isolates, where $V_{1}\left|=m,\left|V_{2}\right|=n\right.$ and $m \leq n$. Then $\gamma_{g} \leq m+1$.

Proof

This follows from $\gamma_{g} \leq \gamma+1$ since $m \leq n$

Corollary 4.2 .2 .

For any graph with a pendant vertex, $\gamma_{g} \leq \gamma+1$ holds. In particular, $\gamma_{g} \leq \gamma+1$ holds for a tree.

Corollary 4.2.3.

If $V-D$ is independent, then $\gamma_{g} \leq \gamma+1$ holds.
Let α_{0} and β_{0} respectively denote the covering and independence number of a graph.

Theorem 4.3.

For a (p, q) graph G_{π} without isolates.

$$
\frac{2 q-p(p-3)}{2} \leq \gamma_{g} \leq p-\beta_{0}+1
$$

Proof

Let D be a minimum global dominating set. Then every vertex in $V_{\pi}-D$ is not adjacent to atleast one vertex in D. This imlies
$q \leq p C_{2}-\left(p-\gamma_{g}\right)$ and the lower bound follows.
To establish the upper bound, let B be an independent set with β_{0} vertices. Since G_{π} has no
isolates. $V-B$ is a dominating set of G_{π}.
Clearly, for any $V \in B,(V-B) \cup\{V\}$ is a global dominating set of G_{π}, and the upper bound follows.
Since $\alpha_{0}+\beta_{0}=p$ for eny graph of order p without isolates.

Corollary 4.3.1.

$$
\gamma_{g} \leq \alpha_{0}+1
$$

The independent domination number $i(G)$ of G_{π} is the minimum cardinality of a dominating set which is also independent. It is well-known that

$$
\gamma \leq i \leq \beta_{0}
$$

Corollary 4.3 .2 .

For any graph G_{π} of order p without isolates.
(i) $\gamma+\gamma_{g} \leq p+1$, (ii) $i+\gamma_{g} \leq p+1$.

Theorem 4.4.

For any graph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$

$$
\gamma_{g} \leq \max \left\{\chi\left(G_{\pi}\right) \cdot \chi\left(\bar{G}_{\pi}\right)\right\}
$$

where $\chi\left(G_{\pi}\right)$ is the chromatic number of G_{π}.

Proof

Let $\chi\left(G_{\pi}\right)=m, \chi\left(\bar{G}_{\pi}\right)=n$ and $m \leq n$. Consider a $\chi\left(G_{\pi}\right)$ partition $a_{1}, a_{2}, \ldots . . a_{m}$ and a $\chi\left(\bar{G}_{\pi}\right)$ partition $a_{1}^{\prime}, a_{2}^{\prime}, \ldots . . a_{n}^{\prime}$ of v.
Cleary, no two vertices of any a_{i} can belong to any a_{j}^{\prime} and conversely. We can select m vertices $a_{1}, a_{2}, \ldots . . a_{m}$ such that
(i) $a_{i} \in V_{\pi}, 1 \leq i \leq m$, and (ii) $a_{1}, a_{2}, \ldots . . a_{m}$ belong to different sets in $a_{1}^{\prime}, a_{2}^{\prime}, \ldots . . a_{n}^{\prime}$, say $a_{j} \in$ $V_{\pi}^{\prime}, 1 \leq j \leq m$. Choose $a_{j} \in V_{\pi}^{\prime}, m+1 \leq j \leq n$. Clearly, $a_{1}, a_{2}, \ldots . . a_{m}$ is a dominating set of \bar{G}, and $a_{1}, a_{2}, \ldots . . a_{m}, a_{m+1}, \ldots . . a_{n}$ is a dominating set of G_{π} and \bar{G}_{π}.
Let Δ and δ respectively be the maximum and minimum degrees of a graph G_{π}, and $\bar{\Delta}=$ $\Delta\left(\bar{G}_{\pi}, \bar{\delta}=\delta\left(\bar{G}_{\pi}\right)\right.$.
It is well known that $\chi\left(G_{\pi}\right) \leq \Delta+1$ and if G_{π} is neither complete nor an odd cycle,then $\chi\left(G_{\pi}\right) \leq \Delta$.

Corollary 4.4.1.

For any graph G_{π} of order p

$$
\gamma_{g} \leq \max \{\Delta+1, \bar{\Delta}+1\}=\max \{p-\bar{\delta}, p-\delta\}
$$

and If G_{π} is neither complete nor an odd cycle

$$
\gamma_{g} \leq \max \{\Delta, \bar{\Delta}\}=\max \{p-1-\bar{\delta}, p-1-\delta\}
$$

since $\gamma \leq \gamma_{g}$ and $\bar{\gamma} \leq \gamma_{g}$

Corollary 4.4.2.

Let $t=\gamma$ or $\bar{\gamma}$. For any graph G_{π}

$$
t \leq \max \{\Delta+1, \bar{\Delta}+1\}
$$

if g_{π} is neither complete nor an odd cycle

$$
t \leq \max \{\Delta, \bar{\Delta}\}
$$

Let k and \bar{k} respectively denote the connectivity of G_{π} and \bar{G}_{π}. it is well know that $k \leq \delta$.

Corollary 4.4.3.

For any graph G_{π} of order p

$$
\gamma_{g} \leq \max \{p-k-1, p-\bar{k}-1\}
$$

For $v \in V_{\pi}$, let $N(v)=\left\{u \in V_{\pi}: u v \in E_{\pi}\right\}$ and $N[v]=(v) \cup\{v\}$.
A set $D \subset V_{\pi}$ is full if $N(v) \cap V_{\pi}-D \neq \emptyset$ for all $v \in D$. Also D is g-full if $N(v) \cap V_{\pi}-D \neq \emptyset$ both in G_{π} and \bar{G}_{π}.
The full numberf $=f\left(G_{\pi}\right)$ of G_{π} is the maximum cardinality of a full set of G_{π} and the g - full numberf $f_{g}=f_{g}\left(G_{\pi}\right)$ of G_{π} is the maximum cardinality of a g-full set of G_{π}.
Clearly $f_{g}\left(G_{\pi}\right)=f_{g}\left(\bar{G}_{\pi}\right)$

Proposition 4.5.

If G_{π} is of order $\gamma+f=p$
Analogously we have

Theorem 4.6.

If G_{π} is of order $\gamma_{g}+f_{g}=p$

Proof

Let D be a minimum global dominating set and $v \in V_{\pi}-D$. Then $N(v) \cap D \neq \emptyset$ both in G_{π} and \bar{G}_{π}.

Hence $V_{\pi}-D$ is g - full and $p-\gamma_{g}=\left|V_{\pi}-D\right| \leq f_{g}$.
On the otherhand,
Suppose $D V_{\pi}$ is g-full with $|D|=f_{g}$. Then, for all $v \in D, N(v) \cap V_{\pi}-D \neq \emptyset$ both in G_{π} and \bar{G}_{π}.

This implise that $V_{\pi}-D$ is aglobal dominating set.
Hence $\gamma_{g} \leq\left|V_{\pi}-D\right|=p-f_{g}$.

5 The Global Domination Number

A partition $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of V is a domination (global domination) partition of G_{π} if each V_{i} is a dominating set(global dominating set). The domination number $d=d\left(G_{\pi}\right)$ (global domination number $\left.d=d\left(G_{\pi}\right)\right)$ of G_{π} is the maximum order of a domination (global domination) partition of G_{π}.

Clearly, for any graph $G_{\pi}, d_{g}\left(G_{\pi}\right)=d_{g}\left(\bar{G}_{\pi}\right)$

Propositon 5.1.

(i) $d_{g}\left(K_{n}\right)=d_{g}\left(\bar{K}_{n}\right)=1$
(ii) For any $n \geq 1, d_{g}\left(C_{3 n}\right)=3$, and $d_{g}\left(C_{3 n+1}\right)=d_{g}\left(C_{3 n+2}\right)=2$
(iii) For any $2 \leq m \leq n, d_{g}\left(K_{m, n}\right)=n$. when $\bar{d}=d\left(\bar{G}_{\pi}\right)$ and $\bar{d}_{g}=d_{g}\left(\bar{G}_{\pi}\right)$

Propositon 5.2.

If G_{π} is of order p, then $\gamma+d \leq p+1$ and $\gamma_{g}+d_{g} \leq p+1$ if and only if $G_{\pi}=K_{p}$ or \bar{K}_{p}.

References

[1] M.Murugan "Topics in Graph Theory and Algorithms", Muthali Publishing House, Chennai, India,2003.
[2] E.Sampathkumar "The Global Domination Number of a Graph", Journal of math. Phy. Science, Volume:23, no:5.(1989).
[3] J.Chithra, S.P.Subbiah and V.Swaminathan "Domination in Permutation Graphs", International Journal of Computing Algorithm, Volume:03, Pages:549-553.(2014).

