Distance-2 Chromatic Number for the Duplicate Graph of the Mycielskian Graphs

K. Anitha¹, B.Selvam², K. Thirusangu³

¹Department of Mathematics, Sri Sai Ram Engineering College, Chennai-44, India ^{2,3}Department of Mathematics, S.I.V.E.T.College, Gowrivakkam, Chennai-73, India

Abstract- Graph colouring is one of the most important area of research in graph theory. A distance-2 colouring of a graph G is a proper vertex colouring of G such that every two vertices at a distance-2 or less are assigned different colours. The least integer k for which there is a k-colouring satisfying this condition is the distance-2 chromatic number of G and is denoted by $\chi^2(G)$. In this paper, we present algorithms to

determine the distance-2 chromatic number for the duplicate graph of the Mycielskian graph of paths, cycles and complete graphs.

AMS Subject Classification: 05C15.

Keywords: *Distance-2 colouring, Distance-2 chromatic number, Duplicate graph, Mycielskian graph.*

1. INTODUCTION

Let G = (V, E) be a simple, finite and undirected graphs. Let $\Delta(G)$ denote the maximum degree of vertices of a graph G. For vertices u and in graph G, the v a distance d(u,v) between u and v is the length of a shortest uv path in G. In [3,4] an L-distance colouring of a graph G is defined as a proper vertex colouring of G such that every two vertices at distance L or less are assigned different colours. The least integer k for which there is а k-colouring satisfying this condition is the Ldistance chromatic number of G. Borodin, Invova and Neustroeva [1] have studied sparse planar graphs and they proved more general results in distance-2 colouring. In 1955, Jan Mycielski [5] has given the construction of Mycielskian graph for the graphs. We consider Mycielskian graphs that are in spired by G.J.Chang, L. Huang and X. Zhu [2]. The concept of extended duplicate graph was introduced by P.P. Ulaganathan, K. Thirusangu and B. Selvam in [7]. In this paper, we present algorithms to determine the distance-2 chromatic

number for the duplicate graph of the Mycielskian graph of paths, cycles and complete graphs.

2. PRELIMINARIES

In this section, we present some basic definitions and results which are relevant to this paper.

Definition 2.1 (Colouring):

A (proper) colouring of a graph G is a function

c: V(G) \rightarrow N having the property that c(u) \neq c(v) for every pair u,v of adjacent vertices of G. A k-colouring of G uses k colours. The chromatic number $\chi(G)$ is the least positive integer k for which G admits a k-colouring.

Definition 2.2 (Distance-2 colouring):

A distance-2 colouring of a graph G(V,E) is a proper colouring of the vertices such that any two vertices at a distance atmost 2, receive distinct colours and the distance-2 chromatic number χ^2 (G) is the least positive integer k for which G has distance-k colouring.

Definition 2.3 (Mycielskian Graph):

Let G be a graph with m vertices denoted by v_1, v_2, \dots, v_m . The Mycielskian graph $\mu(G)$ is obtained by adding to each v_i , a new vertex u_i such that u_i is adjacent to the neighbors of v_i . Finally add a new vertex w such that w is adjacent to each and every vertex u_i .

Definition 2.4 (Mycielskian graph of Path):

Let $\mu(P_m)$ be the Mycielskian graph of path P_m, where m is the number of vertices in P_m. The vertex set and the edge set of $\mu(P_m)$ are given as follows

 $V = \{v_i, u_i, w \text{ for } 1 \le i \le m \}$

 $E = \{v_i v_{i+1}; v_i u_{i+1}; u_i v_{i+1} / 1 \le i \le m-1\} U$ $\{u_i w / 1 \le i \le m\}$

Clearly $\mu(P_m)$ has 2m+1 vertices and 4m-3 edges, where 'm' is the number of vertices in path P_m.

Definition 2.5 (Mycielskian graph of Cycle):

Let $\mu(C_m)$ be the Mycielskian graph of cycle C_m , where 'm' is the number of vertices in C_m . The vertex set and the edge set of $\mu(C_m)$ are given as follows.

 $V = \{v_{i}, u_{i}, w \text{ for } 1 \le i \le m \}$ $E = \{v_{i}v_{i+1}; v_{i}u_{i+1}; u_{i}v_{i+1} / 1 \le i \le m-1\} U$ $\{u_{i}w / 1 \le i \le m\} U\{u_{1}v_{m}; v_{1}u_{m}; v_{1}v_{m}\}$

Clearly $\mu(C_m)$ has 2m+1 vertices and 4m edges, where m is the number of vertices in cycle C_m .

Definition 2.6 (Mycielskian graph of Complete graph):

Let $\mu(K_m)$ be the Mycielskian graph of complete graph K_m , where 'm' is the number of vertices in K_m . The vertex set and the edge set of $\mu(K_m)$ are given as follows.

$$V = \{v_{i}, u_{i}, w \text{ for } 1 \le i \le m \}$$

$$E = \{wu_{i} / 1 \le i \le m\} \cup \{u_{i}v_{i+j}; u_{i+j}v_{i}; v_{i}v_{i+j} / 1 \le i \le m-1, 1 \le j \le m-i \}$$

Clearly $\mu(K_m)$ has 2m+1 vertices and

 $\frac{3m^2 - m}{2}$ edges, where m is the number of vertices in complete graph K_m.

Definition 2.7 (Duplicate graph):

Let G(V, E) be a simple graph. A duplicate graph of G is DG = (V₁, E₁) where the vertex set V₁= V \cup V' and V \cap V'=Ø and f : V \rightarrow V' is bijective and the edge set E₁ of DG is defined as follows. The edge uv is in E if and only if both uv' and u' v are edges in E₁.

Definition 2.8 (Duplicate graph of Mycielskian graph of Path):

Let $DGM(P_m)$ be the duplicate graph of the Mycielskian graph of path P_m (m ≥ 2). The vertex set and the edge set of $DGM(P_m)$ are given as follows.

$$V = \{w, v_{i}, u_{i}, w', v_{i}', u_{i}' / 1 \le i \le m\}$$

and
$$E = \{wu_{i}', w'u_{i} / 1 \le i \le m\} \cup \{u_{i}v'_{i+1}; u_{i}'v_{i+1}; u_{i}'v_{i+1}; u_{i+1}v_{i}'; u'_{i+1}v_{i}; v_{i}v'_{i+1}; v_{i}'v_{i+1} / 1 \le i \le m-1\}$$

 $\label{eq:clearly_DGM} \begin{array}{l} Clearly \ DGM(P_m) \ has \ 4m+2 \ vertices \ and \\ 8m-6 \ edges, \ where \ `m' \ is \ the \ number \ of \ vertices \ in \\ P_{m.} \end{array}$

Definition 2.9 (Duplicate graph of Mycielskian graph of Cycle):

Let DGM(C_m) be the duplicate graph of the Mycielsikian graph of cycle C_m ($m \ge 3$). The vertex set and the edge set of DGM(C_m) are given as follows.

$$V = \{w, v_i, u_i, w', v'_i, u'_i / 1 \le i \le m\}$$

$$E = \{wu_i', w'u_i / 1 \le i \le m\} \cup \{u_i v'_{i+1}; u_i' v_{i+1}; u_{i+1} v_i'; u'_{i+1} v_i; v_i v'_{i+1}; v_i' v_{i+1} / 1 \le i \le m - 1\}$$

$$U\{u_{1}v'_{m}, u'_{1}v_{m}, v_{1}v'_{m}, v'_{1}v_{m}, v_{1}u'_{m}, v'_{1}u_{m}\}$$

Clearly DGM(C_m) has 4m+2 vertices and

Some edges, where m is the number of vertices in cycle C_m , $(m \ge 3)$.

Definition 2.10 (Duplicate graph of Mycielskian graph of Complete graph):

Let DGM(K_m) be the duplicate graph of the Mycielskian graph of the complete graph K_m , where 'm' is the number of vertices in K_m ($m \ge 4$). The vertex set and the edge set of DGM(K_m) are given as follows.

$$V = \{w, v_i, u_i, w', v_i', u_i' / 1 \le i \le m\}$$

$$E = \{wu_i^{\prime}, w^{\prime}u_i / 1 \le i \le m\} \cup \{u_i v^{\prime}{}_{i+j}; u_i^{\prime}v_{i+j}; u_{i+j} v_i^{\prime}; u_{i+j} v_i^{\prime}; u_{i+j} v_i^{\prime}; v_i v_{i+j}, v_i^{\prime}v_{i+j}, v$$

 $3m^2 - m$ edges, where m is the number of vertices in complete graph $K_m (m \ge 4)$.

3. Main Results

In this paper, we present algorithms to determine the distance-2 chromatic number for the duplicate graph of the Mycielskian graph of paths, cycles and complete graphs.

Algorithm 3.1.

Procedure: Distance-2 colouring of DGM(P_m), (m ≥ 2). **Input:** $V \leftarrow \{w,u_1,u_2,...,u_m,v_1,v_2,...,v_m,w',u_1',u_2',...,u_m',v_1',v_2',...,v_m'\}$ E $\leftarrow \{e_1,e_2,...,e_{8m-6}\}$

(m \geq 2).

$$w,u_{m} \leftarrow c_{1}, w' \leftarrow c_{2}$$

for $1 \le i \le m$
$$\{u_{i}' \leftarrow c_{i+1}\}$$

end for
for $1 \le i \le m - 1$
$$\{u_{i} \leftarrow c_{i+2}\}$$

end for
$$m \le 4$$

 $v_m, v_m' \leftarrow c_{m+2}$ $v'_{m-1} \leftarrow c_{m+1}$

ł

end for

{

for i = 1 to m-2

 $v_i^{\prime} \leftarrow c_1$

for $1 \le i \le m - 1$

 $v_i \leftarrow c_{i+1}$

 $\{ v_{i+1} \leftarrow c_{4-i} \\ \}$ end for for i=1 to m-4 $\{ v'_{m+2-2i} \leftarrow c_{i+2} \\ \}$ end for

if m=6

$$v_4 \rightarrow c_2$$

else

if
$$m \ge 7$$

 $v_4 \leftarrow c_2, v_4^{\prime} \leftarrow c_1$
for $3 \le i \le m - 2$
{
 $v_{i+2}, v_{i+2}^{\prime} \leftarrow c_i$
}
end for
for $i = 1$ to 3 do
{
 $v_i, v_i^{\prime} \leftarrow c_{m-2+i}$
}

end procedure.

end if

Output: Distance-2 coloured of DGM(P_m), (m \geq 2).

Theorem 3.1:

If DGM(P_m) is the duplicate graph of the Mycielskian graph of path P_m (m \geq 2), where m is the number of vertices in path P_m, then

$$\chi^2(DGM(P_m)) \le m+2.$$

Proof.

Let $DGM(P_m)$ be the duplicate graph of the Mycielskian graph of path P_m (m ≥ 2), where m is the number of vertices in path P_m . Define a function

else

if $2 \leq$

if 4<m<7

if $2 < m \leq 4$

 $\begin{array}{l} v_2', v_3' \xleftarrow{} c_1 \\ v_1, v_{m-1} \xleftarrow{} c_{m+1} \\ v_1', v_{m-1} \xleftarrow{} c_m \\ v_m \xleftarrow{} c_{m-1} \\ \text{for } 1 \leq i \leq 2 \end{array}$

f :V \rightarrow {1,2.....4m+2} such that $f(u) \neq f(v)$ if $uv \in E$, where V is the vertex set and E is edge set of DGM(P_m) as follows.

Case (i) if 1 < m < 5First we assign $f(w)=c_1$ and $f(w')=c_2$. Since deg(w) = deg(w'), |N(w)| = |N(w')| = mHence m+1 colours are needed to colour the vertices N[w]. Since $N(w) \cap N(w') = \phi$ and d(N(w), N(w')) > 2 N(w) and N(w') receives same colours whereas w and w' receives different colours among m+1 colours.Using algorithm 3.1, for $1 \le i \le m - 1$, v_i and v_i' are coloured by m+1 colours.In this case, $N(v_{m-1}) = \Delta$ and $m \le |N(v_{m-1})| \le m + 1$. If $|N(V_{m-1})| = m + 1$ we need m+2 colours to N[v_{m-1}] and if m= $|N(v_{m-1})|$ we need m+1 colours to colour the

vertices of N[v_{m-1}], but d(w',v_i')<2, $f[w'] \neq f[v'_i]$ where $1 \le i \le m$ we need m+2

th colour to $v_m \in N(v_{m-1})$ and $v_m \in N(v_{m-1})$, $f(v_m)=f(v_m)$ Since $d(v_m,v_m) > 2$. Hence $\chi^2(DGM(P_m)) \le m+2$.

Case (ii) if $m \ge 5$

First we assign the maximum degree vertices $f(w)=c_1$ and $f(w')=c_2$. Since deg(w)=deg(w'), |N(w)| = |N(w')| = m and

 $|N(v_i)| = |N(v_i')| < m$ where $1 \le i \le m$ and

 $|N(u_i)| = |N(u_i^{\prime})| < m$ Hence m+1 colours are needed to colour N[w]. Since

 $N(w) \cap N(w') = \phi$ and

d(N(w), N(w')) > 2, N(w) and N(w') receives same colours whereas w and w' receives different colours among m+1 colours. Using algorithm 3.1 for $1 \le i \le m$ -1, v_i and v_i' are coloured by m+1 colours. Hence $\chi^2(DGM(P_m)) \le m + 2$.

Algorithm 3.2.

Procedure: Distance-2 colouring of DGM(C_m), (m \geq 3). **Input:** V \leftarrow {w, u₁,u₂....u_m, v₁,v₂....v_m, w', u₁',u₂'.... u_m',v₁',v₂'....v_m'} E \leftarrow {e₁,e₂......e_{8m}} $\hfill \label{eq:constraint} \hfill \hfill$

w,
$$u_m \leftarrow c_1$$
, $w' \leftarrow c_2$
for i= 1 to m do
{
 $u_i' \leftarrow c_{i+1}$
}
end for
for i= 1 to m-1 do
{
 $u_i \leftarrow c_{i+2}$
}
end for
 $< m < 5$

if 2 < m < 5

$$v_{m}, v_{m}^{\prime} \leftarrow c_{m+3}$$

$$v_{m-1}, v_{m-1}^{\prime} \leftarrow c_{m+2}$$

$$v_{m-2}^{\prime} \leftarrow c_{m}$$

$$v_{m-2} \leftarrow c_{m-1}$$

else if m = 4

$$v_1 \leftarrow c_2, v_1' \leftarrow c_5$$

else

if

$$m = 5$$

 $v_1, v_4' \leftarrow c_4, v_2' v_3' \leftarrow c_1, v_2 \leftarrow c_3$

$$v_3, v_1^{\prime} \leftarrow c_{m+1}, v_5, v_5^{\prime} \leftarrow c_{m+2}, v_4 \leftarrow c_2$$

else

if
$$m = 6$$

$$v_{1}, v_{4}^{\prime} \leftarrow c_{4}, v_{2}^{\prime} v_{3}^{\prime} \leftarrow c_{1}, v_{1}^{\prime}, v_{4} \leftarrow c_{5}, v_{6} \leftarrow c_{3} v_{3}, v_{6}^{\prime} \leftarrow c_{6}, v_{2}, v_{5}^{\prime} \leftarrow c_{m+1}, v_{5} \leftarrow c_{2}$$

else

if
$$m > 6$$

$$v_{4} \leftarrow c_{2}, v_{4}^{\prime} \leftarrow c_{1}$$
for $i = 3$ to $m - 2$ do
$$\{v_{i+2}, v_{i+2}^{\prime} \leftarrow c_{i}$$

$$\}$$
end for

for
$$i = 1$$
 to 3 do
{
 $v_i, v_i' \leftarrow c_{m+i-2}$
}

end if end procedure

Output: Distance-2 coloured of DGM(C_m), (m \geq 3).

Theorem 3.2.

If $DGM(C_m)$ is the duplicate graph of the Mycielskian graph of cycle C_m (m ≥ 3), where m is the number of vertices in cycle C_m ,

then $\chi^2(DGM(C_m)) \leq m+3$.

Proof:

Let DGM(C_m) be the duplicate graph of the Mycielskian graph of cycle C_m, where m is the number of vertices in cycle C_m. Define a function $f: V \rightarrow \{1, 2, ..., 4m+2\}$ such that $f(u) \neq f(v)$ if

 $\mathit{uv} \in \mathit{E}$, where V is the vertex set and E is edge set of $DGM(C_m)$ as follows.

Case (i) if 2< m <5

Using algorithm 3.2,

 $\begin{aligned} f(w) = f(u_m) = c_1, f(w') = c_2, \ f(v_m) = f(v_m') = c_{m+3}, \ f(v_{m-1}) = f(v'_{m-1}) = c_{m+2}, \ f(v'_{m-2}) = c_m, \end{aligned}$

 $\begin{array}{l} f(v_{m-2}) = c_{m-1}, \ f(u_i') = c_{i+1} \ for \ 1 \leq i \leq m, \ f(u_i) = c_{i+2} \ for \\ 1 \leq i \leq m-1 \ and \ if \ m=4 \ f(v_1) = c_2, \ f(v_1') = c_{m+1}, \\ Since \end{array}$

 $f(v_m)=f(v_m')=c_{m+3},$ we need atmost m+3 colours to colour the vertices v_m & v_m' . Hence

$$\chi^2(DGM(C_m)) = m + 3.$$

Case (ii) if m=5

Using algorithm 3.2,

 $\begin{aligned} &f(w)=f(u_m)=c_1, f(w')=c_2, \ f(v_1)=f(v_4')=c_4, \ f(v_2)=c_3, \\ &f(v_3)=f(v_1')=c_{m+1}, \ f(v_4)=c_2, \ f(v_2')=f(v_3')=c_1 \ \text{and} \\ &f(u_i')=c_{i+1} \ \text{for} \ 1 \leq i \leq m \ \text{and} \ f(u_i)=c_{i+2} \ \text{for} \end{aligned}$

$$1 \le i \le m-1$$
. In this case

$$|N(v_{m-1}')| = \{u_3, u_m, v_3, v_m\},\$$

 $v_{m-1} \in c_4, u_3 \in c_m, v_3 \in c_{m+1}, u_m \in c_1$

and $f(v_m) \neq c_2 U c_3$, since $v_2 \in c_3$, $d(v_4, v_{m_1}) < 2$ and

 $v_2 \in c_3$, $d(v_2, v_{m_i}) < 2$. Therefore $f(v_m) = c_{m+2}$, and

$$f(v_m')=c_{m+2}$$
, since $d(v_m, v_m')>2$. Hence

 $\chi^2(\text{DGM}(\text{C}_m)) \le m + 3.$

Case (iii) if $m \ge 5$

First we assign the maximum degree vertices $f(w)=c_1$ and $f(w')=c_2$. Since deg(w)=deg(w'),

$$|N(w)| = |N(w)| = m$$
 and
 $|N(v_i)| = |N(v_i')| < m$ where $1 \le i \le m$ and

 $v_4 \in c_2$.Hence m+1 colours are needed to colour

N[w]. Since $N(w) \cap N(w') = \phi$ and

d(N(w), N(w') > 2, N(w) and N(w') receivessame colours whereas w and w' receives different colours among m+1 colours. Using algorithm 3.2, v_i and v'_i are coloured by m+1 colours for $1 \le i \le m$

Hence
$$\chi^2(\text{DGM}(\text{C}_m)) \le m + 3$$
.

Algorithm 3.3.

Procedure: Distance-2 colouring of $DGM(K_m)$, m ≥ 4 .

Input:
$$\frac{V \leftarrow \{w, u_1, u_2, ..., u_m, v_1, v_2, ..., v_m, w', u'_1, u'_2, ..., u'_m, v'_1, v'_2, ..., v'_m, w', u'_1, u'_2, ..., u'_m, v'_1, v'_2, ..., v'_m\}}{u_1', u_2', ..., u_m', v_1', v_2', ..., v'_m\}}$$

$$E \leftarrow \{e_1, e_2, ..., e_{3m^2-m}\}$$

if $m \ge 4$

$$w, u_1, v_1' \leftarrow c_1$$

$$w', v_{1} \leftarrow c_{2}$$

for i = 1 to m do
{
u'_{i} \leftarrow c_{i+1}
}
end for
for i = 1 to m-1 do
{
u_{i+1} \leftarrow c_{i+2}
v_{i+1}, v'_{i+1} \leftarrow c_{m+1+i}
}
end if
end procedure.

Theorem 3.3.

Let DGM(K_m) be the duplicate graph of the Complete graph K_m, where m is the number of vertices in complete graph, then $\chi^2(DGM(K_m)) = \Delta + 2.$

Proof.

Let $DGM(K_m)$ be the duplicate graph of the Complete graph K_m , where m is the number of vertices in complete graph. Define a function $f: V \rightarrow \{1, 2, ...\}$ such that $f(u) \neq f(v)$ if $uv \in E$, where V is the vertex set and E is the edge set of DGM(K_m) as follows. From the structure of DGM(K_m), $|N(v_i)| = |N(v'_i)| = \Delta$ and $|N(w)| = |N(w')| = |N(u_i)| = |N(u'_i)| < \Delta$. Using algorithm 3.3, $f(w) = f(u_1) = f(v'_1) = c_1$, $f(w') = f(v_1) = c_2$ and $f(u'_i) = c_{i+1}$ $1 \le i \le m$ and $f(u_{i+1}) = c_{i+2}$ where

 $1 \le i \le m-1$ and $f(v_{i+1}) = f(v'_{i+1}) = c_{m+1+i}$ for $1 \le i \le m-3$. Since $|N(v_{m-1})| = \Delta$, hence $\Delta+1$ colours are neede to colour $N[v_{m-1}]$, $f(v_m) = f(N(v_{m-1}))$ and

$$\begin{split} & d(v_m, v_{m-1}) \leq 2. \ \text{Hence } \Delta + 2 \ \text{colours are needed to} \\ & \text{colour } N[v_m] \quad \text{and} \quad d(v_{m-1}, v_{m-1}') > 2, \\ & f(v_{m-1}) = f(v_{m-1}') \quad \text{and} \quad d(v_m, v_m') > 2, \\ & f(v_m) = f(v_m') \ \text{.Hence} \\ & \chi^2(DGM(K_m)) = \Delta + 2. \end{split}$$

Conclusion

In this paper, we presented algorithms and determined the distance-2 chromatic number for

the duplicate graph of the Mycielskian graph of paths, cycles and complete graphs.

References

- O.V. Borodin, A.O. Ivanova and N.T. Neustroeva, Distance-2 colouring of sparse plane graphs (in Russian), Siberian Electronic Mathematical Reports, 1 (2004), 76–90.
- [2] G.J. Chang, L. Huang and X. Zhu, Circular chromatic numbers of Mycielski's graphs, Discrete Mathematics, 205 (1999), 23–37.
- [3] G. Fertin, E. Godard and A. Raspaud, Acyclic and Kdistance colouring of the grid, Inform. Process. Lett., 87 (2003), 51–58.
- [4] G. Fertin, A. Raspaud and B. Reed, On star colouring of graphs, Lecture Notes in Computer Science, 2204 (2001), 140–153.
- [5] J. Mycielski, Sur le colouriage des graphs, Colloq. Math., 3 (1955), 161–162.
- [6] K. Thirusangu, P.P. Ulaganathan and B. Selvam, Cordial labeling in duplicate graphs, Int. J. Computer Math. Sci. Appl., 4(1-2) (2010), 179–186.
- [7] P.P. Ulaganathan, K. Thirusangu and B. Selvam, Edge magic total labeling in extended duplicate graph of path, International Journal of Applied Engineering Research, 6(10) (2011), 1211

Example: Distance- 2 colored of DGM(P₅), $(m \ge 2)$.

Example: Distance- 2 colored of DGM(C₅),

