Semi Regular Weakly Open Sets in Topological Spaces

R. S. Wali^{#1}, Basayya B Mathad^{*2}

[#]Associate professor, Department of Mathematics, Bhandari and Rathi College, Guledgudda, Karnataka, India Research scholar, Department of Mathematics, Rani Channamma University, Belagavi, Karnataka, India

Abstract — This paper considers a new class of sets called semi-regular weakly open (briefly srw-open) sets are introduced and studied in topological spaces. i.e. A subset G of topological space X is said be semi-regular weakly to open set, if $F \subseteq \sin t(A)$, whenever $F \subseteq A$ and F is rwclosed set in X. The new class strictly lies between semi-open sets, OTW-open sets and gs-open sets in topological spaces. Also, as applications, using some properties of srw-open sets and srw-closed sets we investigate srw-interior and srw-closure operators and their properties respectively.

Keywords— *srw-closed sets, srw-open sets, srw-neighbourhoods, srw-interior, srw-closure.*

I. INTRODUCTION

Levine and Stone[6, 13] introduced generalized open sets, regular open sets in topological spaces respectively, then regular weakly open sets, generalized semi closed sets, generalized α -closed sets and α -generalized closed sets semi open sets, α regular w-closed sets, pgrw-closed sets and semi-regular weakly closed sets have been introduced and studied by Benchalli S. S. and Wali R. S.[2], Arya S.P. and Nour T.M.[1], Maki et al. [7], Levin [7], Wali R. S. and Mendalgeri [17], Wali R. S. and Chilakwad [18] and Wali R. S. and Mathad [16] respectively.

We introduce and study the semi-regular weakly open (briefly srw-open) sets, semi-regular weakly neighbourhood (briefly srw-nhd) and operators; srwinterior and srw-closure in topological space and obtain some of their properties.

II. PRELIMINARIES

Throughout this paper X and Y represent the topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of topological space X, cl(A) and int(A) denote the closure of A and interior of A respectively. Let X\A denotes the complement of A in X. Now, we recall the following definitions.

Definition 2.1 A subset A of a topological space X is called

- i) Regular open [14], if A = int(cl(A)) and regular closed if cl(int(A)) = A.
- ii) Pre-open [10], if $A \subseteq int(cl(A))$ and preclosed if $cl(int(A)) \subseteq A$.
- iii) Semi open [7], if $A \subseteq cl(int(A))$ and semiclosed if $int(cl(A)) \subseteq A$
- iv) α -open [11], if $A \subseteq int(cl(int(A)))$ and α closed if $int(int(cl(A))) \subseteq A$
- v) Semi pre open [11], if $A \subseteq cl(int(cl(A)))$ and semi pre closed if $int(cl(int(A))) \subseteq A$.
- vi) π -open [19], if A is a finite union of regular open sets.

Definition 2.2 A subset A of a topological space X is called

- i) Generalized closed (briefly g-closed) [7], if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- ii) Semi-generalized closed (briefly sg-closed) [3],
 if scl(A) ⊆ U whenever A ⊆ U and U is semi open in X.
- iii) Generalized semi-closed (briefly gs-closed) [1], if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- iv) Generalized α -closed (briefly $g \alpha$ -closed) [4], if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in X.
- v) α -generalized closed (briefly α g-closed) [9], if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- vi) Generalized semi pre-closed (briefly gsp-closed) [5], if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- vii) Regular generalized closed (briefly rg-closed) [12], if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- viii) Weakly closed (briefly w-closed) [13], if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in X.

- ix) Regular weakly closed (briefly rw-closed) [2], if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi-open in X.
- x) α -regular weakly closed (briefly α rw-closed) [17], if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is rw-open set in X.

The complements of above all closed sets are their respective open sets in the same topological space X.

The semi-pre-closure (resp. semi-closure, resp. pre-closure, resp. α -closure) of a subset A of X is the intersection of all semi-pre- closed (resp. semi- closed, resp. pre- closed, resp. α -closed) sets containing A and is denoted by spcl(A)(resp. scl(A), resp. pcl(A), resp. cl(A)).

Definition 2.3 A subset A of a space X is said to be semi regular weakly closed (briefly srw-closed) set [16], if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is rw-open set in X.

We denote the family of all srw-closed sets, srw-open sets, α rw-open sets and semi-open sets of X by SRWC(X), SRWO(X), α RWO(X) and SO(X) respectively.

Lemma 2.4 i) For a subset A of X, αrw -closure of A [17] is denoted by $\alpha rw - cl(A)$ and defined as

 $\alpha rw - cl(A) = \bigcap F \subset X : A \subset F \in \alpha RWC(X) .$ *ii*) For a subset A of X, semi-closure of A [6] is denoted by scl(A) and defined as $scl(A) = \bigcap F \subset X : A \subset F \in SC(X) .$

iii) For a subset A of X, gs-closure of A [1] is

denoted by gs - cl(A) and defined as $gs - cl(A) = \bigcirc F \subset X : A \subset F \in GSC(X)$.

III. SEMI REGULAR WEAKLY OPEN (BRIEFLY SRW-OPEN) SETS

In this section, we introduce and study srwopen sets in topological space and obtain some of their basic properties.

Definition 3.1 A subset A of X is called Semi Regular Weakly open (briefly srw-open) set, if $X \setminus A$ is srw-closed set in X. The family of all semi regular weakly open sets in X is denoted as SRWO(X).

Theorem 3.2 If a subset A of space X is αrw -open, then it is srw-open in X but not conversely.

Proof: Let A be a CPW-open set in a space X. Then X\A is a CPW-closed set. By Theorem 3.2 of [16], X\A is srw-closed. Therefore A is a srw-open set in X.

The converse of the above Theorem need not be true as shown in example 3.3.

Example 3.3 Let X= {a, b, c, d} with topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then

{a, d} and {b, c, d} are srw-open sets in X but it is not αrw -open sets in X.

Theorem 3.4 If a subset A of space X is semi-open, then it is semi-open in X but converse is not true.

Proof: Let A be a semi-open set in a space X. Then $X \setminus A$ is a semi-closed set. By Theorem 3.6 of [16], $X \setminus A$ is srw-closed. Therefore A is a srw-open set in X.

The converse of the above Theorem need not be true as shown in example 3.5.

Example 3.5 Let X= {a, b, c, d} with topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then {b} and {c} are srw-open sets in X but not semi-open sets in X.

Corollary 3.6 From Levine [7], it is evident that every open set is semi-open set but not conversely. By Theorem 3.4 every semi-open set is srw-open set in X but not conversely and hence every open set is srw-open set in X.

Corollary 3.7 From Wali and Prabhavati[17], it is evident that every α -open set is αrw -open set is srw-open set but not conversely and hence every α - open set is srw-open set but not conversely.

Corollary 3.8 From Stone [14], it is evident that every regular open set is open, but not conversely. By corollary 3.7, every open set is srw-open set but conversely and hence every regular open set is srw-open set in X.

Corollary 3.9 From Velicko [15], it is evident that every θ -open (δ -open) set is open but not conversely. By Corollary 3.7, every open set is srwopen set but not conversely and hence every θ -open

(δ -open) set is srw-open set in X.

Theorem 3.10 If a subset A of a space X is srw-open, then it is a gs-open set in X.

Proof: Let A be a srw-open set in X, then X\A is a srw-closed set in X. By Theorem 3.4 of [16], every srw-closed set is gs-closed set in X i.e. X\A is a gs-closed set in X. Therefore A is a gs-open set in X.

The converse of the above Theorem need not be true as shown in example 3.11.

Example 3.11 Let X= {a, b, c, d} with topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then {a, c} and {a, b} are gs-open sets in X but not srwopen sets in X.

Theorem 3.12 If a subset A of a space X is srw-open, then it is a gs-open set in X, but not conversely.

Proof: Let A be a srw-open set in X, then X\A is a srw-closed set in X. By Theorem 3.10 of [16], every srw-closed set is gsp-closed set in X i.e. X\A is a gsp-closed set in X. Therefore A is a gsp-open set in X.

The converse of the above Theorem need not be true as shown in example 3.13.

Example 3.13 Let X= {a, b, c, d} with topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then {a, b} and {c, d} are gsp-open sets in X but not srwopen sets in X.

The concepts of g-open, w-open, α g-open and w α -open sets are independent with the concept of srw-open set as shown in the following example 3.14.

Example 3.14 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then $\{a, d\}$ is a srw-open, however it can be verified that it is not g-open, w-open, g-open and w -open set. Also, the set $\{a, b\}$ and $\{a, c\}$ are g-open, w-open, α g-open and w α -open set but not srw-open set in X.

Thus the above discussion leads to the following implication diagram:

Remark 3.15 Union and intersection of two srwopen sets need not be srw-open set as shown in the following example 3.16.

Example 3.16 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then $SRWO(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, d\}, \{b, c\}, \{b, c\}, \{a, d\}, \{a, d\}, \{b, c\}, \{a, d\}, \{a, d\}, \{b, c\}, \{a, d\}, \{a, d$

 $\{a,b,c\},\{b,c,d\}\}.$

Let A= {b}, B= {a, d} and C= {b, c, d}. Here A and B are srw-open sets but $A \cup B = \{a, b, d\}$ is not srw-open. Also B and C are srw-open sets but $B \cap C = \{d\}$ is not srw-open set in X.

Theorem 3.17 If $A \subseteq X$ is srw-closed, then $scl(A)\setminus A$ is srw-open set in X.

Proof: Let $A \subseteq X$ is srw-closed and let F be a rwclosed set such that $F \subseteq scl(A) \setminus A$. Then by Theorem 3.19 of [16], $F = \phi$ that implies $F \subseteq \sin t(scl(A) \setminus A)$ and Theorem 3.17 $scl(A) \setminus A$ is srw-open set in X.

Theorem 3.18 A subset A of a topological space X is srw-open if and only if $F \subseteq \sin t(A)$ whenever F is rw-closed and $F \subseteq A$.

Proof: Let $F \subseteq A$ is srw-closed and let F be a rwclosed set and $F \subseteq A$. Then $X \setminus A \subseteq X \setminus F$ where $X \setminus F$ is rw-open. Since $X \setminus A$ is srwclosed, $scl(X \setminus A) \subseteq X \setminus F$ and hence $X \setminus \sin t(A) \subseteq X \setminus F$ that implies $F \subseteq \sin t(A)$. Conversely, suppose $F \subseteq \sin t(A)$ whenever $F \subseteq A$, F is rw-closed. To prove: A is srw-open. Suppose, $X \setminus U \subseteq A$ where U is rwopen. Then $X \setminus U \subseteq A$ where $X \setminus U$ is rw-closed. By assumption $X \setminus U \subseteq \sin t(A)$ that implies $scl(X \setminus A) \subseteq U$. This proves that $X \setminus A$ is srw-closed and hence A is srw-open set in X. **Theorem 3.19** Every singleton point set in a space X

is either srw-open or rw-open in X. **Proof:** Let $x \in X$ where X is a topological space. To prove: $\{x\}$ is either srw-open or rw-open set in X i.e. to prove that $X \setminus \{x\}$ is either srw-closed or rwopen, which follows from Theorem 3.25 of [16].

The next Theorem shows that all the sets between sint(A) and A are srw-open whenever A is srw-open. **Theorem 3.20** If $sin t(A) \subseteq B \subseteq A$ and A is a srw-open set in X, then B is srw-open set in X.

Proof: Let $\sin t(A) \subseteq B \subseteq A$ and A is a srw-open set. Then $X \setminus A \subseteq X \setminus B \subseteq X \setminus \sin t(A)$ that implies $X \setminus A \subseteq X \setminus B \subseteq \sin t(X \setminus A)$, since $X \setminus A$ is srw-closed set, by Theorem 3.23 of [16], $X \setminus B$ is srw-closed set. Therefore B is srw-open in X.

Theorem 3.21 If $A \subseteq X$ is srw-closed, then $scl(A) \setminus A$ is srw-open set in X.

Proof: Let $A \subseteq X$ is srw-closed set and F be a rwclosed set such that $F \subseteq \sin t(A) \setminus A$. By Theorem 3.19 of [16], $F = \phi$, so $F \subseteq \sin t(scl(A) \setminus A)$ By Theorem 3.18 $scl(A) \setminus A$ is srw-open set in X.

The converse of above Theorem does not hold shown by example 3.22.

Example 3.22 Let X= {a, b, c, d} with topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then A={c, d} then scl(A)={b, c, d} and scl(A) \ A = {b} is an srw-open set, but A is not an srw-closed set in X.

Theorem 3.23 If a subset A is srw-open in X and if G is rw-open in X with $\sin t(A) \cup (X \setminus A) \subseteq G$ then G=X.

Proof: Suppose that G is an rw-open set and $\sin t(A) \cup (X \setminus A) \subseteq G$. Now $(X \setminus A) \subseteq X \setminus scl(A) \cap X \setminus (X \setminus A)$ implies that $(X \setminus G) \subseteq scl(X \setminus A) \cap A$. Suppose A is srw-open. Since $X \setminus G$ is rw-closed and $X \setminus A$ is srw-closed, then by Theorem 3.19 of [16], $X \setminus G = \phi$ and hence G=X.

The converse of the above Theorem need not be true in general as shown in example 3.24.

Example 3.24 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then $SRWO(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, d\}, \{b, c\}, \{b, c\}, \{a, d\}, \{a, d\}, \{b, c\}, \{a, d\}, \{a, d\}, \{a, d\}, \{b, c\}, \{a, d\}, \{a, d\}, \{a, d\}, \{a, d\}, \{a, d\}, \{b, c\}, \{a, d\}, \{b, c\}, \{a, d\}, \{a, d$

 $\{a,b,c\},\{b,c,d\}\}.$

and

 $RWO(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{b, c\}, \{b, c\},$

 $\{c,d\},\{b,d\},\{a,c\},\{a,b,c\}\}.$

Let $A = \{a, b, d\} \{a, b, d\}$ is not an srw-open set in X. However

 $\sin t(A) \cup (X \setminus A) = \{a, d\} \cup \{c\} = \{a, c, d\}$ So for some rw-open set G, such that $\sin t(A) \cup (X \setminus A) = \{a, c, d\} \subset G \text{ gives } G=X$ but A is not srw-open set in X.

Theorem 3.25: Let X be a topological space and A, B \subseteq X. If B is srw-open and sin $t(B) \subseteq A$, then $A \cap B$ is srw-open in X.

Proof: Since B is srw-open and $\sin t(B) \subseteq A$, then $\sin t(B) \subseteq A \cap B \subseteq B$, then by Theorem 3.20 of [16], $A \cap B$ is srw-open set in X.

IV. SEMI REGULAR WEAKLY NEIGHBOURHOODS (BRIEFLY SRW-NHD)

Definition 4.1 Let (X, τ) be a topological space and let $x \in X$. A subset N is said to be srw-nbd of x, if and only if there exists a srw-open set G such that $x \in G \subset N$.

Definition 4.2 i) A subset N of X is a srw-nhd of $A \subseteq X$ in topological space (X, τ) , if there exists an srw-open set G such that $A \subset G \subset N$.

ii) The collection of all srw-nhd of $x \in X$ is called srw-nhd system at $x \in X$ and shall be denoted by srw-N(x).

Theorem 4.3 Every neighborhood N of $x \in X$ is a srw-nbd of x.

Proof: Let N be neighbourhood of point $x \in X$. To prove that N is a srw-nbd of x. By definition of neighbourhood, there exists an open set G such that $x \in G \subset N$. Hence N is srw-nhd of x.

Remark 4.4 In general, a srw-nbd N of x in X, as shown from example 4.5.

Example 4.5 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then $SRWO(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, d\}, \{b, c\}, \{a, d\}, \{a, d\}, \{b, c\}, \{a, d\}, \{a, d\}$

$$\{a,b,c\},\{b,c,d\}\}$$

the set {a, b, d} is srw-nhd of the point b, since the srw-open set {b} is such that $b \in \{b\} \subset \{a, b, d\}$. However, the set {a, b, d} is not a neighbourhood of the point b, since no open set G exists such that $b \in G \subset \{a, b, d\}$. **Theorem 4.6** If a subset N of a space X is srw-open, and then N is a srw-nhd of each of its points.

Proof: Suppose N is srw-open. Let $x \in N$ we claim that N is a srw-nhd of x. For N is a srw-open set such that $b \in N \subset N$. Since x is an arbitrary point of N, it follows that N is a srw-nhd of each of its points.

The converse of the above theorem is not true in general as seen from the following example 4.7.

Example 4.7 Let X= {a, b, c, d} with topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then $SRWO(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}.$

. The set {a, c} is srw-nhd of the point a, since the srw-open set {a} is such that $a \in \{a\} \subset \{a, c\}$. Also the set {a, c} is a srw-nhd of the point c, since the srw-open set {c} is such that $c \in \{c\} \subset \{a, c\}$ i.e. {a, c} is a srw-nhd of each of its points. However the set {a, c} is not a srw-open set in X.

Theorem 4.8 Let X be a topological space. If F is a srw-closed subset of X and $x \in (X \setminus A)$, then there exists a srw-nhd N of x such that $N \cap F = \phi$.

Proof: Let F be srw-closed subset of X and $x \in (X \setminus F)$. Then $(X \setminus F)$ is an srw-open set of X. By Theorem 4.6, $(X \setminus F)$ contains a srw-nhd of each of its points. Hence there exists a srw-nhd N of x such that $N \cap F = \phi$.

Theorem 4.9 Let X is a topological space and for each $x \in X$, let srw-N(x) be the collection of all srw-nhds of x. Then we have the following results.

i)
$$\forall x \in X, srw - N(x) \neq \phi$$
.

ii)
$$X \in srw - N(x) \Longrightarrow x \in N$$
.

iii) $N \in srw - N(x)$ and

$$N \subset M \Longrightarrow M \in srw - N(x)$$
.

iv) $N \in srw - N(x) \Longrightarrow \exists M \in srw - N(y)$ for every $y \in M$.

Proof: i) Since X is an srw-open set, it is a srw-nhd of every $x \in X$. Hence there exists at least one srw-nhd(X) for each $x \in X$. Hence $srw - N(x) \neq \phi$ for every $x \in X$.

ii) If $N \in srw - N(x)$, then N is a srw-nhd of x. So, by definition of srw-nhd $x \in X$.

iii) Let $N \in srw - N(x)$ and $N \subset M$, then there is a srw-open set G such that $x \in G \subset N$.Since $N \subset M$, $x \in G \subset M$ and so M is a srw-nhd of x. Hence $M \in srw - N(x)$.

iv) If $N \in srw - N(x)$, then there exists an srwopen set M is an srw-open set, it is a srw-nhd of each of its points. Therefore $M \in srw - N(y)$ for $y \in M$.

V. SEMI-REGULAR WEAKLY INTERIOR OPERATOR

In this section, the notion of srw-interior is defined and some of its basic properties are studied.

Definition 5.1 Let A be a subset of X. A point $x \in A$ is said to be srw-interior point of A, if A is a srw-nhd of x. The set of all srw-interior of A and is denoted by srw-int(A).

Definition 5.2 For a subset A of X, srw-interior of A is defined as srw-int(A) to be the union of all srwopen sets contained in A. In symbolically, $srw-int(A) = \bigcup \{G \subset X : G \subseteq A \text{ and } G \text{ is srw-open in } X\}.$

Theorem 5.3 If A is a subset of X, then $srw-int(A) = \bigcup \{G \subset X : G \subseteq A \text{ and } G \text{ is srwopen in } X\}$

Proof: Let A be a subset of X. Let $x \in srw - int(A) \Leftrightarrow x$ is a srw-interior point of A \Leftrightarrow A is a srw-nhd of point $x \Leftrightarrow$ there exists an srw-open set G such that $x \in G \subset A$ $\Leftrightarrow x \in \cup \{G \subset X : G \text{ is srw-open, } G \subset A\}$. Hence $srw - int(A) = \cup \{G \subset X : G \subseteq A \text{ and}\}$

G is srw-open in X}.

Theorem 5.4 Let A and B are subsets of X. Then

i) srw-int(X)=X and srw-int(ϕ)= ϕ .

ii) srw-int (A) \subset A.

iii) If B is any srw-open set contained in A, then B \subset srw-int (A).

iv) If A \subset B, then srw-int (A) \subset srw-int (B).

v) srw-int (srw-int (A)) = srw-int (A).

Proof: i) Since X is only srw-open set contained in X. i.e. by definition 5.2, srw-int (A) = $\bigcup \{G \subset X : G \text{ is srw-open, } G \subset A\}$ = $X \cup \{\text{all srw-open sets}\}=X$. Hence srw-int(X)=X. Since ϕ is only srw-open set contained in ϕ . Hence srw-int (ϕ) = ϕ .

ii) Let $x \in srw - int(A) \Rightarrow x$ is an srw-interior of $A \Rightarrow A$ is an srw-nhd of $x \Rightarrow x \in A$. Hence $x \in srw - int(A) \Rightarrow x \in A$. Hence $srw - int(A) \subset A$.

iii) Let B be any srw-open set such that $B \subset A$. Let $x \in B$ then since B is srw-open set contained in A. x is srw-interior point of A i.e. $x \in srw-int(A)$. Hence $B \subset srw-int(A)$.

iv) Let A and B subsets of X such that $A \subset B$ let $x \in srw - int(A)$ Then x is srw-interior point of A and so A is srw-nhd of x. Since $A \subset B$, B is also

srw-nhd of $x \Longrightarrow x \in srw-int(B)$. Thus we have shown

that $x \in srw - int(A) \implies x \in srw - int(B)$. Hence $x \in srw - int(A) \subset x \in srw - int(B)$.

v) Let A be any subset of X. By the definition of srw-interior

srw - int(A) = { $G : G \subset A \& G \in SRWO(X)$ }, if $G \subset A$ then applying srw-interior on both sides, $srw - int(G) \subset srw - int(A) \implies$

 $G \subset srw-int(A)$. Since G is srw-open set contained in srw-int(A), by iii. $G \subset srw-int(srw-int(A))$.

Hence $\cup \{G : G \subset A \& G \in SRWO(X)\}$

 $\subset srw-int(srw-int(A)) \implies srw-int(A)$ $\subset srw-int(srw-int(A))$

i.e. srw-int(srw-int(A)) = srw-int(A).

Theorem 5.7 If a subset A of X is srw-open, then srw-int(A)=A.

Proof: Let A be srw-open subset of X. We know that srw-int (A) \subset A. Also, A is srw-open set contained in A. From theorem 5.6(iii), A \subset srw-int (A) Hence srw-int (A) = A.

The converse of Theorem 5.7 need not be true as seen in the following example 5.8.

Example 5.8 Let X= {a, b, c, d}with topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$ Let *SRWO*(X) = { $X, \phi, \{a\}, \{b\}, \{c\}, \{a, d\}, \{b, c\},$

 $\{a,b,c\},\{b,c,d\}\}.$

Let $A = \{a, b\}$ then srw-int(A)=A but A is not a srwopen set in X.

Theorem 5.9 If A and B are subsets of X, then

i) $srw - int(A) \cup srw - int(B) \subset srw - int(A \cup B)$.

 $T_W = \operatorname{III}(A \cup D)$.

ii) $srw-int(A \cap B) \subset srw-int(A) \cap srw-int(B)$.

Proof: i) We know that $A \subset (A \cup B)$ and $B \subset (A \cup B)$. We have by Theorem 5.6 (iv), $srw-int(A) \subset srw-int(A \cup B)$ and $srw-int(B) \subset srw-int(A \cup B)$. This implies that $srw-int(A) \cup srw-int(B) \subset srw-int(A \cup B)$

ii) We know that $(A \cap B) \subset A$ and $(A \cap B) \subset B$ We have by Theorem 5.6 (iv), $srw - int(A \cap B) \subset srw - int(A)$ and $srw - int(A \cap B) \subset srw - int(B)$.

I.e. $srw-int(A \cap B) \subset srw-int(A) \cap srw-int(B)$. *Theorem 5.10* If AA is subset of X, then i) $\alpha rw-int(A) \subset srw-int(A)$. ii) $\sin t(A) \subset srw - \operatorname{int}(A)$.

Proof: i) Let A is subset of X. Let $x \in \alpha rw - int(A) \Rightarrow x \in \bigcup \{G: G \text{ is } \alpha rw - open, G \subset A\} \Rightarrow$ there exist an αrw -open set G such that $x \in G \subset A \Rightarrow$ here exist a srw-open set G such that $x \in G \subset A$, as every αrw -open set is srw-open set in X. $\Rightarrow x \in \bigcup \{G \subset X: G \text{ is } srw-open, G \subset A\} \Rightarrow x \in srw-int(A)$. Thus $x \in \alpha rw - int(A) \Rightarrow x \in srw - int(A)$. Hence $\alpha rw - int(A) \subset srw-int(A)$.

Α ii) Let is subset of Х. Let $x \in srw-int(A) \implies x \in \bigcup \{G \subset X : G \text{ is srw-}\}$ open, $G \subset A$ implies that there exists a semi-open set G such that $x \in G \subset A \Rightarrow$ here there exists a srw-open set G such that $x \in G \subset A$, As every semi open set is srw-open set in X. $\Rightarrow x \in \bigcup \{G \subset X : G \text{ is srw-open, } G \subset A\}$ implies $x \in srw - int(A)$. that Thus $x \in \sin t(A) \implies x \in srw - \operatorname{int}(A)$. Hence $\sin t(A) \subset srw - \operatorname{int}(A)$.

Remark 5.11 If A is subset of X, then

i) $\alpha - \operatorname{int}(A) \subset \operatorname{srw} - \operatorname{int}(A)$.

ii) $\operatorname{int}(A) \subset \operatorname{srw}-\operatorname{int}(A)$.

iii) $r - \operatorname{int}(A) \subset srw - \operatorname{int}(A)$.

Theorem 5.12 If A is subset of X, then $srw-int(A) \subset gs-int(A)$.

Proof: Let A be a subset of X, let $x \in srw-int(A) \Rightarrow x \in \bigcup \{G \subset X : G \text{ is srwopen}, G \subset A\} \Rightarrow$ there exists srwopen set G such that $x \in G \subset A \Rightarrow$ there exists gs-open set G such that $x \in G \subset A$, as every srwopen set is gs-open set in X. $\Rightarrow x \in \bigcup \{G \subset X : G \subset A, G \text{ is gs-open set in } X\} \Rightarrow x \in gs-int(A)$. Thus $x \in srw-int(A) \Rightarrow x \in gs-int(A)$. Hence $srw-int(A) \subset gs-int(A)$.

Remark 5.13 Containment relations in the above theorem 5.10 may be proper as seen in the following example 5.12.

Example 5.14 Let X= {a, b, c, d} with topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let $SRWO(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Let A= {a, b} and B= {a, c}, then i) $\alpha rw - int(A) \subset srw - int(A) \implies$ $\{a\} \subset \{a, b\}$. But $\alpha rw - int(A) \neq srw - int(A)$. ii) $\sin t(A) \subset srw - \operatorname{int}(A) \implies \{a\} \subset \{a, c\}$. But $\sin t(A) \neq srw - \operatorname{int}(A)$.

Remark 5.15 If A is subset of X, then $srw-int(A) \subset gsp-int(A)$.

VI. SEMI-REGULAR WEAKLY CLOSURE OPERATOR

Now we introduce the concept of srw-closure in topological spaces by using the notations of srw-closed sets and obtain some of their properties. For any $A \subset X$, it is proved that the complement of srw-interior of srw-closure of the complement of A. **Definition 6.1** For a subset A of X, srw-closure of A is defined as srw-cl(A) to be the intersection of all srw-closed sets containing A. In symbolically, srw-

 $cl(A) = \bigcap \{F \subset X : A \subset F \& F \in SRWO(X)\}.$

Theorem 6.2 If A and B are subsets of a space X. Then

i) srw-cl(X)=X and srw-cl(ϕ)= ϕ .

ii)
$$A \subset srw - cl(A)$$
.

iii) If B is any srw-closed set containing A then $srw-cl(A) \subset B$.

iv) If $A \subset B$ then $srw - cl(A) \subset srw - cl(B)$.

v) srw - cl(A) = srw - cl(srw - cl(A)).

Proof: i) By definition 3.1, X is the only srw-closed set containing X. Therefore srw-cl(X) = \cap all srw-closed sets containing X= \cap {X}=X. That is srw-cl(X)=X. By the definition of srw-closure, srw-cl(ϕ) = Intersection of all srw-closed sets containing

```
\phi = \phi \cap \{ \text{any srw-closed set containing } \phi \} = \phi.

ii) By definition 6.1, it is obvious that A \subset srw - cl(A).
```

iii) Let B be any srw-closed set containing A. Since srw-cl(A) is the intersection of all srw-closed sets containing A, srw-cl(A) is contained in every srw-closed set containing A. Hence in particular srw-cl(A) \subset B.

iv) Let A and B be subsets of X such that $A \subset B$. By definition 6.1, If $B \subset F \in SRWC(X)$, then $srw - cl(B) \subset F$. Since $A \subset B$, $A \subset B \subset F \in SRWC(X)$. We have $srw - cl(A) \subset F$. Therefore $srw - cl(B) \subset \cap \{F : B \subset F \in SRWC(X) = sr w - cl(B).$ v) Let A be any subset of X. By definition 6.1, If

V) Let A be any subset of X. By definition 6.1, If $A \subset F \in SRWC(X)$, then $srw-cl(A) \subset F$. Since F is srw-closed set containing srw-cl(A), by (iii), $srw-cl(srw-cl(A)) \subset F$. Hence $srw-cl(srw-cl(A)) \subset$ $\cap \{F : A \subset F \in SRWC(X)\} = \text{srw-cl}(A). \text{ i.e.}$ srw - cl(srw - cl(A)) = srw - cl(A).

Remark 6.3 i) srw-closure of a set A is not always srw-closed set.

ii) If $A \subset X$ is srw-closed, then srw-cl(A)=A.

Proof: ii) Let A be srw-closed subset of X. We know that $A \subset srw - cl(A)$. Also $A \subset A$ and A is srw-closed. By the theorem 6.2 (iii), srw-cl(A) $\subset A$. Hence srw-cl(A)=A. However if srw-cl(A)=A then it is not true that A is srw-closed as seen from following example.

Example 6.4 Let X= {a, b, c, d} with topology $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let A= {b} then srw-cl(A)={b} but A is not a srw-closed set. **Theorem 6.5** If A and B are subsets of a space X, then

i)

$$srw-cl(A \cap B) \subset srw-cl(A) \cap srw-cl(B)$$

ii)

 $srw-cl(A) \cup srw-cl(B) \subset srw-cl(A \cup B)$. **Proof:** Let A and B be subsets of X.

i) Clearly $A \cap B \subset A$ and $A \cap B \subset B$. By Theorem 6.2 (iv), srw-cl($A \cap B$) \subset srw-cl(A) and srw-cl($A \cap B$) \subset srw-cl(B). Hence srw-cl($A \cap B$) \subset srw-cl(A) \cap srw-cl(B).

ii) Clearly $A \subset (A \cup B)$ and $B \subset (A \cap B)$. By Theorem 6.2 (iv), $srw - cl(A) \subset srw - cl(A \cup B)$ and

 $srw-cl(A) \subseteq srw-cl(A \cup B)$ and $srw-cl(B) \subseteq srw-cl(A \cup B)$. Hence

 $srw-cl(A) \cup srw-cl(B) \subset srw-cl(A \cup B)$

Theorem 6.6 If A is subset of a space X, then i) $srw-cl(A) \subset \alpha rw-cl(A)$. ii) $srw-cl(A) \subset scl(A)$.

Proof: Let A be subset of space X. i) From lemma 2.4 (i), If $A \subset F \in \alpha RWC(X)$, then $A \subset F \in SRWC(X)$, because every αrw -closed set is srw-closed. That is $srw - cl(A) \subset F$. Therefore srw-cl(A) $\subset F$. Therefore srw-cl(A). ii) From lemma 2.4 (ii), If $A \subset F$ and F is semiclosed subset of X then $A \subset F \in SRWC(X)$ because of every semiclosed set is srw-closed subset in X. that is srw-cl(A) $\subset F$. Therefore srw-cl(A) $\subseteq \cap \{F \subset X : A \subset F \& F \}$ is semi-closed set in X}=scl(A).

Remark 6.7 Containment relations in the above theorem 6.6 may be proper as seen in the following example 6.7.

Example 6.8 Let X= {a, b, c} with topological space $\tau = \{X, \phi, \{a\}, \{b\}, \{b, c\}, \{a, b, c\}\}.$ SRWC(X)= $\{X, \phi, \{a\}, \{d\}, \{b, c\}, \{a, d\}, \{b, c, d\}, \{a, c, d\}$ $\{a, b, d\}\}$. Let A= $\{a\}$ and B= $\{a, b\}$ then srw - cl(A) = {a}, $\alpha rw - cl(A) = \{a, d\}$, scl(B)=X, $scl(B)=\{a, b, d\}$. $srw-cl(\{a\}) \subset \alpha rw-cl(\{a\})$ i) \Rightarrow $\{a\} \subset \{a,d\}$. But $srw - cl(A) \neq \alpha rw - cl(A)$. ii) $srw-cl(\{a\}) \subset scl(\{a\}) \Rightarrow \{a\} \subset \{a,d\}$. But $srw - cl(A) \neq scl(A)$. Remark 6.9 If A is subset of a space X, then i) $srw - cl(A) \subset \alpha - cl(A)$. ii) $srw - cl(A) \subset cl(A)$. iii) $srw - cl(A) \subset r - cl(A)$. Theorem 6.10 If A is subset of a space X, then $gs - cl(A) \subset srw - cl(A)$. Proof: Let A be subset of space X. From lemma 2.4 (iii), If $A \subset F \in SRWC(X)$, then

 $A \subset F \in GSC(X)$, because of every srw-closed set is gs-closed set. That is

 $gs - cl(A) \subset F$. Therefore

 $gs-cl(A) \subset \cap$

 $\{F \subset X : A \subset F \in SRWC(X)\}$ =srw-cl(A).

Remark 6.11 If A is subset of a space X, then $gsp - cl(A) \subset srw - cl(A)$.

Theorem 6.12 Let $x \in X$, then x is srw-cl(A) if and only if $V \cap A \neq \phi$ for every srw-open set V containing x.

Proof: Let $x \in srw - cl(A)$. Suppose there exists a srw-open set V containing x such that $V \cap A = \phi$. Since $A \subseteq X \setminus V$ and by 6.2 (iv), $srw - cl(A) \subseteq X \setminus V$. This implies $x \in srw - cl(A)$ which is contradiction.

Conversely, we assume that $V \cap A = \phi$ for every srw-open set V containing x. Suppose $x \notin srw - cl(A)$, then by definition 6.2 (i), there exists a srw-closed subset F containing A such that $x \notin X$. Therefore $x \in X \setminus F$ and $X \setminus F$ is an srw-open. Since $A \subseteq F$, $(X \setminus F) \cap A = \phi$ which is impossible as $x \in X \setminus F$ and $x \in A$. Hence $x \in srw - cl(A)$.

Theorem 6.13 Let A is a subset of X. Then (i) $X \setminus (srw-int(A)) = srw-cl(X \setminus A)$

(ii) $srw-int(A) = X \setminus (srw-cl(X \setminus A))$

(iii) $srw - cl(A) = X \setminus (srw - int(X \setminus A))$.

Proof: (i) Let $x \in X \setminus (srw - int(A))$. Then $x \notin srw - int(A)$, i.e. every srw-open set U

containing x is such that $U \not\subset A$. i.e. every srwopen set U containing x is such that $U \cap X \setminus A \neq \phi$. By Theorem 6.12, $x \in srw - cl(X \setminus A)$) . Therefore

 $X \setminus (srw-int(A)) \subset srw-cl(X \setminus A).$

Conversely, let $x \in srw - cl(X \setminus A)$). Then by Theorem 6.12, every srw-open set U containing x is such that $U \cap X \setminus A \neq \phi$. i.e. every srw-open set U containing x is such that $U \not\subset A$ implies that by definition of srw-int(A), $x \notin srw - int(A)$. i.e. $x \in X \setminus (srw - int(A))$ and

 $srw-cl(X \setminus A) \subset X \setminus (srw-int(A))$. Thus

 $X \setminus (srw-int(A)) = srw-cl(X \setminus A).$

(ii) By taking complements to above (i).

(iii) Follows by replacing A by $X \setminus A$ in (i).

VII. CONCLUSION

In this article we have studied most of the basic properties. With the help of these properties we will investigate srw-continuous and irresolute functions in topological spaces and fuzzy topological spaces.

REFERENCES

- [1] S. P. Arya, and T. M. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math.,21(1990), 717–719.
- [2] S. S. Benchalli and R. S. Wali, On RW-closed sets in topological spaces, Bull.Malaysian.Math.Sci.Soc. (2) 30(2)(2007), 99-110.
- [3] P. Bhattacharyya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math.29(1987), 376–382.
- [4] J. Cao, M. Ganster and I. Reilly, On sg-closed sets and gαclosed sets, mem. Fac. Sci. Kochi Uni. Sera, Math., 20(1999), 1-5.
- [5] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac Sci. Kochi. Univ. Ser. A. Math.16(1995,35–48.
- [6] S. GeneCrossley and S. K. Hildebrand., Semi-Closure, The Texas Journal of Science, Texas Tech University, Lubbock-79409, 99-112.
- [7] N. Levine, Generalized Closed Sets in Topology, Rend. Cir. Mat. Palermo,2(1970),89-96.
- [8] H. Maki, R. Devi and K. Balachandran, 1994. Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51–63.
- [9] H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed.part-III 42(1993),13–21.
- [10] A. S. Mashhour, M. E. Abd. El-Monsef and S. N. El-Deeb, On pre continuous mappings and weak pre-continuous mappings, Proc Math, Phys. Soc. Egypt, 53(1982), 47-53.
- [11] O. Njastad, On some classes of nearly open sets, Pacific J. Math.,15(1965), 961-970.
- [12] N. Palaniappan and Rao, K.C.,Regular generalized closed sets, Kyungpook Math. J. 33(1993), 211–219.
- [13] A. Pushpalatha, Studies on Generalizations of Mappings in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 2000.
- [14] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math.Soc.,41(1937), 374-481.
- [15] N. V. Velicko, H-closed Topological Spaces, Tran. Amer. Math. Soc., 78(1968), 103-118.

- [16] R. S. Wali and Basayya B. Mathad, Semi Regular Weakly closed sets in Topological Space, International Journal of Mathematical Archive-7(6)(2016),91-97.
- [17] R. S. Wali and Vijayakumari T Chilakwad, On Pre Generalized Regular Weakly Closed sets in Topological Space, International Journal of Mathematical Archive-6(1)(2015), 76-85.
- [18] R. S. Wali and Prabhavati S. Mendalgeri, On *Cl* Regular wclosed sets in topological spaces, Int. J. ofMathemaics Archive-5(10)(2014), 68-76.
- [19] V. Zaitsav, V., 1968.On certain classes of topological spaces and their bicompactifications.Dokl.Akad.Nauk SSSR 178: 778-779.