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I. INTRODUCTION  

In this paper, we are concerned to obtain the 

conditions for the existence / non-existence solutions 

of a class M , M , OS,  WOS  and asymptotic 

behaviour of solutions of a class of M and M  

second order nonlinear neutral delay dynamic 

equations with positive and negative coefficients of 

the form  

(r(t)(x(t) p(t)x( (t))) ) q(t)f (x( (t)))  

h(t)g(x( (t))) 0                                (1.1) 

for 
0t [t , )T

 where T  is a time scale with 

sup .T  in what follows, it is always assume that          

     (i)   1

rd 0r C ([t , ) , (0, ))T , 2

rd 0p C ([t , ) , R)T   

           and  
rd 0q, h C ([t , ) , R);T

                   

(ii)   f , g C(R, R)    such that  uf (u) 0  and      

        ug u 0 for u 0  

(iii)  
rd, , C ( , )T T  are strictly increasing     

         functions such that 

        (t) t, (t) t, (t) t  and       

         
t t t
lim (t) lim (t) lim (t) .  

    Let 
x 0t [t , )T

 such that  
0 0(t) t , (t) t  

and 
0(t) t  for all 

xt [t , ) .T
 By a solution of 

equation (1.1), we shall mean a function     

rd xx C ([t , ) , R)T
which has the properties 

1

rd xx(t) p(t)x( (t)) C ([t , ) , R)T and

1

rd xr(t)(x(t) p(t)x( (t))) C ([t , ) , R)T , satisfies 

equation (1.1) on 
x[t , ) .T

 As is customary, a 

solution of equation (1.1) is oscillatory solution (OS) 

if it is neither eventually positive nor eventually 

negative, otherwise it is called non-oscillatory. A 

non-oscillatory solution x(t) of equation (1.1) is said 

to be weakly oscillatory solution (WOS) if x(t) is 

non-oscillatory and  x (t)  is oscillatory for large 

value of 
0t [t , ) .T

   

In recent years, there has been much research 

activity concerning the oscillation, non-oscillation 

and asymptotic behaviour of solutions of various 

differential equations, difference equations and 

dynamic equations. For instance in [7,8,9] etc., 

authors have been studied by classifying all 

solutions into four classes such as M , M , OS,  

WOS and obtained criteria for the existence / non-

existence of solutions. In order to extend and 

generalize the papers [7,8,9],  Rami Reddy et al. [17] 

were concerned the solutions of existence / non-

existence of a class M , M , OS,  WOS   of 

second order nonlinear neutral delay dynamic 

equation of the form 

(r(t)(x(t) p(t)x( (t))) ) q(t)f (x( (t))) 0, (1.2) 

  For 
0t [t , ) ,T

 subject to the conditions: 

(i) 1

rd 0r C ([t , ) , (0, )),T  

2

rd 0p C ([t , ) , R)T  

(ii) 
rd 0q C ([t , ) , R)T

 and q does 

not vanish eventually; 

(iii) 1f C (R, R) such that f satisfies  

uf u 0  for  u 0 and  

f (u) 0  for u R;  

(iv) 
rd 0, C ([t , ) , )T T are 

strictly increasing functions such 

that  (t) t, (t) t and 

t t
lim (t) lim (t)  

The study of the oscillation and other asymptotic 

properties of solutions of neutral delay difference / 

differential / dynamic equations with positive and 

negative coefficients attracted a good bit of attention 

in the last several years. Da-Xue et al. [11] have 

been studied the oscillation criteria of second order 
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nonlinear dynamic equations with positive and 

negative coefficients of the form  

(r(t)x (t)) p(t)f (x( (t))) q(t)h(x( (t))) 0.  

Thandapani et al. [18] have been studied the 

classification of solutions of second order nonlinear 

neutral delay differential equations with positive and 

negative coefficients of the form 

 (r(t) x(t) c(t)x(t )) ) p(t)f (x(t ))(  

                 q(t)g(x(t )) 0  

                           Where 
0c, r, p,q C([t , ), R),   

f , g C(R, R)  and  , , (0, ).  for results on the 

second order nonlinear equations, we refer the reader 

to the recent papers [12, 13, 14] and the references 

cited therein. 

 

Motivated and inspired by the papers mentioned 

above, in this paper the authors are interested to 

study the solutions of existence / non-existence of a 

class M , M , OS, WOS  and asymptotic behaviour 

of M and M   of equation (1.1). Here we consider 

two cases, namely  q 0   and q changes sign for 

all large 
0t [t , )T

  to give sufficient conditions in 

order that every solution of equation (1.1) oscillates 

and to study the asymptotic nature of non-oscillatory 

solutions of equation (1.1). With respect to their 

asymptotic behaviour all the solutions of equation 

(1.1) may be priori divided in to the following 

classes: 

M {x S : there exists some 
1x 0t [t , )T

 

           such that  x(t)x (t) 0   for 
1xt [t , ) };T

                                    

M {x S : there exists some 
1x 0t [t , )T     

            such that  x(t)x (t) 0  for 
1xt [t , ) };T                                     

OS {x S : there exists a sequence   

           
n 0 nt [t , ) , tT

 s.t.  
n n 1x(t )x(t ) 0}  

WOS {x S: x(t)  is non-oscillatory for  large    

               
0t [t , )T

, but x (t)  oscillates}.  

With a very simple argument we can prove that  

M , M ,OS and WOS are mutually disjoint. By the 

above definitions, it turns out that solutions in the 

class M  are eventually either positive non- 

decreasing or negative non increasing, solutions in 

the class  M are eventually either positive non-

increasing or negative non-decreasing solutions in 

the class OS are oscillatory, and finally solutions in 

the class WOS are weakly oscillatory.  

 

In Section 2, we mentioned important lemma’s 

which are existing in the literature. In Section 3, we 

obtain sufficient conditions for the existence / non-

existence in the above said classes. In Section 4, we 

discuss the asymptotic behavior of solutions in the 

class of M  and  M . Finally section 5, follows 

conclusion. 

2. Important  Lemma’s 
    Theorem2.1. (Chain rule) ([1, Theorem 1.90]) Let 

f: R R is continuously differentiable and suppose  

g : T  R is delta differentiable. Then fog: T  R is 

delta differentiable and the formula 

    
1

0
(fog) (t) f (g(t) h (t)g (t))dh g (t){ }   

Theorem2.2.([1, Theorem 1.117]) Let ka ,T b T  

and assume f : T * k RT  continuous  at (t, t), 

where  kt T   with t > a. Also assume that 

f (t, .)   is rd-continuous on [a, (t)]   Suppose that 

for each 0ò   there exists a neighbourhood U of t, 

 independent of [a, (t)]  , such that  

f ( (t), ) f (s, ) f (t, )( (t) s)   (t) sò∣ ∣ ∣ ∣  

      for all  s U . 

Where  f denotes the derivative of  f with respect 

to the first variable. Then 

(i)  
t

a
g(t) : f (t, )          implies 

               
t

a
g (t) f (t, ) f ( (t), t)  

 (ii)       
b

t
h(t) : f (t, )           implies      

                
b

t
h (t) f (t, ) f ( (t), t)   

     For more basic concepts in the time scale theory 

the readers are referred to the books(see[1, 2]). 

 
3. Existence and Non-Existence Of Solutions 

In M , M , OS and WOS 
First, The existence of solutions of equation (1.1) 

in the class M  

  Theorem 3.1.  Assume that 

   
1(H )  p(t) 0  non decreasing for all  

0t [t , ) ;T
 

2(H )  h(t) 0  for all  
0t [t , ) ;T

 

   
3(H )   (t) (t);  

   
4(H )   there  exists M 0  such that 

             
g(u)

M
f (u)

 for  u 0;  

  
5(H )   f  is non-decreasing;    

  
6(H )   

0

t

tt

limsup (q(s) Mh(s)) s   hold.  

Then for equation (1.1) we have  M .  

 Proof.  Suppose that the equation (1.1) has a 

solution  x M . Without loss of generality we may 

assume that x(t) 0  and x (t) 0 for large (the 

proof is similar if x(t) 0  and x (t) 0  for large 

0t [t , )T
. Then there exists  

1 0t [t , )T
 such 

that  x(t) , x( (t)) , x( (t)) , x( (t))  all are positive 

and x (t) , x ( (t)) , x ( (t)) , x ( (t))  all are non-

negative for all 
1t [t , )T

.  Define 
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International Journal of Mathematics Trends and Technology (IJMTT) – Volume 37 Number 1- September2016 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 22 

        z(t) x(t) p(t)x( (t))                               (3.1)  

                                               

     For 
0t [t , )T

. Then by condition   
1(H )  we 

have z(t) 0  and z (t) 0  for all 
1t [t , )T

  

Using (3.1), equation (1.1) becomes 

(r(t)z (t)) q(t)f (x( (t))) h(t)g(x( (t))) 0  

    Or 

       
(r(t)z (t)) g(x( (t)))

q(t) h(t)
f (x( (t))) f (x( (t)))

       (3.2) 

    for 
1t [t , ) .T

 Now for 
1t [t , ) ,T

 

r(t)z (t) (r(t)z (t))

f (x( (t))) f (x( (t)))
( )  

                                                          

1
(r( (t))z ( (t)))

f (x( (t) )
 

)
( )  

          
(r(t)z (t))

f (x( (t)))
 

              
(f (x( (t))))

(r( (t))z ( (t)))
f (x( (t)))f (x( (t)))

( )  

 Implies that, 

  
r(t)z (t) (r(t)z (t))

f (x( (t))) f (x( (t)))
( ) (r( (t))z ( (t)))  

               
1

0
{ f (x( (t)) h (t)(x( (t))) )dh}(x( (t)))

f (x( (t)))f (x( (t)))
( )  

                                

Or 

 

  
r(t)z (t) (r(t)z (t))

f (x( (t))) f (x( (t)))
( ) (r( (t))z ( (t)))  

            
1

0
{ f (x( (t)) h (t)(x( (t))) )dh}x ( (t)) (t)

f (x( (t)))f (x( (t)))
( )  

                 
                                                                 (3.3)                                                                                                              

Therefore, 

 
r(t)z (t) (r(t)z (t))

f (x( (t))) f (x( (t)))
( )                           (3.4)                                    

for all 
1t [t , )T

, due to   
5( H )  z (t) 0  and  

x ( (t)) 0  for all 
1t [t , )T

. From equation (3.2)  

and (3.4), we have  

  
r(t)z (t) g(x( (t)))

q(t) h(t)
f (x( (

 
t))) f (x( (t)))

( )  

            
g(x( (t)))

q(t) h(t)
f (x( (t)))

 

               (q(t) Mh(t))  

  

 for 
1t [t , )T

, due to 
2(H ) - 

5(H )  Integrating 

the last inequality from   
1t   to   t,   we obtain  

 
1

t
1 1

t
1

r(t )z (t )r(t)z (t)
(q(s) Mh(s)) s

f (x( (t))) f (x( (t )))
 

 From  
6(H ) , we obtain 

  
t

r(t)z (t)
inf ,

f (x( (t)))
lim  

 Which contradicts the assumption z (t) 0  for 

large t. Thus, the theorem is proved. 

 

Example3.2. In Theorem3.1, the assumption  
6(H )  

can not be dropped. For this suppose ¢T , and 

consider the following difference equation  

 
1

( x(n) 2x(n 1))
n

( )  

     
2

2

3 2 2 2

8(n 1) 1
x(n)(x (n) 1)

(n n )(n 1) (n 1)
 

         
2

3

2 5

5n 10n 6
x (n 1) 0

(n n)(n 1)
,                     (3.5) 

 n 2 . For this difference equation, all assumptions 

of Theorem (3.1) holds, but   
6(H )  The equation 

(3.5) has a solution  x(n) n M .  

Theorem3.3. Assume that  1 p(t) 0  and    

2(H ) - 
5(H )  hold. If 

   
7(H )  q(t) Mh(t)  for all  

0t [t , ) ;T
 

   
8(H )   

0t

1
s

r(s)
;                    and 

   
9(H )

0t
(q(s) Mh(s)) s then for       

equation (1.1),   we have  M .  

Proof. Suppose that the equation (1.1) has a solution 

x M . Proceeding as in the proof of Theorem3.1, 

we have (3.1) and (3.2). Since x M  and (iii), we 

have  

z(t) x(t) p(t)x( (t)) x( (t)) p(t)x( (t))  

                                         (1 p(t))x( (t)) 0  

             For 
1t [t , )T

. From (3.1), equation(1.1) 

becomes  

(r(t)z (t)) q(t)f (x( (t))) h(t)g(x( (t)))   (3.6) 

 From (3.6), 
2(H ) - 

5(H )  and   
7(H ) , we obtain 

g(x( (t)))
(r(t)z (t)) f (x( (t))) q(t) h(t)

f (x( (t)
 

))
( )  

                      f (x( (t))) q(t) Mh(t) 0( )  

      For  
1t [t , )T

. This implies that (r(t)z (t))   is 

non increasing on  
1t [t , )T

 .  Now suppose that  

r(t)z (t) 0  for large 
1t [t , )T

 . Then there 

exists  
2 1t [t , )T

 such that 

 2 2r(t)z (t) r(t )z (t ) 0  

http://www.ijmttjournal.org/
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              2 2r(t )z (t )
z (t)

r(t)
 

Integrating from  
2t  to t ,  we obtain 

2

t
2 2

2
t

r(t )z (t )
z(t) z(t ) s

r(s)
 

 

This implies that z(t)  as t  due to 
8(H )  

which is a contradiction. Thus, r(t)z (t) 0  for 

large  
1t [t , )T

. 

Hence,    z (t) 0  

Now proceeding as in the proof of Theorem 3.1,  

we obtain          

 
t

r(t)z (t)
lim

f (x( (t)))
 

     due to  
9(H )  , which contradicts the assumption   

z (t) 0  for large 
1t [t , )T

. 

This completes the proof of the theorem. 

Example3.4. In theorem3.3, some of the 

assumptions cannot be dropped. For this, suppose 

RT  and consider the differential equation 

3

2 2 3

4 1 1
(x(t) x(t 1)) x (t 1/ 2)

2(t 2t) t (t 1/ 2)
( )

3

2 3

1
x (t 1) 0

(t 2) (t 1)
,                                 (3.7) 

t( 2) T   For this difference equation all the 

conditions of Theorem3.3 are satisfied except 
9(H ) . 

The equation (3.7) has a solution x(t) t M .  

Next, the existence of solutions of equation 

(1.1) in the class M .   

Theorem3.5. Assume that 
2(H ) ,

4(H ) and 
5(H )     

hold. If      
10(H )   (t) (t) (t)                   

   
11(H )  the function   

1

f (u)
 is locally integrable  on 

            (0,c)     and (-c,0) for some c > 0, 

      i.e   
c

0

du

f (u)
, 

0

c

du

f (u)
 ; for some  c>0 

  
12(H )   f is sub multiplicative       i.e          

              f (uv) f (u)f (v)  for  u, v R ; 

  
13(H )  p(t) 0   and  non-increasing  and 

14(H )

0 0

t s

t tt

1
sup (q( ) Mh( )) s

r(s)f (1 p(
lim

s))
( )

Then for equation (1.1),  we have  M  

Proof. Suppose that equation (1.1) has a solution 

x M . Without loss of generality, we may assume 

that x(t) 0 and x (t) 0  for large 
0t [t , )T

  

(the proof is similar if x(t) < 0 and  x (t) 0  for 

large  
0t [t , )T

 ). Then there exists 
1t [t , )T

 

such that x(t) , x( (t)) , x( (t)) , x( (t))  all are 

positive and x (t) , x ( (t)) , x ( (t)) , x ( (t))   all 

are non-positive for all 
1t [t , )T

. Defining z(t) as 

in (3.1). Then by using  
13(H ) , we see that  z(t) 0 

and z (t) 0  for all 
1t [t , )T

 . Then equation 

(1.1) becomes 

  (r(t)z (t)) q(t)f (x( (t))) h(t)g(x( (t))) 0  

For 
1t [t , )T

,   proceeding as in the 

proof of  theorem  (3.1) , by using 
2(H ) ,

4(H ) and 

5(H )   we obtain 

      
1

t
1 1

t
1

r(t )z (t )r(t)z (t)
q(s) Mh(s) s

f (x( (t))) f (x( (t )))
( )  

1

t

t

z (t) 1
q(s) Mh(s) s

f (x( (t))) r(t)
( )   

 

  Implies that, 

1

t

t

z (t) 1
q(s) Mh(s) s

f (x( (t))) r(t)
( )                (3.8) 

Since  x  is non-increasing and (t) (t) , we have 

 z(t) x(t) p(t)x( (t)) (1 p(t))x( (t))  

                                            (1 p(t))x( (t))  

 For 
1t [t , )T

. Using 
12(H ) , we have 

 f (z(t)) f (1 p(t))f (x( (t)))                           (3.9) 

For 
1t [t , )T

. From equations (3.8) and (3.9) 

 
1

t

t

z (t)f (1 p(t)) 1
q(s) Mh(s) s

f (z(t)) r(t)
( )  

  Implies that  

      
1

t

t

z (t) 1
q(s) Mh(s) s.

f (z(t)) f (1 p(t))r(t)
( )  

Integrating the last inequality from  
1t   to    t,   

  we obtain 

1 1 1

t t s

t t t

z (t) 1
t q( ) Mh( ) s

f (z(t)) f (1 p(s))r(s)
( )

  implies that 

 

1 1 1

z(t ) t s

z(t ) t t

1 1
u q( ) Mh( ) s

f (u) f (1 p(s))r(s)
( )

or 

 
1

1

z(t ) z(t )

z(t ) z(t )

du 1
u

f (u) f (u)
 

          
1 1

t s

t t

1
(q( ) Mh( )) s

f (1 p(s))r(s)
    

Using 
14(H ) , we have 

 
1z(t )

z( t )t

du
sup

f (u
lim

)
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  which contradicts to the condition 
11(H ) . This 

completes the proof of the theorem. 

Example3.6. In theorem 3.5, some of the 

assumptions cannot be dropped. For this, suppose  

¡T   and the differential equation 

  2 2 1
t (2t 1) x(t) x(t 1/ 2)

2t 1
( ( ) )  

1/3 1/3 1/3 1/3t 2 t 1
2t x (t 2) 4 x (t 1) 0

t 1 t
( ) ( ) ,   

                                                                           (3.10)                                                                                              

0 0t [t , ) , t 3T
. For the equation (3.10) , all the 

assumptions of Theorem3.5 are hold, except 
14(H ) . 

The equation (3.10)  has a solution
t 1

x(t) M .
t

 

Theorem3.7.  Assume that 
2(H ) ,

4(H ) ,
5(H )   

8(H ) and  
13(H )  hold. If 

     
15(H )   (t) (t)           and 

     
16(H )   q(t) Mh(t)  for large

0t [t , )T
 hold. 

Then for equation (1.1),  we  have  M .  

Proof.  Proceeding as in the proof of Theorem 3.5, 

we have 

(r(t)z (t)) q(t)f (x( (t))) h(t)g(x( (t)))  

 From 
2(H ) ,

4(H ) ,
5(H ) ,

15(H ) and  
16(H ) , we 

obtain  

g(x( (t)))
(r(t)z (t)) f (x( (t))) q(t) h(t)

f (x( (t)))
  ( )  

                      f (x( (t))) q(t) Mh(t)( )  

                      < 0     for   
1t [t , )T

  

Then r(t)z (t)  is decreasing. For 
1t t  , we have 

1 1r(t)z (t) r(t )z (t ) 0  

Or   

1 1

1
z (t) r(t )z (t )

r(t)
 

Integrating from  
1t   to  t  and  using (vi),  we get 

              
1

t

1 1 1
t

1
z(t) z(t ) (r(t )z (t )) s.

r(s)
 

           This implies that,  z(t)  as t .   

which contradicts to our assumption that  z(t) 0  

for all   
0t [t , )T

 .  This complete the proof of  the  

theorem. 

 Example3.8.  2 2t (t 1) x(t) x(t 1)( ( ) )  

3 3 3 34t(t 1) x (t 1) 2 t 1/ 2 x (t 1/ 2) 0( ) , (3.11) 

 
0t [t , )T

, 
0t 1.  

      For the equation (3.11), all assumptions of 

Theorem3.7 are hold, except 
8(H ) . The equation 

(3.11) has a solution 
1

x(t) M
t

,  so M .   

Theorem3.9. Assume that 
2(H ) ,

4(H ) ,
5(H )   

8(H ) , 
9(H ) ,

15(H ) and  
16(H )  hold. Then for 

equation (1.1), we have  M    

Proof.  Suppose that equation (1.1) has a solution  

x M . Proceeding as in the proof of  Theorem 3.5 , 

and  defining  z(t) as in (3.1). we have, 

z(t) x(t) p(t)x( (t)) x( (t)) p(t)x( (t))  

                                         (1 p(t))x( (t)) 0   

and 

 
g(x( (t)))

(r(t)z (t)) f (x( (t))) q(t) h(t)
f (x( (t)))

  ( )  

                       f (x( (t))) q(t) Mh(t) 0( )  

 For 
1t [t , )T

, due to 
2(H ) ,

4(H ) ,
5(H ) , 

15(H ) and  
16(H ) . It follows that, r(t)z (t)   is 

decreasing for  
1t [t , )T

. Now proceeding as in 

the proof of Theorem 3.3. In view of 
8(H ) ,  we find 

r(t)z (t) 0   for 
1t [t , )T

. Then We define,       

 
r(t)z (t)

w(t)
f (z( (t)))

 for  
1t [t , )T

  

(r(t)z (t)) 1
w (t) (r( (t))z ( (t)))

f (z( (t))) f (z( (t)))
( )

 

     =
(r(t)z (t))

f (z( (t)))
  -                   

(f (z( (t))))
(r( (t))z ( (t)))

f (z( (t)))f (z( (t)))
( )  

 Which implies that,  

 

(r(t)z (t))
w (t)

f (z( (t)))
(r( (t))z ( (t)))

1

0
{ f (z( (t)) h (t)(z( (t))) )dh}(z( (t)))

f (z( (t)))f (z( (t)))
( )  

  Implies that,  

    
(r(t)z (t))

w (t)
f (z( (t)))

 

  
f (x( (t)))

(q(t) Mh(t))
f (z( (t)))

 

for  
1t [t , )T

.  Clearly  z(t) x(t) , the last  

inequality will becomes 

w (t) (q(t) Mh(t))                       (3.12) 

for  
1t [t , )T

.   Integrating the inequality (3.12), 

we get 

  
1

t

1
t

w(t) w(t ) (q(s) Mh(s)) s  

which implies w(t) as t , due 

to  
9(H )  , which is a contradiction. This completes 

the proof of the theorem. 
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Next we establish sufficient conditions 

under which equation (1.1) has no weakly oscillatory 

solutions. 

Theorem3.10. Assume that p(t) p( 1) , 

2(H ) ,
4(H )  and 

7(H )   hold. If  

 
17(H )    (t) t  and (t) (t)  

Then for equation (1.1), we have  WOS .   

 Proof.  Let  x be a weakly oscillatory solution of 

(1.1). Without loss of generality, we may assume 

that x(t) 0   for large  
0t [t , )T

 (the proof is 

similar if x(t) < 0 for large  
0t [t , )T

). Then there 

exists 
1t [t , )T

   such that x(t), x( (t)) , x( (t))   

all are positive for all 
1t [t , )T

.  Define z(t)   as 

in  (3.1), then  we see that
  

 z(t) 0  for 
1t [t , )T

 

and  z (t)  oscillates for large t. Proceeding as in the 

proof of Theorem3.9, we have 

  (r(t)z (t)) f (x( (t))) q(t) Mh(t)( )   (3.13) 

 For 
0t [t , )T

, due to 
2(H ) ,

4(H ) , and 
7(H )  

By  taking  F(t) r(t)z (t) ,  then  equation 

(3.13 )reduces to 

 F (t) f (x( (t))) q(t) Mh(t) 0( )   

  for  
1t [t , )T

  . This implies that F is non-

increasing, which gives a contradiction, because F is 

an oscillatory function. This completes the proof of 

the theorem. 

Example 3.11 In Theorem 3.10 the assumption can 

not be dropped. For this, suppose  0q ,
¥

T where 

q>1 is a fixed real number and consider the 

following q-difference equation 

 
q qt (x(t) 2x(t))( )  

     
q

t
q q

log t

3

log log t2 3

(26 ( 1) )
((1 x)x )(t / q)

(q 1) t(2 ( 1) ) (3 ( 1) )
  

q

q

log t

3

log t2 3

13(2 ( 1) )
x (t / q) 0

(q 1) t(2 ( 1) )
,              (3.14) 

 t T  . For this q-difference equation, all 

assumptions of Theorem (3.10) hold, but 
7(H ) is 

violated. The equation (3.14) has a solution 
qlog t

2 ( 1) WOS.  

Theorem3.12. Assume that p(t) p( 0) , 

2(H ) ,
4(H ) ,

5(H )  ,
7(H )  

8(H ) and 
9(H )   hold. if  

(t) (t), then every solution of equation (1.1) is 

either oscillatory or weakly oscillatory. 

Proof. From Theorem 3.1, it follows that for 

equation (1.1) the class M .  In order to complete 

the proof of it suffices to show that M .  

Suppose that equation (1.1) has a solution  x M . 

Without loss of generality, we may assume that  

x(t) 0  and  x (t) 0  for large  
0t [t , )T

 (the 

proof is similar if x(t) < 0 and  x (t) 0  for large  

0t [t , )T
 ). Then there exists 

1t [t , )T
   such 

that x(t) , x( (t)) , x( (t))  all are positive and 

x (t) , x ( (t)) , x ( (t))  all are non-positive for 

all 
1t [t , )T

. Defining z(t) as in (3.1). Then we 

see z(t)>0 and  z (t) 0   for all 
1t [t , )T

. Then 

from equation (3.1),  (1.1) reduces to   

(r(t)z (t)) (t) q(t)f (x( (t))) h(t)g(x( (t))) 0  

 

for 
1t [t , )T

.  Now for 
2 1 2 1t t t (t [t , ) )T

,  

we have  

r(t)z (t) (r(t)z (t))

f (x( (t))) f (x( (t)))
( )  

                           
1

(r( (t))z ( (t)))
f (x( (t)))

( )  

    

g(x( (t))) 1
q(t) h(t) (r( (t))z ( (t)))

f (x( (t))
 

) f (x( (t)))
( )

 
1

q(t) Mh(t) (r( (t))z ( (t)))
f (x( (t))

 
)

( )  

 
1

(r( (t))z ( (t)))
f (x( (t

 
) )

 
)

( )              

Integrating the last inequality from 
2t   to   t,  we 

obtain 

 2 2

2

r(t )z (t )r(t)z (t)

f (x( (t))) f (x( ( ))
 

t )
 

                   
2

t

t

1
(r( (s))z ( (s))) s

f (x( (s)))
( )  

                 
2

t

2 2
t

1
(r( (t ))z ( (t ))) s

f (x( (s)))
( )  

This implies that, 

  
r(t)z (t)

f (x( (t)))
    

    2 2

2

1 1
(r( (t ))z ( (t )))

f (x( (t))) f (x( (t )))
( )                      

2 2

2

f (x( (t)))
(r(t)z (t)) (r( (t ))z ( (t ))) 1

f (x( (t )))
( )  

for large 
2t [t , )T

   since, x is non increasing, 

then we can find  k( 0) R   such that 

2 2

2

f (x( (t)))
(r( (t ))z ( (t ))) 1 k

f (x( (t )))
( )    

                       for all     
2t [t , )T

. 

Therefore, 

                          r(t)z (t) k.     

                      Or      
1

z (t) k
r(t)
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Thus, for large 
2t [t , )T

,    we have 

                      
2

t

2
t

1
z(t) z(t ) k s

r(s)
 

               which implies that z(t)  as  t    

a contradiction to  z(t) 0 . This completes the 

proof of the theorem. 

Example3.13. Let T = hZ, where h is a ratio of odd 

positive integers and consider the following 

h-difference equation 
t

h h3e (x(t) 2x(t h))( )  

 
h h 2h 6h

t 3

2 t 2h t

5(2e 1)(1 e )(1 e )e
e x (x 1)(t 2h)

h (1 ( 1) e )
- 

h h 2h 6h t
3

2

2(2e 1)(1 e )(1 e )e e
x (t 2h) 0

h
 (3.15) 

  for t 3h.  It is easy to see that equation (3.15) 

satisfies all the conditions of Theorem3.12. Hence, 

every solution of equation(3.15) oscillatory or 

weakly oscillatory. In particular, t tx(t) ( 1) e  is a 

solution of equation (3.15).   

Remark 3.14. We can also find the existence / 

non-existence solutions of a class  M , M , OS and 

WOS by reducing the equation (1.1), it into the 

equation of the form (1.2) with the help of the 

following assumptions,      

 
19(H )  g is bounded;      

    
20(H )  

0t s

1
h( ) s .

r(s)
 

The following theorem shows that under which 

conditions the solutions of a class  M  is empty of 

equation (1.1)         

 Theorem 3.15.  Assume that 
1(H ) ,

2(H ) , 
5(H ) ,       

19(H )  and 
20(H )  hold. If 

   
21(H )  

0

t

tt

li sup q(sm ) s . Then for equation 

(1.1), we have  M .  

Proof.  Suppose that the equation (1.1) has a 

solution x M . Without loss of generality we may 

assume that x(t) 0  and x (t) 0 for large (the 

proof is similar if x(t) 0  and x (t) 0  for large 

0t [t , )T
. Then there exists 

1 0t [t , )T
 such that 

x(t) , x( (t)) , x( (t)) , x( (t))  all are positive 

and x (t) , 

x ( (t)) , x ( (t)) , x ( (t))  all are non negative 

for all 
1t [t , )T

.  Define z(t) as in (3.1), we obtain 

  (r(t)z (t)) q(t)f (x( (t))) h(t)g(x( (t))) 0.  

                                                                           (3.16) 

 Define,  

  
t s

1
k(t) h( )g(x( ( ))) s.

r(s)
      (3.17) 

 Then in view of  
1(H ) , we have   z(t) 0  and 

z (t) 0   for all 
1t [t , )T

. Notice that from 

conditions  
19(H )  and 

20(H )   imply that k(t) exists 

for all  
0t [t , ) .T

 Define  

y(t) z(t) k(t) x(t) p(t)x( (t)) k(t)    (3.18) 

Then y (t) z (t) k (t) 0 , because  k (t) 0.  

The equation (3.16) becomes 

   (r(t)y (t)) q(t)f (x( (t))) 0  

               or 

 (r(t)y (t)) q(t)f (x( (t)))                       (3.19) 

    for 
1t [t , )T

. Now for 
1t [t , )T

 

   
r(t)y (t) (r(t)y (t))

f (x( (t))) f (x( (t)))
( )  + 

                               
1

(r( (t))y ( (t)))
f (x( (t)))

( )  

                         
(r(t)y (t))

f (x( (t)))
 

 
(f (x( (t))))

(r( (t))y ( (t)))
f (x( (t)))f (x( (t)))

( )  

Implies that, 

r(t)y (t) (r(t)y (t))
(r( (t))y ( (t)))

f (x( (t))) f (x( (t)))
( )  

    

1

0
{ f (x( (t)) h (t)(x( (t))) )dh}(x( (t)))

f (x( (t)))f (x( (t)))
( )  

  Or 

 
r(t)y (t) (r(t)y (t))

(r( (t))y ( (t)))
f (x( (t))) f (x( (t)))

( )  

   
1

0
{ f (x( (t)) h (t)(x( (t))) )dh}(x ( (t))) (t)

f (x( (t)))f (x( (t)))
( )

  therefore, 

          
r(t)y (t) (r(t)y (t))

f (x( (t))) f (x( (t)))
( )                (3.20) 

      for all 
1t [t , )T

, because  f (u) 0  for  

u 0 and y (t) 0 , x ( (t)) 0 ,  for all 

1t [t , )T
. From (3.19) and (3.20), we have 

                     
r(t)y (t)

q(t)
f (x( (t)))

( )  

    for all 
1t [t , )T

.  Integrating the last inequality 

from  
1t    to    t,  we obtain 

  
1

t
1 1

t
1

r(t )y (t )r(t)y (t)
q(s) s

f (x( (t))) f (x( (t )))
 

 From  
21(H ) , we obtain 

     
t

r(t)y (t)
inf ,

f (x( (t)))
lim  
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  which contradicts the assumption y (t) 0  for 

large t. Thus, the theorem is proved. 

Example 3.16. In Theorem 3.15, some of the 

assumptions cannot be dropped. For this, suppose 

  T = R and consider the differential equation 
23

2 2 2 3

t (t 3)2 t 1 1
x(t) x(t 1)

3 2t 1 (t 1) (t 2)
( ( )( ) ) ( )  

3x (t 2)
2

2 2 2

2t(t 2t 2) x
(t 1) 0

(t 1)(t 1) x 1
( ) ,  (3.21)                        

     
0t [t , )T

, 
0t 3 . For the equation (3.21) , 

all the assumptions of Theorem hold, except 
21(H ) . 

The equation (3.21) has a solution x(t) t M .  

Remark3.17.  We can also obtained the sufficient 

conditions for the remaining classes by taking the 

assumptions  
19(H )  and 

20(H ) . 

 

 4. Behavior of Solutions in M  and  M : 

 

Theorem4.1. Assume that  
1(H ) ,

2(H ) , 
5(H ) ,   

10(H )  and  
12(H ) - 

14(H )  hold. Then every solution 

of equation  in the class x M ,  we have              

t
lim x(t) 0.  

Proof. Proceeding as in the proof of Theorem 3.5, 

we have 

    

  
1

1

z(t ) z( t )

z( t ) z( t )

du 1
u

f (u) f (u)
 

                 
1 1

t s

t t

1
(q( ) Mh( )) s

f (1 p(s))r(s)
 

   Using  
14(H )  , we obtain 

                 
1z(t )

z( t )t

du
sup .

f (u)
lim   

      This implies that  
t
lim z(t) 0.  

 So 
t
lim x(t) 0, because z(t) x(t)  and x is 

monotonic. This completes the proof of the theorem. 

Theorem4.2. Assume that  
1(H ) ,

2(H ) , 
7(H )  and 

p(t) is bounded hold. If  

22(H )
0 0

t s

t tt

1
sup (q(s) Mh(s)) s

r( )
lim  

   Then every solution of (1.1) in the class  M  is 

unbounded. 

 Proof. Let x be a solution of (1.1) such that x M . 

 Proceeding as in the proof of Theorem3.1, by 

defining z(t) as in equation (3.1), we see that  

z(t) 0  and z (t) 0  for all 
1t [t , )T

 due to (i). 

Then from equation (1.1), we obtain  equation (3.2).  

For the function 

   
1

t

t

r(t)z (t) 1
w(t) s,

f (x( (t))) r(s)
 

we have, 

  
1

t

t

1 1
w (t) (r(t)z (t)) s

f (x( (t))) r(s)
( )  

                 
1

t

t

1 1
(r( (t))z ( (t))) s

f (x( (t))) r(s)
( )  

                       

1

t

t

1
(q(t) Mh(t)) s

r(s)

1

t

t

1 1
(r( (t))z ( (t)) s

f (x( (t))) r(s)
( ( ) )

1

( t )

t

1 1
(r( (t))z ( (t)) s

r(s) f (x( (t)))
( ( ) )

Implies that 

    
1

t

t

1
w (t) (q(t) Mh(t)) s

r(s)
  

  
1

(r(t)z (t))
r(t)f (x( (t)))

 ( )  

 

1

( t )

t

1 1
(r( (t))z ( (t)) s

r(s) f (x( (t)))
 ( ( ) )

1

t

t

z (t)1
(q(t) Mh(t)) s

r(s) f (x( (t)))
 

             
1

( t )

t

1 1
(r( (t))z ( (t))) s

r(s) f (x( (t)))
( )( )  

     
1

t

t

z (t)1
(q(t) Mh(t)) s

r(s) f (x( (t)))
 

   Integrating the last inequality from 
1t    to   t ,   

 we obtain 

 
1 1

t s

t t

1
w(t) (q(s) Mh(s)) s

r( )
 

                   
1

t

t

z (s)
s

f (x( (s)))
                            (4.22) 

         As the function 
z (t)

f (x( (t)))
 is positive for   

1t [t , )T
  then 

  
1

t

tt

z (s)
lim s

f (x( (s)))
  exists. 

 Assume that 
1

t

tt

z (s)
lim s k .

f (x( (s)))
Taking 

into account   
22(H )   and from (4.22) we get 

            
t

supm tli w( )  

 Which gives a contradiction, because  w  is negative 

for all 
1t [t , )T

.   Thus 

          
1

t

tt

z (s)
lim s .

f (x( (s)))
                           (4.23) 

  Consequently, 
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1 1

t t

t tt
1

z (s) 1
lim s z (s) s

f (x( (s))) f (x( (t )))
 

                                    1

1

1
(z(t) z(t )).

f (x( (t )))
 

      From (4.23), we get  

                          
t
lim z(t) .                                (4.24)                    

 Since z(t) x(t) p(t)x( (t))    and  x  is non 

negative, we have 

                 z(t) (1 p(t))x(t).                      

From  (4.24), we have 

   
t
lim x(t) .  

This completes the proof of the theorem 

 

5. Conclusion 

 
The present paper has introduced the concept 

of positive and negative coefficients in neutral delay 

dynamic equations and relatively we studied the 

non-existence solutions of class M  and  M   for 

the ranges p(t) 0  and   1 p(t) 0 , and the non-

existence solutions of a class WOS is studied for 

p(t) p( 1) ,  by taking some restriction in delays. 

The existence solutions of a class OS and WOS has 

been studied by the way, so that the class  M  and 

M   is empty. In section 4, we have been studied 

the asymptotic behavior of  M  and  M . It would 

be interesting to study the existence / non-existence 

of a class M ,  M , OS and WOS for different 

ranges of p(t).  In addition, extending such results to 

higher order equation would also be of interest. 
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