Inclusion Attributes with Applications for Certain Subclasses of Analytic Subroutines
 ${ }^{1}$ Vinod Kumar, ${ }^{2}$ Prachi Srivastava
 ${ }^{1}$ Asst Prof Department of Mathematics KCMT Bareilly,
 ${ }^{2}$ Asst. Prof Department of Mathematics and statistical Sciences Shri Ramswaroop Memorial University Lucknow,

1. Introduction

Let A be the class of functions f analytical in the open unit disc $\mathrm{E}=\{\mathrm{z}:|\mathrm{z}|<1\}$ and are normalized with the condition $\mathrm{f}(0)=0, \mathrm{f}^{\prime}(0)=1$. Also let S.S * (γ). $\mathrm{C}(\gamma)$ announce the subclasses of A comprising of function that are severally monovalent star like of order γ and convex of order $\gamma, 0 \leq \gamma<1$. In E.

Let f and g be analytic in E then f is said to be subordinate to g, written as $f \propto g$ and $f(z) \propto g(z), z \in E$. If there exists a Schwarz function w analytic in E with $\mathrm{w}(0)=0$ and $\mathrm{w}(\mathrm{z})<1$ fot $\mathrm{z} \in \mathrm{E}$ such that

$$
f(z)=g(w(z))
$$

If g is univalent in E then $f \propto g$ if only if $f(0)=$ $g(0)$ and $f(E) \subset g(E)$.

For $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, g(z)=z+$ $\sum_{n=2}^{\infty} b_{n} z^{n}$ the convolution (Hadamard product) of t and g is defined by $(f * g)(z)=z+$ $\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z) . z \in E$.

Let h be analytic, convex and univalent in E with $h(0)=1 . \mathfrak{R h}(\mathrm{z})>0$. We denote the class of all analytic functions p with $p(0)=1$ as $p(h)$ if $p \propto h$ in E. Let For $\mathrm{f}, \phi \in \mathrm{A},(\mathrm{f} * \mathrm{~g})(\mathrm{z}) \neq 0$ and let $\mathrm{f}(\mathrm{z}) *$ $\phi(z)=f_{1}(z)$. Also we define $F(z)=(1-\lambda) f_{1}(z)+$ $\lambda \mathrm{zf}_{1}{ }^{\prime}(\mathrm{z}): 0 \leq \lambda \leq 1$.

We now define the following.
Definition 1. Let $\mathrm{f}, \phi \in \mathrm{A}$ and let F be Defined by (1). Then $\mathrm{f} \in \mathrm{S}(\mathrm{h}, \phi, \lambda)$ if and only if

$$
\frac{z F^{\prime}(z)}{F(z)} \propto h(z)
$$

Where h is analytic convex and univalent in E with $h(0)=1$.

In this Case, we say $\mathrm{F} \in \mathrm{S}(\mathrm{h})$.
The corresponding class $\mathrm{C}(\mathrm{h}, \phi, \lambda)$ is defined as follows.

Let $\mathrm{f} \epsilon \mathrm{A}$. Then
$\mathrm{f} \in \mathrm{C}(\mathrm{h}, \phi, \lambda)$ if and only if $\mathrm{zf}^{\prime} \in \mathrm{S}$
(h, ϕ, λ).
In other words.
$\mathrm{f} \in \mathrm{C}(\mathrm{h}, \phi, \lambda)$ if and only if $\frac{z F^{\prime}(z)}{F(z)} \propto h(z), \mathrm{z} \in \mathrm{E}$.

Definition 2. Let $\mathrm{f}, \phi \in \mathrm{A}$ and let F be defined by (1). Then $\mathrm{f} \epsilon \mathrm{K}(\mathrm{h}, \phi, \lambda)$ if there exists $\mathrm{g} \in \mathrm{S}(\mathrm{h}, \phi, \lambda)$ with

$$
\mathrm{G}=(1-\lambda)(g * \phi)+\lambda(g * \phi)^{\prime}
$$

Such that $\frac{z F^{\prime}(z)}{G(z)} \propto h(z), z \in E$. Where $\lambda \epsilon(0,1)$ and h is analytic convex univalent in $\mathrm{E} . \mathrm{h}(0)=1$.

Definition 3. Let $f, \phi \in A(f * g)(z) \neq 0$ and let h be analytic and convex univalent in E with $\mathrm{h}(0)=$ 1. Then $f \in R(h, \phi, \lambda)$, for $\lambda \geq 0$. If and only if

$$
(f * g)^{\prime}+\lambda z(f * \phi)^{\prime \prime} \propto h, z \in E
$$

The corresponding class $T(h, \phi, \lambda)$ can be defined as follows. Let $f \in A$. Then $f \in T(h, \phi, \lambda)$ if and only if $z f^{\prime} \in R(h, \phi, \lambda)$.

Let S_{σ} be the class of prestarlike functions of order $\sigma \leq 1$. We recall that $f \in S_{\sigma}$ whenever $f \in A$ and f satisfies

$$
\mathfrak{R}\left\{f(z) * \frac{z}{(1-z)^{2-2 \sigma}}\right\}>\sigma . \text { if } \sigma<
$$

1.

while

$$
\mathfrak{R} \frac{f(z)}{z}>\frac{1}{2}, \text { if } \sigma=1 .
$$

special cases, we have:
(i). $\mathrm{S}_{0}=\mathrm{C}$
(ii). $\mathrm{S}_{1 / 2}=\mathrm{S}(1 / 2)$, the class of starlike functions of order $1 / 2$.
(iii). $\mathrm{S}_{1}=\bar{C} o C$, where $\bar{C} o C$ is the closed convex hull of C .

A prestart like functions of order σ is univalent.

2 Preliminaries

Lemma 1([25]). For $\sigma \leq 1$, let $f \in S_{\sigma}$, g be star like of order σ. H be analytic in E. Then

$$
\frac{f * g H}{f * g}(E) \subset \bar{C} o(H(E)) .
$$

Also, for $\sigma<1$

$$
S_{\sigma} * K(\sigma) \subset K(\sigma) .
$$

Where $\mathrm{K}(\sigma)$ is the class of close-to-convex functions of order σ.

Lemma 2([12]). Let be analytic univalent convex in E with $\mathrm{h}(0)=1$ and $\mathfrak{R}[\beta h(z)+\delta]>0 . \beta . \delta \in$ $C . z \in E$ If p is analytic in E with $\mathrm{p}(0)=\mathrm{h}(0)$, then

$$
\left\{\mathrm{p}(\mathrm{z})+\frac{\mathrm{zp}^{\prime}(\mathrm{z})}{\beta \mathrm{p}(\mathrm{z})+\delta}\right\} \propto \mathrm{h}(\mathrm{z})
$$

Implies

$$
\mathrm{P}(\mathrm{z}) \propto \mathrm{q}(\mathrm{z}) \propto \mathrm{h}(\mathrm{z}) .
$$

Where $\mathrm{q}(\mathrm{z})$ is the best dominant and is given as

$$
q(z)=\left[\left\{\left(\int_{0}^{1} \exp \int_{t}^{t z} \frac{h(u)-1}{u} d u\right) d t\right\} \quad-1-\frac{\delta}{\beta}\right] .
$$

Lemma 3([4]). Let β, γ be complex numbers. Let $\mathrm{h}(\mathrm{z})$ be convex univalent in E with $\mathrm{h}(0)==1$. And $\mathfrak{R}[\beta h(z)+\gamma]>0 . z \in E$ and $q \in A$ with $q(z) \propto$ $h(z), z \in E$.

If p is analytic in E with $\mathrm{p}(0)=1 . \mathfrak{R}(\mathrm{z})>$
0.then

$$
p(z)+\frac{z p^{\prime}(z)}{\beta q(z)+\gamma} \propto h(z) .
$$

Implies $\mathrm{p}(\mathrm{z}) \propto \mathrm{h}(\mathrm{z})$ in E .
Lemma 4. Let $\mathrm{p}(\mathrm{z})$ and $\mathrm{q}(\mathrm{z})$ be analytic in $\mathrm{E} p(0)=$ $\mathrm{q}(0)=1$ and $\Re \mathrm{q}(\mathrm{z})>\frac{1}{2}$ for $|\mathrm{z}|<\mathrm{p}(0<\mathrm{p} \leq 1)$. Then the image of $E_{p}=\{z:|z|<p\}$ under $p^{*} q$ is a subset of the closed convex hull of $p(E)$.

The above Lemma is a simple consequence of a result due to Nehari and Netanyahu |13|.

Lemma 5. Let $g(z)$ be analytic in E and $h(z)$ be analytic and convex univalent in E with $\mathrm{h}(0)=$ $\mathrm{g}(0)$. If
$\left\{\mathrm{g}(\mathrm{z})+\frac{1}{\delta} \mathrm{zg}^{\prime}(\mathrm{z})\right\} \propto \mathrm{h}(\mathrm{z}),(\mathfrak{R}(\delta) \geq 0, \delta \neq 0)$, (2)
then

$$
\mathrm{g}(\mathrm{z}) \propto \mathrm{h}(\mathrm{z})=\delta \mathrm{z}^{-\delta} \int_{0}^{z} t^{\delta-1} h(t) d t \propto h(z)
$$

And $\mathrm{h}(\mathrm{z})$ is the best dominant of (2).

3 Main Results

Theorem 1. C(h, $\phi, \lambda) \subset S(h, \phi, \lambda)$.
Proof. Let $\mathrm{f} \in \mathrm{C}(\mathrm{h}, \phi, \lambda)$. Set

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}=p(z) \tag{3}
\end{equation*}
$$

where F is defined by (1), and $\mathrm{p}(\mathrm{z})$ is analytic in E with $\mathrm{p}(0)=1$.

With simple computation, we get from (3)

$$
p(z)+\frac{z p^{\prime}(z)}{p(z)}=\frac{\left(z F^{\prime}(z)\right)^{\prime}}{F^{\prime}(z)} \propto h(z)
$$

And using Lemma 2, it follows that
$\mathrm{P}(\mathrm{z}) \propto \mathrm{h}(\mathrm{z}), \mathrm{z} \in \mathrm{E}$.
This implies that $\mathrm{f} \in \mathrm{S}(\mathrm{h}, \phi, \lambda)$ in E .
Theorem 2. Let class $S(h, \phi, \lambda)$ is invariant under convex convolution.

This result also hold for the classes

$$
\mathrm{C}(\mathrm{~h}, \phi, \lambda), \mathrm{K}(\mathrm{~h}, \phi, \lambda), \mathrm{R}(\mathrm{~h}, \phi, \lambda) \text { and } \mathrm{T}(\mathrm{~h}, \phi, \lambda) .
$$

Proof. Let $\psi \in \mathrm{C}$ and $\mathrm{f} \in \mathrm{S}(\mathrm{h}, \phi, \lambda)$. WE want to show that $\left(\psi^{*} \mathrm{f}\right) \in \mathrm{S}(\mathrm{h}, \phi, \lambda)$. Consider

$$
\begin{aligned}
& \frac{z\left[(1-\lambda)\{\phi *(\psi * f)\}^{\prime}+\lambda\left\{z(\phi *(\psi * f))^{\prime}\right\}^{\prime}\right]}{z\left[(1-\lambda)\{\phi *(\psi * \mathrm{f})\}+\lambda z\{(\phi *(\psi * \mathrm{f}))\}^{\prime}\right]} \\
& =\frac{\psi *\left[\left\{(1-\lambda) z(\phi * f)^{\prime}\right\}+\lambda\{z(z(\phi * f))\}\right]}{\psi *\{(1-\lambda)(\phi * f)+\lambda z(\phi * f)\}}
\end{aligned}
$$

For $\psi \in \mathrm{C},\left[(1-\lambda)\left(\phi^{*} \mathrm{f}\right)+\lambda \mathrm{z}\left(\phi^{*} \mathrm{f}\right)^{\prime}\right]=\mathrm{F} \in \mathrm{S}(\mathrm{h})$ and $\mathrm{S}(\mathrm{h}) \in \mathrm{S}, \mathrm{p}=\frac{z F^{\prime}}{F} \propto \mathrm{~h}$. we have

$$
\begin{align*}
& \frac{z\left[(1-\lambda)\{\phi *(\psi * f)\}^{\prime}+\lambda\left\{z(\phi *(\psi * f))^{\prime}\right\}^{\prime}\right]}{(1-\lambda)\{\phi *(\psi * \mathrm{f})\}+\lambda z\{(\phi *(\psi * \mathrm{f}))\}^{\prime}} \\
& =\frac{\psi * p\{(1-\lambda)(\phi * f)+\lambda z(\phi * f)\}}{\psi *\{(1-\lambda)(\phi * f)+\lambda z(\phi * f)\}} \tag{4}
\end{align*}
$$

WE now apply Lemma 1 with $\sigma=0$ to(4) and have

$$
\left(\psi^{*} \mathrm{f}\right) \subset \mathrm{S}(\mathrm{~h}, \phi, \lambda) \text { in } \mathrm{E} .
$$

The proof of this result for other classes follows on similar lines.

AS an application of Theorem 2. We have the following.

Remark 1. Since the classes
$S(h, \phi, \lambda), K(h, \phi, \lambda), R(h, \phi, \lambda)$ and $T(h, \phi, \lambda)$. are preserved under convolution with convex functions, it follows that these classes are invariant under the following integral operators.

$$
\begin{gathered}
f_{1}(z)=\int_{0}^{z} \frac{f(t)}{t} d t=[\log (1-z)] * f(z) \\
=\left(\psi_{1} * f\right)(z)
\end{gathered}
$$

$$
\begin{aligned}
& f_{2}(z)=\frac{2}{z} \int_{0}^{z} f(t) d t \\
&=\left[\frac{-2}{z}\{z+\log (1-z)\}\right] * f(z) \\
&=\left(\psi_{2} * f\right)(z)
\end{aligned}
$$

$$
f_{3}(z)=\frac{b_{1}+1}{z^{b_{1}}} \int_{0}^{z} t^{b_{1}-1} f(t) d t . \Re b_{1}>-1
$$

$$
=\left(\sum_{n=1}^{\infty} \frac{b_{1}+1}{b_{1}+n} z^{n}\right)^{f(z)}=\left(\psi_{3} * f\right)(z)
$$

It can easily be verified that $\psi_{1}, \psi_{2} \in C$ and we refer to [26,27] for ψ_{3} to be convex. We apply Theorem 2 to obtain the required result.

Theorem 3 For $\lambda \geq 0, S(h, \phi, \lambda) \subset S(h, \phi, 0)$
Proof. The case, When $\lambda=0$, is trivial, so we suppose $\lambda>0$. Let $\mathrm{f} \in \mathrm{S}(\mathrm{h}, \phi, \lambda)$ and let $\mathrm{f}_{1}=\mathrm{f} * \phi$. Define

$$
F(z)=(1-\lambda) f_{1}(z)+\lambda z f_{1}{ }^{\prime}(z)
$$

Then $\mathrm{F} \in \mathrm{S}(\mathrm{h})$, that is $\frac{\mathrm{zF}(\mathrm{z})}{\mathrm{F}(\mathrm{z})} \propto h(z)$ in E . We want to show that $\frac{z f_{1}^{\prime}(z)}{f_{1(z)}} \propto h(z)$ in E.

Let

$$
\frac{\mathrm{zf}_{1}^{\prime}(\mathrm{z})}{\mathrm{f}_{1(\mathrm{z})}}=\mathrm{p}(\mathrm{z})
$$

Then $\mathrm{p}(\mathrm{z})$ is analytic in E with $\mathrm{p}(0)=1$.
Now

$$
\begin{gathered}
\frac{\mathrm{zF}^{\prime}(\mathrm{z})}{\mathrm{F}(\mathrm{z})}=\frac{\mathrm{zf}_{1}(\mathrm{z})+\mathrm{z}^{2} \mathrm{f}^{\prime \prime}{ }_{1}(\mathrm{z})}{(1-\lambda) \mathrm{f}_{1}(\mathrm{z})+\lambda \mathrm{zf}^{\prime}{ }_{1}(\mathrm{z})} \\
=\frac{\mathrm{zf}^{\prime}{ }_{1}(\mathrm{z})+\lambda \mathrm{z}\left(\mathrm{zf}^{\prime}{ }_{1}(\mathrm{z})\right)^{\prime}-\lambda \mathrm{zf}^{\prime}{ }_{1}(\mathrm{z})}{(1-\lambda) \mathrm{f}_{1}(\mathrm{z})+\lambda \mathrm{zf}_{1}{ }_{1}(\mathrm{z})} \\
=\frac{(1-\lambda) \frac{\mathrm{zf}_{1}^{\prime}(\mathrm{z})}{\mathrm{f}_{1}(\mathrm{z})}+\lambda \mathrm{z} \frac{\left(\mathrm{zf}_{1}(\mathrm{z})\right)^{\prime}}{\mathrm{f}_{1}(\mathrm{z})}}{(1-\lambda)+\lambda \frac{\mathrm{zf}_{1}(\mathrm{z})}{\mathrm{f}_{1}(\mathrm{z})}} \\
=\frac{(1-\lambda) \mathrm{p}(\mathrm{z})+\lambda\left(\mathrm{p}^{2}(\mathrm{z})+\mathrm{zp}{ }^{\prime}(\mathrm{z})\right)}{(1-\lambda)+\lambda \mathrm{p}(\mathrm{z})} \\
=\left[p(z)+\frac{z p^{\prime}(\mathrm{z})}{p(z)+\left(\frac{1}{\lambda}-1\right)}\right] \propto h(z), z \in E
\end{gathered}
$$

We know use Lemma 2 to have $p(z) \propto h(z)$ in E.

Theorem 4. For $\lambda \geq 0, K(h, \phi, \lambda) \subset K(h, \phi, 0)$.
Proof. The case $\lambda=0$ is trivial. We assume $\lambda>0$, Let
$F(z)=(1-\lambda)\left(f^{*} \phi\right)+\lambda z\left(f^{*} \phi\right)^{\prime}$ and $G(z)=(1-$
$\lambda)\left(g^{*} \phi\right)+\lambda z\left(g^{*} \phi\right)$,
Let $\mathrm{f} \in \mathrm{K}(\mathrm{h}, \phi, \lambda)$. Then there exists $\mathrm{g} \in \mathrm{S}(\mathrm{h}, \phi, \lambda)$ such that

$$
\frac{\mathrm{zF}^{\prime}(\mathrm{z})}{\mathrm{G}(\mathrm{z})} \propto \mathrm{h}(\mathrm{z}), \mathrm{z} \in \mathrm{E}
$$

Where F and G are defined by (5) . Set

$$
\begin{align*}
& \frac{\mathrm{z}(\mathrm{f} * \phi)^{\prime}(\mathrm{z})}{(\mathrm{f} * \phi)(\mathrm{z})} \\
& =\mathrm{p}(\mathrm{z}) \tag{6}
\end{align*}
$$

We note that p is analytic in E with $\mathrm{p}(0)=1$.
Then, from (6) and with $\frac{\mathrm{z}(\mathrm{g} * \phi)^{\prime}}{(\mathrm{g} * \phi)}=\mathrm{p}_{0} \propto$ h, we have, after some simple computation.

$$
\frac{\mathrm{zF}^{\prime}(\mathrm{z})}{\mathrm{G}(\mathrm{z})}=\mathrm{p}(\mathrm{z})+\frac{\lambda \mathrm{zp}^{\prime}(\mathrm{z})}{(1-\lambda)+\lambda \mathrm{p}_{0}(\mathrm{z})} \propto \mathrm{h}(\mathrm{z}) \text { in } \mathrm{E}
$$

Using Lemma 3, we obtain the required result, that is

$$
\frac{\mathrm{z}(\mathrm{f}(\mathrm{z}) * \phi(\mathrm{z}))^{\prime}}{(\mathrm{f}(\mathrm{z}) * \phi(\mathrm{z}))}=\mathrm{p}(\mathrm{z}) \propto \mathrm{h}(\mathrm{z}), \mathrm{z} \in \mathrm{E}
$$

Theorem 5. $\mathrm{R}(\mathrm{h}, \phi, \lambda) \subset \mathrm{T}(\mathrm{h}, \phi, \lambda)$.
Proof. Let $\mathrm{f} \in \mathrm{R}(\mathrm{h}, \phi \lambda)$ and let $\{(1-$
$\left.\lambda) \frac{(f(z) * \phi(z))}{z}+\lambda(f(z) * \phi(z))^{\prime}\right\}=p(z)$,
Then $\left(\mathrm{f}(\mathrm{z})^{*} \phi(\mathrm{z})\right)^{\prime}+\lambda\left(\mathrm{f}(\mathrm{z})^{*} \phi(\mathrm{z})\right)^{\prime \prime}=\mathrm{p}(\mathrm{z})+\mathrm{zp}{ }^{\prime}(\mathrm{z})$.
Since $\mathrm{f} \in \mathrm{R}(\mathrm{h}, \phi, \lambda$,$) , We have \mathrm{p}+\mathrm{zp}{ }^{\prime} \propto \mathrm{h}$ and, applying Lemma 3, it follows that $p \propto h$ in E. This proves that

$$
f \in \mathrm{~T}(\mathrm{~h}, \phi, \lambda)
$$

And the inclusion relation is established.

Theorem 6. The class $\mathrm{R}(\mathrm{h}, \phi, \lambda)$ is a convex set.
Proof. Let $\mathrm{f}_{1}, \mathrm{f}_{2} \in \mathrm{R}(\mathrm{h}, \phi, \lambda)$ and let

$$
\begin{aligned}
& \mathrm{F}_{1}=(1-\lambda)\left(\mathrm{f}_{1} * \phi\right)^{\prime}+\lambda\left(\mathrm{z}\left(\mathrm{f}_{1} * \phi\right)^{\prime}\right)^{\prime} \\
& \mathrm{F}_{2}=(1-\lambda)\left(\mathrm{f}_{2} * \phi\right)^{\prime}+\lambda\left(\mathrm{z}\left(\mathrm{f}_{2} * \phi\right)^{\prime}\right)^{\prime}
\end{aligned}
$$

Let

$$
F(z)=\alpha\left[F_{1}(z)+(1-\alpha) F_{2}(z), 0 \leq \alpha \leq 1\right.
$$

Then
$F^{\prime}(z)+\lambda F^{\prime \prime}(z)=\alpha\left[F_{1}(z)+(1-\alpha) F_{2}\right]^{\prime}+\lambda z\left[\alpha F_{1}{ }^{\prime \prime}(z)+\right.$ $\left.(1-\alpha) F_{2}{ }^{\prime \prime}\right]=\alpha p_{1}(z)+(1-\alpha) p_{2}(z)=p(z)$.

Where $\mathrm{p}_{\mathrm{i}}(\mathrm{z})=\mathrm{F}_{\mathrm{i}}{ }^{\prime}(\mathrm{z})+\lambda \mathrm{zF} \mathrm{F}_{\mathrm{i}}{ }^{\prime}(\mathrm{z}), \mathrm{i}=1,2, \mathrm{p}_{\mathrm{i}} \propto \mathrm{h}$.
Since $\mathrm{P}(\mathrm{h})$ is a convex set, $\mathrm{P} \propto$ hand hence $\mathrm{F} \in$ $R(h, \phi, \lambda)$ in E.

Remark 2. Functions in $\mathrm{R}(\mathrm{h}, \phi, \lambda)$ can be obtained by taking convolution (Hadamard product) of the function

$$
\begin{equation*}
k(z)=\frac{1}{\lambda} z^{1-\frac{1}{\lambda}} \int_{0}^{z} \frac{t^{\frac{1}{\lambda}-1}}{1-t} d t, \lambda>0 \tag{7}
\end{equation*}
$$

With function

$$
\begin{equation*}
j(z)=\int_{0}^{z} p(t) d t, \quad p \propto h \tag{8}
\end{equation*}
$$

The following facts about the classes $\mathrm{R}(\mathrm{h}, \phi, \lambda)$ and $\mathrm{T}(\mathrm{h}, \phi, \lambda)$ can easily be established.
(i) $\mathrm{R}\left(h, \frac{\mathrm{z}}{1-\mathrm{z}}, 0\right)$ and $\mathrm{T}\left(h, \frac{\mathrm{z}}{1-\mathrm{z}}, 1\right)$ consist entirely of univalent functions.
(ii) $\mathrm{T}(\mathrm{h}, \phi, \lambda)$ is a convex set.
(iii) $\mathrm{T}\left(\mathrm{h}, \phi, \lambda_{1}\right) \subset \mathrm{T}\left(\mathrm{h}, \phi, \lambda_{2}\right), 0 \leq \lambda_{2} \leq \lambda_{1}$.
(iv) $\mathrm{T}(\mathrm{h}, \phi, \lambda) \subset \mathrm{T}(\mathrm{h}, \phi, 1), \lambda \geq 1$.
(v) $\mathrm{R}\left(\mathrm{h}, \phi, \lambda_{1}\right) \subset \mathrm{R}\left(\mathrm{h}, \phi, \lambda_{2}\right), 0 \leq \lambda_{2} \leq \lambda_{1}$.

We prove the result (v) as follows, For $\mathrm{A}_{2}=0$ we need the Lemma given below.

Lemma 6. Let $\lambda \geq 0$ and $D(z) \in S(h)$. Let $N(z)$ be analytic in E and $\mathrm{N}(0)=\mathrm{D}(0)=0, \mathrm{~N}^{\prime}(0)=$ $\mathrm{D}^{\prime}(0)=1$.

Let, for $\mathrm{z} \in \mathrm{E}, \mathrm{h}$ convex univalent, $\mathfrak{R h}(\mathrm{z})>0$.

$$
\left\{(1-\lambda) \frac{N(z)}{D(z)}+\lambda \frac{N^{\prime}(z)}{D^{\prime}(z)}\right\} \propto h(z),
$$

Then

$$
\frac{N(z)}{D(z)} \propto h(z) \text { for } z \in E
$$

Proof. The proof of this Lemma is quite straightforward when we put $\frac{N(z)}{D(z)}=$ $p(z)$, and obtain

$$
\begin{aligned}
(1-\lambda) \frac{N(z)}{D(z)}+ & \lambda \frac{N^{\prime}(z)}{D^{\prime}(z)} \\
& =\{p(z) \\
& \left.+\mathrm{p}_{0}(\mathrm{z})\left(\mathrm{zp}^{\prime}(\mathrm{z})\right)\right\} \propto \mathrm{h}(\mathrm{z})
\end{aligned}
$$

where $\Re p_{0}(z)=\Re \frac{D(z)}{D^{\prime \prime}(z)}>0$ in E. Now using Lemma 3 we have the required result that $\frac{N(z)}{D(z)} \propto \mathrm{h}(\mathrm{z})$ in E .

We now proceed to prove the inclusion result (v). We assume $\lambda_{2}>0$ and $f \in R\left(h, \phi, \lambda_{1}\right)$. Then

$$
\begin{gathered}
\left(1-\lambda_{2}\right)(f * \phi)^{\prime}+\lambda_{2}\left(z(f * \phi)^{\prime}\right)^{\prime} \\
=\frac{\lambda_{2}}{\lambda_{1}}\left\{\left(1-\lambda_{1}\right)(f * \phi)^{\prime}+\lambda_{1}\left(z(f * \phi)^{\prime}\right)\right\} \\
+\left(1-\frac{\lambda_{2}}{\lambda_{1}}\right)(f * \phi)^{\prime}
\end{gathered}
$$

$$
=\frac{\lambda_{2}}{\lambda_{1}} p_{1}(z)+\left(1-\frac{\lambda_{2}}{\lambda_{1}}\right) p_{2}(z)
$$

Since $\mathrm{f} \in \mathrm{R}\left(\mathrm{h}, \phi, \lambda_{1}\right), \mathrm{p}_{1} \propto \mathrm{~h}$ and from Lemma 6,
$p_{2} \propto \mathrm{~h}$. Now
$\frac{\lambda_{2}}{\lambda_{1}}<$
1 and $h(E)$ is convex, it follows that

$$
\left\{\left(1-\lambda_{2}\right)(f * \phi)^{\prime}+\lambda\left(z(f * \phi)^{\prime}\right)\right\} \propto \mathrm{h}
$$

Thus $f \in R\left(h, \phi, \lambda_{2}\right)$.
Theorem 7. Let $\mathrm{f} \in \mathrm{T}(\mathrm{h}, \phi, \lambda), 0<\lambda<1$. Then $\mathrm{f} \in$ $\mathrm{T}(\mathrm{h}, \phi, 1)$ and hence univalent for $|\mathrm{z}|<\mathrm{r}_{0}$. where r_{0} is the radius of the largest disc centered at the origin for which $\Re \mathrm{k}^{\prime}(\mathrm{z})>\frac{1}{2}, \mathrm{k}(\mathrm{z})$ is defined by (7)
and r_{0} is given by the smallest positive root of the equation.

$$
\begin{equation*}
\frac{\frac{2}{\lambda}-1-r}{1+r}-\frac{2}{\lambda}\left(\frac{1}{\lambda}-1\right) \int_{0}^{1} \frac{\xi^{\frac{1}{\lambda}-1}}{1+\xi r} d \xi=0 \tag{9}
\end{equation*}
$$

This result is sharp.
Proof. Since $\mathrm{f} \in \mathrm{T}(\mathrm{h}, \phi, \lambda)$, we may write , by using Remark 2.

$$
\begin{gathered}
f(z)=z F^{\prime}(z), \quad F \in \mathrm{R}(\mathrm{~h}, \phi, \lambda) \\
=z(k(z) * J(z))^{\prime} \\
=z p(z) * k(z)
\end{gathered}
$$

Where $\mathrm{p} \propto$ hand $\mathrm{k}(\mathrm{z})$ is given by (7).
Hence

$$
f^{\prime}(z)=\frac{z p(z) * z k^{\prime}(z)}{z}
$$

$$
=
$$

$$
\frac{z p(z) * z k^{\prime}(z)}{z * z k^{\prime}(z)}
$$

Let $z^{\prime}(z)=H(z)$
Then $H^{\prime}(z)=k^{\prime}(z)+z k^{\prime \prime}(z)$.
It is easy to see that $k^{\prime}(0)=1$. Therefore, for $\mathfrak{R} k^{\prime}(z)$ $>1 / 2$ for $|\mathrm{z}|<\mathrm{r}_{0}$, we have

$$
\mathfrak{R} \frac{H(z)}{z H^{\prime}(z)}>\frac{1}{2}
$$

$\operatorname{In}|\mathrm{z}|=\mathrm{r}_{0}$.
Hence H is a prestarlike function of order $\sigma=1$. Also, since $g(z)=z \in S_{1}$, we can apply Lemma 1 and it follows $f \in T(h, \phi, \lambda)$ for $|z|<r_{0}$.

The function $f_{0} \in T(h, \phi, \lambda)$, defined as

$$
\mathrm{f}_{0}(\mathrm{z})=\mathrm{zh}(\mathrm{z}) * \mathrm{k}(\mathrm{z})
$$

Shows that the above radius given by (9) is sharp. To find the radius r_{0}. We proceed as follows.

From (7), we have

$$
\begin{equation*}
k^{\prime}(z)=\frac{1}{\lambda(1-z)}-\frac{1}{\lambda}\left(\frac{1}{\lambda}-1\right) z^{-\frac{1}{\lambda}} \int_{0}^{z} \frac{t^{\frac{1}{\lambda}-1}}{1-t} d t \tag{11}
\end{equation*}
$$

Power in (11) are meant as principal values. The function $k^{\prime}(z)$ is analytic in $E, k^{\prime}(0)=1$ and

$$
\begin{aligned}
2 k^{\prime}(z)-1= & \frac{2-\lambda+\lambda_{z}}{\lambda(1-z)} \\
& \quad-\frac{2}{\lambda}\left(\frac{1}{\lambda}-1\right) z^{-\frac{1}{\lambda}} \int_{0}^{z} \frac{t^{\frac{1}{\lambda}-1}}{1-t} d t
\end{aligned}
$$

So

$$
\begin{aligned}
2 \Re k^{\prime}(z)-1 \geq & \frac{\frac{2}{\lambda}-1-r}{1+r} \\
& -\frac{2}{\lambda}\left(\frac{1}{\lambda}-1\right) \int_{0}^{1} \frac{\xi^{\frac{1}{\lambda}-1}}{1+\xi r} d \xi
\end{aligned}
$$

Therefore $\mathfrak{R} \mathrm{k}^{\prime}(\mathrm{z})>\frac{1}{2}$ for $|\mathrm{z}|<\mathrm{r}_{0}$, where r_{0} is the smallest positive root of (9).

For the function $f_{0}(z)=h(z) * k(z), f^{\prime}\left(r_{0}\right)=0$.
This shows that the above result is sharp and proof is complete.

Theorem 8 Let $\mathrm{f} \in \mathrm{R}(\mathrm{h}, \phi, 0)$. Then $\mathrm{f} \in \mathrm{R}(\mathrm{h}, \phi, \lambda)$ for $|z|<r_{\lambda}$, where

$$
r_{\lambda}=\left(1+\lambda^{2}\right)^{\frac{1}{2}}-\lambda
$$

Proof. Let $\mathrm{F}_{1}(\mathrm{z})=\left(\mathrm{f}^{*} \phi\right)(\mathrm{z})$. Then $\mathrm{F}_{1} \propto \mathrm{~h}$. Now
$\mathrm{F}^{\prime}{ }_{1}(\mathrm{z})+(\mathrm{z})+\lambda \mathrm{zF}{ }^{\prime}{ }_{1}(\mathrm{z})=\psi_{\lambda}(\mathrm{z})^{*} \mathrm{~F}^{\prime}{ }_{1}(\mathrm{z})$.

Where
$\psi_{\lambda}(\mathrm{z})=\frac{\mathrm{z}(1-(1-\lambda) \mathrm{z})}{(1-\mathrm{z})^{2}}=z+\sum_{n=2}^{\infty}(1+$ $(n-1) \lambda) z^{n}$.

It is known (11) that $\mathfrak{\Re} \frac{\psi_{\lambda}(z)}{z}>\frac{1}{2}$ in $|z|<r_{\lambda}$. Now, from (12) and Lemma 4,it follows that

$$
\left(\mathrm{F}_{1}^{\prime}+\lambda \mathrm{zF}_{1}^{\prime \prime}\right) \propto \mathrm{h} \text { in }|\mathrm{z}|<\mathrm{r}_{\lambda}
$$

This gives us $\mathrm{F}_{1} \in \mathrm{R}(\mathrm{h}, \phi, \lambda)$ in $|\mathrm{z}|<\mathrm{r}_{\lambda}$, and the proof is complete.

Using Lemma 6,the following result can be easily proved.

Theorem 9 Let

$$
\begin{gathered}
F=(1-\lambda)(f * \phi)+\lambda z(f * \phi)^{\prime}, f, \phi \in A, \lambda \\
\geq 0
\end{gathered}
$$

And

$$
\begin{gathered}
G=(1-\lambda)(g * \phi)+\lambda z(g * \phi)^{\prime} \\
g \in S(h, \lambda, \phi)
\end{gathered}
$$

Then

$$
\frac{\left(\mathrm{zF}^{\prime}(\mathrm{z})\right)^{\prime}}{\mathrm{G}^{\prime}(\mathrm{z})} \propto h(\mathrm{z}) \text { implies } \frac{\mathrm{zF}^{\prime}(\mathrm{z})}{\mathrm{G}(\mathrm{z})} \propto h(z) \text { in } E
$$

We prove the following.

Theorem10 Let $\mathrm{f} \in \mathrm{R}(\mathrm{h}, \phi, \lambda), \mathfrak{R h}>0$. Then $(f * \phi) \in C(h)$ for $|z|<(\sqrt{2}-1)$.

This result is sharp.
Proof. Since $f \in R(h, \phi, \lambda), h \in P$, we have

$$
(f * \phi)^{\prime}(\mathrm{z})=\mathrm{k}(\mathrm{z}) * \int_{0}^{\mathrm{z}} \mathrm{~h}(\mathrm{t}) \mathrm{dt}, \quad \mathrm{~h}(\mathrm{z}) \propto \frac{1+\mathrm{z}}{1-\mathrm{z}}
$$

And $k(z)$ given by (7) is convex function in E. If show that

$$
J(z)=\int_{0}^{z} h(t) d t
$$

.is convex for $|z|<(\sqrt{2}-1)$, then $\left(f^{*} \phi\right)=k^{*} J$ is also convex for $(\sqrt{2}-1)$ due to a well known result, see [27]. Now $J^{\prime}(z)=h(z)$, and

$$
1+\frac{z J^{\prime \prime}(z)}{J^{\prime}(z)}=1+\frac{z h^{\prime}(z)}{h(z)}, \quad h \propto \frac{1+z}{1-z}
$$

Then

$$
\begin{aligned}
\Re[1+ & \frac{z J^{\prime \prime}(z)}{J^{\prime}(z)} \geq 1-\frac{2 r}{1-r^{2}} \\
& =\frac{1-2 r-r^{2}}{1-r^{2}}
\end{aligned}
$$

Since $\left|\frac{z h^{\prime}(z)}{h(z)}\right| \leq \frac{2 r}{1-r^{2}}$, see (6). Thus J \in C for $|z|$ $<(\sqrt{2}-1)$ and consequently $\mathrm{f} \in \mathrm{C}(\phi)$ in $|\mathrm{z}|<$ $(\sqrt{2}-1)$. The sharpness follows from the function $\mathrm{f}_{1} \in \mathrm{R}(\mathrm{h}, \phi, \lambda)$ given as

$$
\left(f_{1} * \phi\right)(z)=k(z) * \int_{0}^{z} \frac{1+t}{1-t} d t
$$

4 Applications

We shall have different choice of analytic functions ϕ and h to illustrate the application of the main results.
I. Choices for $h(z)$

Let

$$
\begin{gathered}
h(z)=\frac{1+\mathrm{Az}}{1+\mathrm{Bz}}, \quad A \in C \text { and } B \in[-1,0], \\
A \neq B
\end{gathered}
$$

For $-1 \leq \mathrm{B}<\mathrm{A} \leq 1$. These functions are called Janowski functions (6). By taking $A=1-2 \alpha, B=-$ $1,0 \leq \alpha \leq 1$. We have

$$
h(z)=h_{\alpha}(z)=\frac{1+(1-2 \alpha) z}{1-z}
$$

This gives us $\mathfrak{R} \mathrm{h}_{\alpha}(z)>\alpha$ and with $\alpha=0$, we have
$h_{0}(z)=\frac{1+z}{1-z}, \mathfrak{R} h(z)>0 . \quad$ see [6].
(13)
II. For $\mathrm{K} \geq 0$, let $\mathrm{h}(\mathrm{z})=\mathrm{p}_{\mathrm{k}}(\mathrm{z})$, where

$$
\begin{array}{r}
p_{k}(z)=\frac{1+z}{1-z}, k=0 \\
p_{k}(z)=1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}, \quad k=1
\end{array}
$$

$p_{k}(z)$
$=1+\frac{2}{1-k^{2}} \sin h^{2}\left[\left(\frac{2}{\pi} \arccos k\right) \arctan \sqrt{(z)}\right]$, $0<k<1$,
$p_{k}(z)$
$=1$

$$
\begin{aligned}
& +\frac{1}{k^{2}-1} \sin \left(\frac{\pi}{2 R(t)} \int_{0}^{\frac{u(z)}{\sqrt{t}}} \frac{1}{\sqrt{1-x^{2}} \sqrt{(1-t x)^{2}}} d x\right) \\
& +\frac{1}{k^{2}-1}, \quad k>1
\end{aligned}
$$

Here $u(z)=\frac{z-\sqrt{t}}{1-\sqrt{t z}}, t \in(0,1), z \in E$ and z is chosen such that $\mathrm{k}=\cosh \left(\frac{\pi \mathrm{R}^{\prime}(\mathrm{t})}{4 \mathrm{R}(\mathrm{t})}\right), \mathrm{R}(\mathrm{t})$ is Legender's complete elliptic integral of the first kind and $\mathrm{R}^{\prime}(\mathrm{t})$ is the complementary integral of $R(t)$.

The function $\mathrm{p}_{\mathrm{k}}(\mathrm{z})$ play the role of extremal functions mapping E onto the conic domain Ω_{k} given below

0 \}

$$
\begin{equation*}
\Omega_{\mathrm{k}}=\left\{\mathrm{u}+\mathrm{iv}: \mathrm{u}>k \sqrt{(\mathrm{u}-1)^{2}+\mathrm{v}^{2}}, \mathrm{k}>\right. \tag{15}
\end{equation*}
$$

For fixed k, Ω_{k} represents the conic region bounded, successively,by the imaginary axis $(\mathrm{k}=0)$, the right branch of hyperbola $(0<\mathrm{k}<1)$, a parabola $(k=1)$ and $(k>1)$. It is noted that the
functions $\mathrm{p}_{\mathrm{k}}(z)$ are univalent in E and belong to the class Pof Caratheodry functions of positive real part. For detail,we refer to [9,10, 15, 17, 18, 19, 20, 21].

Now, by choosing $\mathrm{h}(\mathrm{z})=\mathrm{p}_{\mathrm{k}}(\mathrm{z})$ in
Theorem 3, we can easily prove the following.
Corollary 1. $\mathrm{S}\left(\mathrm{p}_{\mathrm{k}}, \phi, \lambda\right) \subset \mathrm{S}\left(\mathrm{q}_{\mathrm{k}}, \phi, 0\right)$, where

$$
\begin{equation*}
q_{k}(z)=\left[\int_{0}^{1} \exp \int_{t}^{t z} \frac{p_{k}(u)-1}{u} d u\right]^{-1} . \tag{16}
\end{equation*}
$$

Some of the special cases are given below.
(i) Let $\mathrm{k}=0$. Then $f \in S\left(\frac{1+z}{1-z}, \phi, \lambda\right)$ implies that $f \in S\left(\frac{1}{1-z}, \phi, 0\right)$. That is $\Re\left[\frac{[(f * \phi)}{f * \phi}\right]>\frac{1}{2}$, for $z \in$ E.
(ii) For $\mathrm{k}>1$ and $\mathrm{f} \in \mathrm{S}\left(\mathrm{p}_{\mathrm{k}}, \phi, \lambda\right)$, we obtain fom Theorem3 and [18] that $f \in S\left(\frac{z}{(z-k) \log \left(1-\frac{z}{k}\right)}, \phi, 0\right)$. That is

$$
\left[\frac{\mathrm{z}\{\mathrm{f}(\mathrm{z}) * \phi(\mathrm{z}))^{\prime}}{\mathrm{f}(\mathrm{z}) * \phi(\mathrm{z})}\right] \propto \frac{\mathrm{z}}{(\mathrm{z}-\mathrm{k}) \log \left(1-\frac{\mathrm{z}}{\mathrm{k}}\right.}, \mathrm{z} \in E
$$

Since, in this case $\mathrm{q}_{\mathrm{k}}(-1)=\frac{1}{(\mathrm{k}+1) \log \left(1+\frac{1}{\mathrm{k}}\right.}$, we have

$$
\mathfrak{R}\left[\frac{z(f(z) * \phi(z))^{\prime}}{f(z) * \phi(z)}\right]>\frac{1}{(k+1) \log \left(1+\frac{1}{k}\right)} .
$$

(iii) For the case $\mathrm{k}=2$. We note that

$$
S\left(p_{2}, \phi, \lambda\right) \subset S\left(q_{2}, \phi, \lambda\right)
$$

This gives us

$$
\begin{gathered}
\mathfrak{R}\left\{\frac{z(f(z) * \phi(z))^{\prime}}{f(z) * \phi(z)}\right\}>q_{2}(-1)=\frac{1}{3 \log \frac{3}{2}} \\
\approx 0.813 .
\end{gathered}
$$

(iv) Let $\mathrm{k}=1$, Then

$$
S\left(\left[1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}\right], \phi, \lambda\right) \subset S\left(q_{1}, \phi, 0\right)
$$

And

$$
\mathfrak{R} \frac{z(f(z) * \phi(z))^{\prime}}{f(z) * \phi(z)}>q_{2}(-1)=\frac{1}{2}
$$

Corollary 2. Let

$$
h(z)=h_{\alpha}(z)=\frac{1-(1-2 \alpha) z}{1-z}
$$

Then, from Theorem 1 and result given in [12.p 115], it follows that

$$
C\left(h_{\alpha}, \phi, \lambda\right) \subset S\left(q_{\alpha}, \phi, \lambda\right)
$$

Where

$$
\begin{gathered}
\mathrm{q}_{\alpha}(\mathrm{z})=\frac{(1-2 \alpha) \mathrm{z}}{(1-\mathrm{z})[1-(1-\mathrm{z})]^{1-2 \alpha}}, \quad \text { if } \alpha \neq \frac{1}{2} \\
\mathrm{q}_{\alpha}(\mathrm{z})=\frac{z}{(z-1) \log (1-z)}, \quad \text { if } \alpha=\frac{1}{2}
\end{gathered}
$$

Corollary 3. Let $f \in S\left(h_{\alpha}, \phi, \lambda\right.$ and $\mathrm{f}_{2}(z)=$ $\frac{2}{z} \int_{0}^{z} f(t) d t$.

Then it follows from Remark 2 and a result in [12.p116] that $\in S\left(H_{\pi}, \phi, \lambda\right)$, where

$$
\begin{aligned}
& \mathrm{H}_{\alpha}(\mathrm{z})=\frac{2 \alpha(2 \alpha-1) \mathrm{z}^{2}}{(1-\mathrm{z})\left[(1-\mathrm{z})^{1-2 \alpha}+(2 \alpha-1) \mathrm{z}-1\right]} \\
& -1, \quad \alpha \neq \frac{1}{2}, \alpha \neq 0 \\
& \mathrm{H}_{\alpha}(\mathrm{z})=\frac{z^{2}}{(z-1)[\log (1-z)+z]}-1, \alpha=\frac{1}{2} \\
& \mathrm{H}_{\alpha}(\mathrm{z})=\frac{z^{2}}{(1-z)[(1-z) \log (1-z)+z]}-1, \alpha \\
& \quad=0
\end{aligned}
$$

(2) Choice for $\phi(z)$

[2(a)] Consider the operator $\mathrm{D}^{\mathrm{n}}\left(n \in N_{0}=\right.$ $\{0,1,2, \ldots\}$) which is called the Salagcan derivative operator defined as

$$
D^{\mathrm{n}} \mathrm{f}(\mathrm{z})=D\left(D^{n-1} f(z)\right)=Z\left(D^{n-1} f(z)\right)
$$

With $D^{0} f(z)=f(z)$. see [28].
Also one-parameter Jung-Kim-Srivastava integral operator[8,29] is defined as

$$
\begin{gather*}
I^{\sigma} f(z)=\frac{2^{\sigma}}{z \tau(\sigma)} \int_{0}^{z}\left(\log \frac{z}{t}\right)^{\sigma-1} f(t),(\sigma \text { real }) \\
=z \\
+\sum_{m=2}^{\infty}\left(\frac{z}{m+1}\right)^{\sigma} a_{m} z^{m} \tag{17}
\end{gather*}
$$

The operator I^{σ} is closely related to the multiplier transformation studied by Flett|5|.

We can express
$D^{n} f(z)=$
$z+$
$\sum_{m=2}^{\infty} m^{n} a_{m} z^{m}$,
Where $\mathrm{f}(\mathrm{z})=z+\sum_{m=2}^{\infty} m^{n} a_{m} z^{m}$
From (17), the following identity can easily be deduced.

$$
\begin{align*}
& z\left[I^{\sigma+1} f(z)\right]^{\prime} \\
& =2 I^{\sigma} f(z) \\
& -I^{\sigma+1} f(z) \tag{19}
\end{align*}
$$

Combining the operators D^{n} and I^{σ}, operator

$$
\mathrm{I}_{\mathrm{n}}^{\sigma}: \mathrm{A} \rightarrow \mathrm{~A}
$$

Is defined by taking

$$
F_{n, \sigma}(z)=z+\sum_{m=2}^{\infty} m^{n}\left(\frac{2}{m+1}\right)^{\sigma} z^{m}
$$

As follows

$$
\begin{gather*}
I_{n}^{\sigma} f(z)=D^{n}\left(I^{\sigma} f(z)\right)=I^{\sigma}\left(D^{n} f(z)\right) \\
=F_{n, \sigma}(z) * f(z) \\
=Z \\
+\sum_{m=2}^{\infty} m^{n}\left(\frac{2}{m+1}\right)^{\sigma} z^{m} . \tag{20}
\end{gather*}
$$

We note that

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{n}}^{0} \mathrm{f}(\mathrm{z})=\mathrm{D}^{\mathrm{n}} f(z),=\mathrm{D}^{\mathrm{n}} f(z), \\
& \mathrm{I}_{0}^{\sigma} \mathrm{f}(\mathrm{z})=\mathrm{I}^{\sigma} f(z) .
\end{aligned}
$$

From (20) we easily derive

$$
\begin{align*}
& \mathrm{I}_{\mathrm{n}+1}^{\sigma+1} \mathrm{f}(\mathrm{z})=2 \mathrm{I}_{\mathrm{n}}^{\sigma} \mathrm{f}(\mathrm{z}) \\
& -\mathrm{I}_{\mathrm{n}}^{\sigma+1} \mathrm{f}(\mathrm{z}) \tag{21}
\end{align*}
$$

Now, taking $\phi(\mathrm{z})=\mathrm{F}_{\mathrm{n}, \mathrm{\sigma}}(\mathrm{z})$, we have:

Theorem11.

$$
S\left(h, F_{n+1}^{\sigma}, \lambda\right) \subset S\left(h, F_{n}^{\sigma}, \lambda\right) \subset S\left(h, F_{n}^{\sigma+1}, \lambda\right)
$$

[2(b)]. $\quad \Phi(\mathrm{z})=\mathrm{f}_{\mathrm{a}, \mathrm{b}}(\mathrm{z})$.
In [3], the operator $\mathrm{J}_{\mathrm{a}, \mathrm{b}}$ is defined as $\mathrm{J}_{\mathrm{a}, \mathrm{b}}: \mathrm{A} \rightarrow \mathrm{A}$ by

$$
\mathrm{J}_{\mathrm{a}, \mathrm{~b}} \mathrm{f}(\mathrm{z})=\mathrm{f}_{\mathrm{a}, \mathrm{~b}}(\mathrm{z}) * \mathrm{f}(\mathrm{z}), \quad(\mathrm{a}>0, \mathrm{~b}>0),
$$

Where $\quad \frac{z}{(1-z)^{a}} * \mathrm{f}_{\mathrm{a}, \mathrm{b}}(\mathrm{z})=\frac{z}{(1-z)^{b}}$ see also [14].

We note that, by taking $\mathrm{a}=\mathrm{n}+1, \mathrm{n} \in \mathrm{N}$ and $\mathrm{b}=2$. We obtain the operator considered by Noor [16,19]. Also $\mathrm{J}_{\mathrm{a}, \mathrm{b}}=\mathrm{L}(\mathrm{b}, \mathrm{a})$ is Carlson-Shaffer operator introduced in [2] as follows.

$$
\mathrm{L}(\mathrm{~b}, \mathrm{a}) f(z)=\Psi(b, a, z) * f(z)
$$

Where

$$
\Psi(b, a, z)=\sum_{m=0}^{\infty} \frac{(b)_{m}}{(a)_{m}} z^{m+1}, \quad a \neq 0,-1 \ldots
$$

Is an incomplete beta function related to the Gauss hypergeometric function by

$$
\begin{aligned}
\Psi(b, a ; z)=z_{2} & F_{1}(1, b ; a ; z) \text { and }(b)_{m} \\
& =b(b+1) \ldots(b+m-1),(b)_{0} \\
& =1 .
\end{aligned}
$$

We note that, by taking $\mathrm{a}=\mathrm{n}+1, \mathrm{n} \in \mathrm{N}$ and $\mathrm{b}=$ 2 , we obtain the operator considered in [15,16], and

$$
\begin{gathered}
J_{1, n+1} f(z)=L(n+1,1) f(z) \\
=D^{n} f(z) \\
=\frac{z\left(z^{n-1} f(z)\right)^{(n)}}{n!}
\end{gathered}
$$

The Rusheweyh derivative of order n .
The following identities hold for $a>0, b>0$

$$
z\left(J_{a, b} f\right)^{\prime}=a J_{a, b} f-(a-1) J_{a+1, b} f
$$

$$
z\left(J_{a, b} f\right)^{\prime}=b J_{a, b+1}-(b-1) J_{a, b}
$$

Using [22] and some computations, we have:
Corollary 4. (i). For $\mathrm{b} \geq 1$.

$$
S\left(h, f_{a, b+1}, \lambda\right) \subset S\left(h, f_{a, b}, \lambda\right), z \in E .
$$

(ii). For $0 \leq \delta \geq 1, \mathrm{~b} \geq 1$.

$$
\begin{aligned}
S\left(\frac{1+(1-2 \delta) z}{1-z}\right. & \left., f_{a, b+1}, \lambda\right) \\
& \subset S\left(\frac{1+(1-2 \beta) z}{1-z}, f_{a, b}, \lambda\right)
\end{aligned}
$$

Where

$$
\begin{aligned}
& \beta \\
& =\frac{1}{4}\{-(2 b-2 \delta-1) \\
& \left.+\sqrt{(2 b-2 \delta-1)^{2}+8(2 \delta b-2 \delta+1)}\right\}
\end{aligned}
$$

The result (ii) has been established in [15].

As a special case of Corollary 4 , we deduce that ,for $\lambda=0, \mathrm{a}=\mathrm{b}=1$,

$$
\begin{aligned}
& S\left(\frac{1+(1-2 \delta) z}{1-z}, f_{1,2}, 0\right) \\
& \subset S\left(\frac{1+\left(1-2 \beta_{1}\right) z}{1-z}, f_{1,1}, 0\right)
\end{aligned}
$$

Where β_{1} is given by (22) with $\mathrm{b}=1$. That is $\mathrm{C}(\delta)$ $\subset S\left(\beta_{1}\right)$.
$\beta_{1}=\frac{1}{4}\left\{(2 \delta-1)+\sqrt{4 \delta^{2}-4 \delta+9}\right\}$.
(22)

For $\delta=0$, we obtain a well known result that every convex function is starlike of order $\frac{1}{2}$. For more results related to Corollary 4 .we refer to [14].
[2(c)] $\phi(z)=f_{\gamma, \mu}^{s}(z), f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}$.
Define $f_{\gamma, \mu}^{s}(z)$ as $f_{\gamma}^{s}(z) * f_{\gamma, \mu}^{s}(z)=\frac{z}{(1-z)^{\mu}}, \quad(\mu>$ $0, z \in E$).

Where $f_{\gamma}^{s}(z)=z+\sum_{m=2}^{\infty}\left(\frac{m+\gamma}{1-\gamma}\right)^{s} z^{m}, \quad(\gamma>-1)$.
Then, using (24), the operator $L_{\gamma, \mu}^{S}: A \rightarrow A$ is introduced as

$$
\begin{aligned}
& L_{\gamma, \mu}^{s} f(z)=f_{\gamma, \mu}^{S}(z) \\
& \quad * f(z),(f \in A ; s \in \mathbb{R} ; \lambda>-1, \mu \\
&>0),(24)
\end{aligned}
$$

We note that

$$
\begin{gathered}
L_{0, z}^{0} f(z)=z f^{\prime}(z), L_{0,2}^{1} f(z)=f(z), \\
L_{1,1}^{-1} f(z)=z+\sum_{m=2}^{\infty} \frac{1}{m} a_{m} z^{m}=\int_{0}^{z} \frac{f(t)}{t} d t,
\end{gathered}
$$

And obtain the following relation

$$
\begin{align*}
& z\left(L_{\gamma, \mu}^{s} f(z)\right)^{\prime}=\mu L_{\gamma, \mu+1}^{s} f(z) \\
& \quad-(\mu \\
& \quad-1) L_{\gamma, \mu}^{s} f(z) \tag{25}
\end{align*}
$$

$$
\begin{gather*}
z\left(L_{\gamma, \mu}^{s+1} f(z)\right)^{\prime}=(\gamma+1) L_{\gamma, \mu}^{s} f(z) \\
-(\gamma) L_{\gamma, \mu}^{s+1} f(z) \tag{26}
\end{gather*}
$$

We can now derive the following results easily

Corollary 5.

$S\left(p_{k}, f_{\gamma, \mu}^{s}, \lambda\right) \subset S\left(\frac{1-(1-2 p) z}{1-z}, f_{\gamma, \mu}^{s+1}, \lambda\right)$
Where
$p=$
$\frac{2\left(1+2 p_{0} \gamma\right)}{\left[1-2\left(\gamma-p_{0}\right)\right]+\sqrt{\left(\left[1+2\left(\gamma-p_{0}\right]^{2}+8\left(1+2 p_{0} \gamma\right)\right.\right.}} . \quad$ and $p_{0}=$
$\frac{k}{k+1}$
For this result we refer to [17,18].

Corollary 6. Let $f_{3}(z)$ be defined as in Remark 1 , with $\mathrm{f} \in \mathrm{R}\left(\mathrm{p}_{\mathrm{k}}, f_{\gamma, m \mu}^{S}, \lambda\right)$. Then $\mathrm{f}_{3} \in \mathrm{R}\left(\mathrm{q}_{\mathrm{k}}, f_{\gamma, \mu}^{s}, \lambda\right)$ in E .

Proof. The operator defined by f_{3} is known as Bernardi integral operator for $b_{1}=1,2,3 \ldots .$. see[1]. We have

$$
\begin{gathered}
f_{3}(z)=\frac{b_{1}+1}{z^{b_{1}}} \int_{0}^{z} t^{b_{1}-1} f(t) d t, \quad b_{1}>-1, f \\
\in \mathrm{R}\left(\mathrm{q}_{\mathrm{k}}, f_{\gamma, \mu}^{s}, \lambda\right) .
\end{gathered}
$$

Then

$$
\begin{align*}
& \left(b_{1}+1\right) f(z)=z f_{3}^{\prime}(z) \\
& \quad+b_{1} f_{3}(z) . \tag{27}
\end{align*}
$$

Now writing

$$
h(z)=(1-\lambda)\left(L_{\gamma, \mu}^{s} f_{3}(z)\right)^{\prime}+\lambda\left[z\left(L_{\gamma, \mu}^{s} f_{3}(z)\right)^{\prime}\right]^{\prime} .
$$

We obtain from (27).

$$
\begin{gathered}
(1-\lambda)\left(L_{\gamma, \mu}^{s} f_{3}(z)\right)^{\prime}+\lambda\left(z\left(L_{\gamma, \mu}^{s} f_{3}(z)\right)^{\prime}\right)^{\prime} \\
=h(z)+z \frac{1}{b_{1}+1} h^{\prime}(z)
\end{gathered}
$$

Since $\mathrm{f} \in \mathrm{R}\left(\mathrm{p}_{\mathrm{k}}, f_{\gamma, \mu}^{S} f(z), \lambda\right)$, it follows that

$$
\left(h+\frac{1}{b_{1}+1} z h^{\prime}\right) \propto p_{k}, \quad z \in E
$$

Applying Lemma 5, we have, for $\mathrm{z} \in \mathrm{E}$

$$
h(z) \propto \widetilde{q_{k}}(z) \propto p_{k}(z) .
$$

Where

$$
\widetilde{q_{k}}(z)=\frac{b_{1}+1}{z^{b_{1}}} \int_{0}^{z} t^{b_{1}} p_{k}(t) d t .
$$

There $\mathrm{h} \propto \widetilde{q_{k}}$ and consequently $\mathrm{f}_{3} \in \mathrm{R}\left(\widetilde{q_{k}}, f_{\gamma, \mu}^{s}, \lambda\right)$.

References

[1] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969) 429-446.
[2] B. C. Carlson, B. B. Shaffer, Starlike and prestart like hypergeometric functions, SIAM J. Math. Anal, 159 (1984) 737745.
[3] J. H. Choi, M. Saigo, H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445.
[4] P. Eenigenburg, P. T. Mocanu, S. S. Miller, M. O. Reade, On a Briot-Bouquet differential subordination in General inequalities, 64 (1983), Internationale Schriftenreihe Numerischen Mathematik, 329-348, Birkhauser, Basel, Switzerland.
[5] T. M. Flett, The dual of an inequality of Hardy and Littelwood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765.
[6] A. W. Goodman, Univalent Functions, I,II, Polygonal Publishing House, Washington, New Jersey, (1983).
[7] D. J. Hallenbeck, T. H. MacGregor, Linear problems and convexity techniques in geometric function theory, Pitman Publ. Ltd., London, (1984).
[8] I. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), 138147.
[9] S. Kanas, Techniques of differential subordination for domains bounded by conic sections, Internat. J. Math. Math. Sci. 38 (2003), 2389-2400.
[10] S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327-336.
[11] J-L. Liu, K. I. Noor, On subordinations for certain analytic functions associated with Noor Integral operator, Appl. Math. Compu. 187 (2007), 1453-1460.
[12] S. S. Miller, P. T. Mocanu, Differential Subordination Theory and Applications, Marcel Dekker Inc., New York, Basel, (2000).
[13] Z. Nehari, E. Netanyohu, On the coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc. 8, (1957), 15-23.
[14] K. I. Noor, On some applications of certain integral operators, Appl. Math. Comput. 188 (2007), 814-823.
[15] K. I. Noor, On a generalization of uniformaly convex and related functions, Comput. Math. Appl. 61 (2011), 117-125.
[16] K. I. Noor, Some classes of p-analytic functions defined by certain integral operator, Math. Inequal. Appl., 9 (2006), 117-123.
[17] K. I. Noor, Applications of certain operators to the classes of analytic functions related with generalized conic domains, Comut. Math. Appl. 62 (2011), 4194-4206.
[18] K. I. Noor, On generalizations of uniformly convex and related functions, Comput. Math. Appl. 61 (2011), 117-125.
[19] K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl. 238 (1999), 341-352.
[20] K. I. Noor, M. A. Noor, Higher-order close-to-convex functions related with conic domain, Appl. Math. Inform. Sci. 8, (2014).
[21] K. I. Noor, M. Arif, W. Ul-Haq, On k-uniformly close-to-convex functions of complex order, Appl. Math. Comput. 215, (2009) 629-635.
[22] K. I. Noor, R. Fayyaz, M. A. Noor, Some classes of k uniformly functions with bounded radius rotation, Appl. Math. Inform. Sci. 8 (2014), 527-533.
[23] K. I. Noor, W. Ul-Haq, M. Arif, S. Mustafa, On bounded boundary and bounded radius rotation, J. Inequal. Appl. 2009 (2009), Article ID 813687, 12 pages.
[24] Ch. Pommerenke, Univalent Functions, Vanderhoeck and Ruprecht, Gottengen, (1975).
[25] S. Ruscheweyh, Convolutions in Geometric Function Theory, Les Presse de universite de Montreal, Montreal, (1982).
[26] S. Ruscheweyh, New criteria for Univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[27] S. Ruscheweyh, T. Shiel-Small, Hadamard product of schlicht functions and the Polya-Schoenberg Conjecture, Commen. Math. Helv. 48 (1973), 119-135.
[28] G. S. Salagean, Subclasses of Univalent functions, Lectur e Notes in Math. Springer Verlag, Berlin, 1013 (1983), 362-372.
[29] H. M. Srivastava, N-Eng Xu, Diang-Gong Yang, Inclusion relations and convolution properties of a certain class of analytic functions associated with Ruscheweyh derivatives, J. Math. Anal. Appl. 331 (2007), 686-700.

