Distance-2 Chromatic Number for the Duplicate Graph of the Mycielskian Graphs

K. Anitha ${ }^{1}$, B.Selvam ${ }^{2}$, K. Thirusangu ${ }^{3}$
${ }^{1}$ Department of Mathematics, Sri Sai Ram Engineering College, Chennai-44, India
${ }^{2,3}$ Department of Mathematics, S.I.V.E.T.College, Gowrivakkam, Chennai-73, India

Abstract

Graph colouring is one of the most important area of research in graph theory. A distance-2 colouring of a graph G is a proper vertex colouring of G such that every two vertices at a distance-2 or less are assigned different colours. The least integer k for which there is a k-colouring satisfying this condition is the distance-2 chromatic number of G and is denoted by $\chi^{2}(G)$. In this paper, we present algorithms to determine the distance-2 chromatic number for the duplicate graph of the Mycielskian graph of paths, cycles and complete graphs.

AMS Subject Classification: 05C15.

Keywords: Distance-2 colouring, Distance-2 chromatic number, Duplicate graph, Mycielskian graph.

1. INTODUCTION

Let $G=(V, E)$ be a simple, finite and undirected graphs. Let $\Delta(\mathrm{G})$ denote the maximum degree of vertices of a graph G. For vertices u and v in a graph G, the distance $\mathrm{d}(\mathrm{u}, \mathrm{v})$ between u and v is the length of a shortest u v path in G. In [3,4] an L-distance colouring of a graph G is defined as a proper vertex colouring of G such that every two vertices at distance L or less are assigned different colours. The least integer k for which there is a k -colouring satisfying this condition is the L distance chromatic number of G. Borodin, Invova and Neustroeva [1] have studied sparse planar graphs and they proved more general results in distance-2 colouring. In 1955, Jan Mycielski [5] has given the construction of Mycielskian graph for the graphs. We consider Mycielskian graphs that are in spired by G.J.Chang, L. Huang and X. Zhu [2]. The concept of extended duplicate graph was introduced by P.P. Ulaganathan, K. Thirusangu and B. Selvam in [7]. In this paper, we present algorithms to determine the distance-2 chromatic
number for the duplicate graph of the Mycielskian graph of paths, cycles and complete graphs.

2. PRELIMINARIES

In this section, we present some basic definitions and results which are relevant to this paper.

Definition 2.1 (Colouring):

A (proper) colouring of a graph G is a function
$\mathrm{c}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{N}$ having the property that $\mathrm{c}(\mathrm{u}) \neq \mathrm{c}(\mathrm{v})$ for every pair u, v of adjacent vertices of G. A kcolouring of G uses k colours. The chromatic number $\chi(G)$ is the least positive integer k for which G admits a k-colouring.

Definition 2.2 (Distance-2 colouring):

A distance-2 colouring of a graph $G(V, E)$ is a proper colouring of the vertices such that any two vertices at a distance atmost 2 , receive distinct colours and the distance- 2 chromatic number χ^{2} (G) is the least positive integer k for which G has distance-k colouring.

Definition 2.3 (Mycielskian Graph):

Let G be a graph with m vertices denoted by $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . \mathrm{v}_{\mathrm{m}}$. The Mycielskian graph $\mu(G)$ is obtained by adding to each v_{i}, a new vertex u_{i} such that u_{i} is adjacent to the neighbors of v_{i}. Finally add a new vertex w such that w is adjacent to each and every vertex u_{i}.

Definition 2.4 (Mycielskian graph of Path):

Let $\mu\left(P_{m}\right)$ be the Mycielskian graph of path P_{m}, where m is the number of vertices in P_{m}. The vertex set and the edge set of $\mu\left(P_{m}\right)$ are given as follows

$$
\mathrm{V}=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}, \mathrm{w} \text { for } 1 \leq i \leq m\right\}
$$

$$
\begin{aligned}
& E=\left\{v_{i} v_{i+1} ; v_{i} u_{i+1} ; u_{i} v_{i+1} / 1 \leq i \leq m-1\right\} \mathrm{U} \\
& \left\{u_{i} w / 1 \leq i \leq m\right\}
\end{aligned}
$$

Clearly $\mu\left(P_{m}\right)$ has $2 \mathrm{~m}+1$ vertices and $4 \mathrm{~m}-3$ edges, where ' m ' is the number of vertices in path P_{m}.

Definition 2.5 (Mycielskian graph of Cycle):

Let $\mu\left(C_{m}\right)$ be the Mycielskian graph of cycle C_{m}, where ' m ' is the number of vertices in C_{m}. The vertex set and the edge set of $\mu\left(C_{m}\right)$ are given as follows.

$$
\begin{gathered}
\mathrm{V}=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}, \mathrm{w} \text { for } 1 \leq i \leq m\right\} \\
E=\left\{v_{i} v_{i+1} ; v_{i} u_{i+1} ; v_{i} v_{i+1} / 1 \leq i \leq m-1\right\} \mathrm{U} \\
\left\{u_{i} w / 1 \leq i \leq m\right\} \mathrm{U}\left\{u_{1} v_{m} ; v_{1} u_{m} ; v_{1} v_{m}\right\}
\end{gathered}
$$

Clearly $\mu\left(C_{m}\right)$ has $2 \mathrm{~m}+1$ vertices and 4 m edges, where m is the number of vertices in cycle C_{m}.

Definition 2.6 (Mycielskian graph of Complete graph):

Let $\mu\left(K_{m}\right)$ be the Mycielskian graph of complete graph K_{m}, where ' m ' is the number of vertices in K_{m}. The vertex set and the edge set of $\mu\left(K_{m}\right)$ are given as follows.

$$
\mathrm{V}=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}, \mathrm{w} \text { for } 1 \leq i \leq m\right\}
$$

$$
E=\left\{w u_{i} / 1 \leq i \leq m\right\} \cup\left\{u_{i} v_{i+j} ; u_{i+j} v_{i} ; v_{i} v_{i+j} /\right.
$$

$$
1 \leq i \leq m-1,1 \leq j \leq m-i\}
$$

Clearly $\mu\left(K_{m}\right)$ has $2 \mathrm{~m}+1$ vertices and $\frac{3 m^{2}-m}{2}$ edges, where m is the number of vertices in complete graph K_{m}.

Definition 2.7 (Duplicate graph):

Let $\mathrm{G}(\mathrm{V}, \mathrm{E})$ be a simple graph. A duplicate graph of G is $\mathrm{DG}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ where the vertex set $\mathrm{V}_{1}=\mathrm{VU} \mathrm{V}^{\prime}$ and $\mathrm{V} \cap \mathrm{V}^{\prime}=\emptyset$ and $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ is bijective and the edge set E_{1} of DG is defined as follows. The edge uv is in E if and only if both uv ${ }^{\prime}$ and $\mathrm{u}^{\prime} \mathrm{v}$ are edges in E_{1}.

Definition 2.8 (Duplicate graph of Mycielskian graph of Path):

Let $\operatorname{DGM}\left(\mathrm{P}_{\mathrm{m}}\right)$ be the duplicate graph of the Mycielskian graph of path $\mathrm{P}_{\mathrm{m}}(\mathrm{m} \geq 2)$. The vertex set and the edge set of $\operatorname{DGM}\left(\mathrm{P}_{\mathrm{m}}\right)$ are given as follows.

$$
\begin{gathered}
\mathrm{V}=\left\{\mathrm{w}, \mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}, \mathrm{w}^{\prime}, \mathrm{v}_{\mathrm{i}}^{\prime}, \mathrm{u}_{\mathrm{i}}^{\prime} / 1 \leq \mathrm{i} \leq \mathrm{m}\right\} \\
\text { and } \\
E=\left\{w u_{i}^{\prime}, w^{\prime} u_{i} / 1 \leq i \leq m\right\} \mathrm{U}\left\{u_{i} v^{\prime}{ }_{i+1} ; u_{i}^{\prime} v_{i+1} ;\right. \\
\left.u_{i+1} v_{i}^{\prime} ; u^{\prime}{ }_{i+1} v_{i} ; v_{i} v_{i+1}^{\prime} ; v_{i}^{\prime} v_{i+1} / 1 \leq i \leq m-1\right\}
\end{gathered}
$$

Clearly $\operatorname{DGM}\left(\mathrm{P}_{\mathrm{m}}\right)$ has $4 \mathrm{~m}+2$ vertices and $8 \mathrm{~m}-6$ edges, where ' m ' is the number of vertices in P_{m}.

Definition 2.9 (Duplicate graph of Mycielskian graph of Cycle):

Let $\operatorname{DGM}\left(\mathrm{C}_{\mathrm{m}}\right)$ be the duplicate graph of the Mycielsikian graph of cycle $\mathrm{C}_{\mathrm{m}}(m \geq 3)$. The vertex set and the edge set of $\operatorname{DGM}\left(\mathrm{C}_{\mathrm{m}}\right)$ are given as follows.

$$
\mathrm{V}=\left\{\mathrm{w}, \mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}, \mathrm{w}^{\prime}, \mathrm{v}_{\mathrm{i}}^{\prime}, \mathrm{u}_{\mathrm{i}}^{\prime} / 1 \leq \mathrm{i} \leq \mathrm{m}\right\}
$$

$$
E=\left\{w u_{i}^{\prime}, w^{\prime} u_{i} / 1 \leq i \leq m\right\} \cup\left\{u_{i} v^{\prime}{ }_{i+1} ; u_{i}^{\prime} v_{i+1} ; u_{i+1} v_{i}^{\prime} ;\right.
$$

$$
\left.u_{i+1}^{\prime} v_{i} ; v_{i} v_{i+1}^{\prime} ; v_{i}^{\prime} v_{i+1} / 1 \leq i \leq m-1\right\}
$$

$$
\mathrm{U}\left\{u_{1} v_{m}^{\prime}, u_{1}^{\prime} v_{m}, v_{1} v_{m}^{\prime}, v_{1}^{\prime} v_{m}, v_{1} u_{m}^{\prime}, v_{1}^{\prime} u_{m}\right\}
$$

Clearly $\operatorname{DGM}\left(\mathrm{C}_{\mathrm{m}}\right)$ has $4 \mathrm{~m}+2$ vertices and 8 m edges, where m is the number of vertices in cycle $\mathrm{C}_{\mathrm{m}},(m \geq 3)$.

Definition 2.10 (Duplicate graph of Mycielskian graph of Complete graph):

Let $\operatorname{DGM}\left(\mathrm{K}_{\mathrm{m}}\right)$ be the duplicate graph of the Mycielskian graph of the complete graph K_{m}, where ' m ' is the number of vertices in $\mathrm{K}_{\mathrm{m}}(m \geq 4)$. The vertex set and the edge set of $\operatorname{DGM}\left(\mathrm{K}_{\mathrm{m}}\right)$ are given as follows.

$$
\mathrm{V}=\left\{\mathrm{w}, \mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}, \mathrm{w}^{\prime}, \mathrm{v}_{\mathrm{i}}^{\prime}, \mathrm{u}_{\mathrm{i}}^{\prime} / 1 \leq \mathrm{i} \leq \mathrm{m}\right\}
$$

$$
\begin{gathered}
E=\left\{w u_{i}^{\prime}, w^{\prime} u_{i} / 1 \leq i \leq m\right\} \mathrm{U}\left\{u_{i} v^{\prime}{ }_{i+j}^{\prime} ; u_{i}^{\prime} v_{i+j} ; u_{i+j} v_{i}^{\prime} ;\right. \\
\left.u_{i+j}^{\prime} v_{i} ; v_{i} v_{i+j}^{\prime} ; v_{i}^{\prime} v_{i+j} / 1 \leq i \leq m-1,1 \leq j \leq m-i\right\}
\end{gathered}
$$

Clearly $\operatorname{DGM}\left(\mathrm{K}_{\mathrm{m}}\right)$ has $4 \mathrm{~m}+2$ vertices and
$3 m^{2}-m$ edges, where m is the number of vertices in complete graph $\mathrm{K}_{\mathrm{m}}(m \geq 4)$.

3. Main Results

In this paper, we present algorithms to determine the distance-2 chromatic number for the duplicate graph of the Mycielskian graph of paths, cycles and complete graphs.

Algorithm 3.1.

Procedure: Distance-2 colouring of $\operatorname{DGM}\left(\mathrm{P}_{\mathrm{m}}\right)$, (m ≥ 2).

Input:

$\mathrm{V} \leftarrow\left\{\mathrm{w}, \mathrm{u}_{1}, \mathrm{u}_{2} \ldots . \mathrm{u}_{\mathrm{m}}, \mathrm{v}_{1}, \mathrm{v}_{2} \ldots . \mathrm{v}_{\mathrm{m}}, \mathrm{w}^{\prime}, \mathrm{u}_{1}^{\prime}, \mathrm{u}_{2}{ }^{\prime} \ldots . \mathrm{u}_{\mathrm{m}}{ }^{\prime}\right.$
$\left., \mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime} \ldots . \mathrm{v}_{\mathrm{m}}{ }^{\prime}\right\} \mathrm{E} \leftarrow\left\{\mathrm{e}_{1}, \mathrm{e}_{2} \ldots \ldots \ldots . . \mathrm{e}_{8 \mathrm{~m}-6}\right\}$
llassignment of colours to the vertices $\operatorname{DGM}\left(\mathrm{P}_{\mathrm{m}}\right)$, ($\mathrm{m} \geq 2$).

$$
\begin{aligned}
& \begin{array}{c}
\mathrm{w}, \mathrm{u}_{\mathrm{m}} \leftarrow \mathrm{c}_{1}, \mathrm{w}^{\prime} \leftarrow \mathrm{c}_{2} \\
\text { for } 1 \leq i \leq m \\
\quad\{ \\
\quad \mathrm{u}_{\mathrm{i}}^{\prime} \leftarrow \mathrm{c}_{\mathrm{i}+1}
\end{array} \\
& \text { end for } \\
& \text { for } 1 \leq i \leq m-1 \\
& \quad\left\{\quad \mathrm{u}_{\mathrm{i}} \leftarrow \mathrm{c}_{\mathrm{i}+2}\right. \\
& \quad\} \\
& \text { end for }
\end{aligned}
$$

if $2 \leq m \leq 4$

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}}^{\prime} \leftarrow \mathrm{c}_{\mathrm{m}+2} \\
& \mathrm{v}_{\mathrm{m}-1} \leftarrow \mathrm{c}_{\mathrm{m}+1} \\
& \text { for } 1 \leq i \leq m-1 \\
& \quad\{ \\
& \quad \mathrm{v}_{\mathrm{i}} \leftarrow \mathrm{c}_{\mathrm{i}+1} \\
& \quad\} \\
& \text { end for }
\end{aligned}
$$

if $2<m \leq 4$
for $\mathrm{i}=1$ to $\mathrm{m}-2$
\{ $\mathrm{v}_{\mathrm{i}}^{\prime} \leftarrow \mathrm{c}_{1}$
\}
else

if $\mathbf{4 < m}<7$

$$
\begin{aligned}
& \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}^{\prime} \leftarrow \mathrm{c}_{1} \\
& \mathrm{v}_{1}, \mathrm{v}_{\mathrm{m}-1}^{\prime} \leftarrow \mathrm{c}_{\mathrm{m}+1} \\
& \mathrm{v}_{1}^{\prime}, \mathrm{v}_{\mathrm{m}-1} \leftarrow \mathrm{c}_{\mathrm{m}} \\
& \mathrm{v}_{\mathrm{m}} \leftarrow \mathrm{c}_{\mathrm{m}-1} \\
& \text { for } 1 \leq i \leq 2
\end{aligned}
$$

```
        \(v_{i+1} \leftarrow c_{4-i}\)
        \}
        end for
        for \(\mathrm{i}=1\) to \(\mathrm{m}-4\)
        \{
```

 \(v^{\prime}{ }_{m+2-2 i} \leftarrow c_{i+2}\)
 \}
 end for
 if $\mathbf{m}=6$
$v_{4} \rightarrow c_{2}$
else
if $m \geq 7$

$$
\begin{aligned}
& v_{4} \leftarrow c_{2}, v_{4}^{\prime} \leftarrow c_{1} \\
& \text { for } 3 \leq i \leq m-2 \\
& \quad\{ \\
& \quad v_{i+2}, v^{\prime}{ }_{i+2} \leftarrow c_{i}
\end{aligned}
$$

$$
\}
$$

end for

$$
\text { for } i=1 \text { to } 3 \text { do }
$$

$$
\{
$$

$$
v_{i}, v_{i}^{\prime} \leftarrow c_{m-2+i}
$$

end if
end procedure.
Output: Distance-2 coloured of $\operatorname{DGM}\left(\mathrm{P}_{\mathrm{m}}\right),(\mathrm{m} \geq$ 2).

Theorem 3.1:

If $\operatorname{DGM}\left(P_{m}\right)$ is the duplicate graph of the Mycielskian graph of path $P_{m}(m \geq 2)$, where m is the number of vertices in path P_{m}, then
$\chi^{2}\left(D G M\left(P_{m}\right)\right) \leq m+2$.

Proof.

Let $\operatorname{DGM}\left(\mathrm{P}_{\mathrm{m}}\right)$ be the duplicate graph of the Mycielskian graph of path $P_{m}(m \geq 2)$, where m is the number of vertices in path P_{m}. Define a function
$\mathrm{f}: \mathrm{V} \rightarrow\{1,2 \ldots . .4 \mathrm{~m}+2\}$ such that $f(u) \neq f(v)$ if $u v \in E$, where V is the vertex set and E is edge set of $\operatorname{DGM}\left(\mathrm{P}_{\mathrm{m}}\right)$ as follows.

Case (i) if $\mathbf{1}<\mathrm{m}<5$

First we assign $f(w)=c_{1}$ and $f\left(w^{\prime}\right)=c_{2}$. Since
$\operatorname{deg}(\mathrm{w})=\operatorname{deg}\left(\mathrm{w}^{\prime}\right),|N(w)|=\left|N\left(w^{\prime}\right)\right|=m$
Hence $m+1$ colours are needed to colour the vertices $\mathrm{N}[\mathrm{w}]$. Since $N(w) \cap N\left(w^{\prime}\right)=\phi$ and $d\left(N(w), N\left(w^{\prime}\right)\right)>2 \mathrm{~N}(\mathrm{w})$ and $\mathrm{N}\left(\mathrm{w}^{\prime}\right)$ receives same colours whereas w and w^{\prime} receives different colours among $\mathrm{m}+1$ colours. Using algorithm 3.1, for $1 \leq i \leq m-1, \mathrm{v}_{\mathrm{i}}$ and $\mathrm{v}_{\mathrm{i}}^{\prime}$ are coloured by $\mathrm{m}+1$ colours.In this case, $N\left(v_{m-1}\right)=\Delta$ and
$m \leq\left|N\left(v_{m-1}\right)\right| \leq m+1$. If $\left|N\left(V_{m-1}\right)\right|=m+1$ we need $\mathrm{m}+2$ colours to $\mathrm{N}\left[\mathrm{v}_{\mathrm{m}-1}\right]$ and if $\mathrm{m}=$ $\left|N\left(v_{m-1}\right)\right|$ we need $\mathrm{m}+1$ colours to colour the vertices of $\mathrm{N}\left[\mathrm{v}_{\mathrm{m}-1}\right]$, but $\mathrm{d}\left(\mathrm{w}^{\prime}, \mathrm{v}_{\mathrm{i}}^{\prime}\right)<2$, $f\left[w^{\prime}\right] \neq f\left[v_{i}^{\prime}\right]$ where $1 \leq i \leq m$ we need $\mathrm{m}+2$ th colour to $v_{m} \in N\left(v_{m-1}{ }^{\prime}\right)$ and $v_{m}{ }^{\prime} \in N\left(v_{m-1}\right)$, $\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}{ }^{\prime}\right)$ Since $\mathrm{d}\left(\mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}}{ }_{\mathrm{m}}\right)>2$. Hence
$\chi^{2}\left(D G M\left(P_{m}\right)\right) \leq m+2$.
Case (ii) if $m \geq 5$
First we assign the maximum degree vertices $f(w)=c_{1}$ and $f\left(w^{\prime}\right)=c_{2}$. Since $\operatorname{deg}(w)=\operatorname{deg}\left(w^{\prime}\right)$,
$|N(w)|=\left|N\left(w^{\prime}\right)\right|=m$ and
$\left|N\left(v_{i}\right)\right|=\left|N\left(v_{i}^{\prime}\right)\right|<m \quad$ where $1 \leq i \leq m$ and
$\left|N\left(u_{i}\right)\right|=\left|N\left(u_{i}^{\prime}\right)\right|<m$ Hence $\mathrm{m}+1$ colours are needed to colour $\mathrm{N}[\mathrm{w}]$. Since

$$
N(w) \cap N\left(w^{\prime}\right)=\phi \text { and }
$$

$d\left(N(w), N\left(w^{\prime}\right)\right)>2, \mathrm{~N}(\mathrm{w})$ and $\mathrm{N}\left(\mathrm{w}^{\prime}\right)$ receives same colours whereas w and w^{\prime} receives different colours among $\mathrm{m}+1$ colours. Using algorithm 3.1 for $1 \leq \mathrm{i} \leq \mathrm{m}-1, \mathrm{v}_{\mathrm{i}}$ and $\mathrm{v}_{\mathrm{i}}^{\prime}$ are coloured by $\mathrm{m}+1$ colours. Hence $\chi^{2}\left(D G M\left(P_{m}\right)\right) \leq m+2$.

Algorithm 3.2.

Procedure: Distance-2 colouring of $\operatorname{DGM}\left(\mathrm{C}_{\mathrm{m}}\right)$, ($\mathrm{m} \geq 3$).
Input: $\mathrm{V} \leftarrow\left\{\mathrm{w}, \mathrm{u}_{1}, \mathrm{u}_{2} \ldots . \mathrm{u}_{\mathrm{m}}, \mathrm{v}_{1}, \mathrm{v}_{2} \ldots . \mathrm{v}_{\mathrm{m}}, \mathrm{w}^{\prime}, \mathrm{u}_{1}{ }^{\prime}, \mathrm{u}_{2}{ }^{\prime} \ldots\right.$. $\left.\mathrm{u}_{\mathrm{m}}{ }^{\prime}, \mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime} \ldots . \mathrm{v}_{\mathrm{m}}{ }^{\prime}\right\}$

$$
\mathrm{E} \leftarrow\left\{\mathrm{e}_{1}, \mathrm{e}_{2} \ldots \ldots \ldots . . \mathrm{e}_{8 \mathrm{~m}}\right\}
$$

\I assignment of colours to the vertices of $\operatorname{DGM}\left(\mathrm{C}_{\mathrm{m}}\right),(\mathrm{m} \geq 3)$.

$$
\begin{aligned}
& \mathrm{w}, \mathrm{u}_{\mathrm{m}} \leftarrow \mathrm{c}_{1}, \mathrm{w}^{\prime} \leftarrow \mathrm{c}_{2} \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{m} \text { do } \\
& \{ \\
& \left\{\mathrm{u}_{\mathrm{i}}^{\prime} \leftarrow \mathrm{c}_{\mathrm{i}+1}\right. \\
& \text { end for } \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{m}-1 \text { do } \\
& \{ \\
& \quad \mathrm{u}_{\mathrm{i}} \leftarrow \mathrm{c}_{\mathrm{i}+2} \\
& \text { end for }
\end{aligned}
$$

if $2<m<5$

$$
\begin{aligned}
& v_{m}, v_{m}^{\prime} \leftarrow c_{m+3} \\
& v_{m-1}, v^{\prime}{ }_{m-1} \leftarrow c_{m+2} \\
& v_{m-2}^{\prime} \leftarrow c_{m} \\
& v_{m-2} \leftarrow c_{m-1}
\end{aligned}
$$

else
if $m=4$

$$
v_{1} \leftarrow c_{2}, v_{1}^{\prime} \leftarrow c_{5}
$$

else
if $m=5$

$$
\begin{aligned}
& v_{1}, v_{4}^{\prime} \leftarrow c_{4}, v_{2}^{\prime} v_{3}^{\prime} \leftarrow c_{1}, v_{2} \leftarrow c_{3} \\
& v_{3}, v_{1}^{\prime} \leftarrow c_{m+1}, v_{5}, v_{5}^{\prime} \leftarrow c_{m+2}, v_{4} \leftarrow c_{2}
\end{aligned}
$$

else
if $m=6$

$$
v_{1}, v_{4}^{\prime} \leftarrow c_{4}, v_{2}^{\prime} v_{3}^{\prime} \leftarrow c_{1}, v_{1}^{\prime}, v_{4} \leftarrow c_{5}
$$

$$
v_{6} \leftarrow c_{3} \quad v_{3}, v_{6}^{\prime} \leftarrow c_{6}, \quad v_{2}, v_{5}^{\prime} \leftarrow c_{m+1}
$$

$$
v_{5} \leftarrow c_{2}
$$

else

$$
\text { if } m>6
$$

$$
v_{4} \leftarrow c_{2}, v_{4}^{\prime} \leftarrow c_{1}
$$

$$
\text { for } i=3 \text { to } m-2 d o
$$

$$
\{
$$

$$
v_{i+2}, v_{i+2}^{\prime} \leftarrow c_{i}
$$

$$
\}
$$

end for

$$
\begin{aligned}
& \text { for } i=1 \text { to } 3 d o \\
& \qquad\left\{\begin{array}{l}
\{ \\
\quad v_{i}, v_{i}^{\prime} \leftarrow c_{m+i-2}
\end{array}\right.
\end{aligned}
$$

end if
end procedure

Output: Distance-2 coloured of $\operatorname{DGM}\left(\mathrm{C}_{\mathrm{m}}\right),(\mathrm{m} \geq$ $3)$.

Theorem 3.2.

If $\operatorname{DGM}\left(\mathrm{C}_{\mathrm{m}}\right)$ is the duplicate graph of the Mycielskian graph of cycle $\mathrm{C}_{\mathrm{m}}(\mathrm{m} \geq 3)$, where m is the number of vertices in cycle C_{m}, then $\chi^{2}\left(\operatorname{DGM}\left(C_{m}\right)\right) \leq m+3$.
Proof:
Let $\operatorname{DGM}\left(\mathrm{C}_{\mathrm{m}}\right)$ be the duplicate graph of the Mycielskian graph of cycle C_{m}, where m is the number of vertices in cycle C_{m}. Define a function $\mathrm{f}: \mathrm{V} \rightarrow\{1,2 \ldots \ldots .4 \mathrm{~m}+2\}$ such that $f(u) \neq f(v)$ if $u v \in E$, where V is the vertex set and E is edge set of $\operatorname{DGM}\left(\mathrm{C}_{\mathrm{m}}\right)$ as follows.

Case (i) if $\mathbf{2}<\mathbf{m}<\mathbf{5}$

Using algorithm 3.2,
$\mathrm{f}(\mathrm{w})=\mathrm{f}\left(\mathrm{u}_{\mathrm{m}}\right)=\mathrm{c}_{1}, \mathrm{f}\left(\mathrm{w}^{\prime}\right)=\mathrm{c}_{2}, \mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}{ }^{\prime}\right)=\mathrm{c}_{\mathrm{m}+3}, \mathrm{f}\left(\mathrm{v}_{\mathrm{m}}-\right.$ $\left.{ }_{1}\right)=f\left(v_{m-1}^{\prime}\right)=c_{m+2}, f\left(v_{m-2}^{\prime}\right)=c_{m}$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{m}-2}\right)=\mathrm{c}_{\mathrm{m}-1}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}^{\prime}\right)=\mathrm{c}_{\mathrm{i}+1}$ for $1 \leq \mathrm{i} \leq \mathrm{m}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{c}_{\mathrm{i}+2}$ for
$1 \leq i \leq m-1$ and if $\mathrm{m}=4 \mathrm{f}\left(\mathrm{v}_{1}\right)=\mathrm{c}_{2}, \mathrm{f}\left(\mathrm{v}_{1}^{\prime}\right)=\mathrm{c}_{\mathrm{m}+1}$,
Since
$f\left(v_{m}\right)=f\left(v_{m}^{\prime}\right)=c_{m+3}$, we need atmost $m+3$ colours to colour the vertices $\mathrm{v}_{\mathrm{m}} \& \mathrm{v}_{\mathrm{m}}^{\prime}$. Hence

$$
\chi^{2}\left(D G M\left(C_{m}\right)\right)=m+3
$$

Case (ii) if $\mathbf{m}=5$

Using algorithm 3.2,
$\mathrm{f}(\mathrm{w})=\mathrm{f}\left(\mathrm{u}_{\mathrm{m}}\right)=\mathrm{c}_{1}, \mathrm{f}\left(\mathrm{w}^{\prime}\right)=\mathrm{c}_{2}, \mathrm{f}\left(\mathrm{v}_{1}\right)=\mathrm{f}\left(\mathrm{v}_{4}^{\prime}\right)=\mathrm{c}_{4}, \mathrm{f}\left(\mathrm{v}_{2}\right)=\mathrm{c}_{3}$,
$\mathrm{f}\left(\mathrm{v}_{3}\right)=\mathrm{f}\left(\mathrm{v}_{1}^{\prime}\right)=\mathrm{c}_{\mathrm{m}+1}, \mathrm{f}\left(\mathrm{v}_{4}\right)=\mathrm{c}_{2}, \mathrm{f}\left(\mathrm{v}_{2}^{\prime}\right)=\mathrm{f}\left(\mathrm{v}_{3}^{\prime}\right)=\mathrm{c}_{1}$ and
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}^{\prime}\right)=\mathrm{c}_{\mathrm{i}+1}$ for $1 \leq i \leq m$ and $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{c}_{\mathrm{i}+2}$ for
$1 \leq i \leq m-1$. In this case
$\left|N\left(v_{m-1}^{\prime}\right)\right|=\left\{u_{3}, u_{m}, v_{3}, v_{m}\right\}$,
$v_{m-1}{ }^{\prime} \in c_{4}, u_{3} \in c_{m}, v_{3} \in c_{m+1}, u_{m} \in c_{1}$
and $\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right) \neq \mathrm{c}_{2} \mathrm{Uc}_{3}$, since $v_{2} \in c_{3}, \mathrm{~d}\left(v_{4}, v_{m}\right)<2$ and $v_{2} \in c_{3}, \mathrm{~d}\left(v_{2}, v_{m}\right)<2$. Therefore $\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)=\mathrm{c}_{\mathrm{m}+2}$, and $\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}{ }^{\prime}\right)=\mathrm{c}_{\mathrm{m}+2}$, since $d\left(v_{m}, v_{m}^{\prime}\right)>2$. Hence
$\chi^{2}\left(\operatorname{DGM}\left(\mathrm{C}_{\mathrm{m}}\right)\right) \leq \mathrm{m}+3$.
Case (iii) if $m \geq 5$

First we assign the maximum degree vertices $f(w)=c_{1}$ and $f\left(w^{\prime}\right)=c_{2}$. Since $\operatorname{deg}(w)=\operatorname{deg}\left(w^{\prime}\right)$,
$|N(w)|=\left|N\left(w^{\prime}\right)\right|=m$ and
$\left|N\left(v_{i}\right)\right|=\left|N\left(v_{i}^{\prime}\right)\right|<m \quad$ where $1 \leq i \leq m$ and
$v_{4} \in c_{2}$. Hence $\mathrm{m}+1$ colours are needed to colour
$\mathrm{N}[\mathrm{w}]$. Since $N(w) \cap N\left(w^{\prime}\right)=\phi$ and
$d\left(N(w), N\left(w^{\prime}\right)>2, \mathrm{~N}(\mathrm{w})\right.$ and $\mathrm{N}\left(\mathrm{w}^{\prime}\right)$ receives same colours whereas w and w^{\prime} receives different colours among $\mathrm{m}+1$ colours. Using algorithm 3.2, v_{i} and $\mathrm{v}_{\mathrm{i}}^{\prime}$ are coloured by $\mathrm{m}+1$ colours for $1 \leq \mathrm{i} \leq \mathrm{m}$. Hence $\chi^{2}\left(\mathrm{DGM}\left(\mathrm{C}_{\mathrm{m}}\right)\right) \leq \mathrm{m}+3$.

Algorithm 3.3.

Procedure: Distance- 2 colouring of $\operatorname{DGM}\left(\mathrm{K}_{\mathrm{m}}\right), \mathrm{m}$ ≥ 4.

$$
\begin{array}{cl}
\text { Input: } & \mathrm{V} \leftarrow\left\{{\mathrm{w}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{m}}, \mathrm{v}_{1}, \mathrm{v}_{2}, . . \mathrm{v}_{\mathrm{m}}, \mathrm{w}^{\prime}},\right. \\
& \left.\mathrm{u}_{1}^{\prime}, \mathrm{u}_{2}^{\prime}, . ., \mathrm{u}_{\mathrm{m}}^{\prime}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, . ., \mathrm{v}_{\mathrm{m}}^{\prime}\right\} \\
\mathrm{E} \leftarrow & \left.\leftarrow \mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{3 \mathrm{~m}^{2}-\mathrm{m}}\right\}
\end{array}
$$

if $\mathbf{m} \geq \mathbf{4}$

$$
\mathrm{w}, \mathrm{u}_{1}, \mathrm{v}_{1}^{\prime} \leftarrow \mathrm{c}_{1}
$$

$$
\mathrm{w}^{\prime}, \mathrm{v}_{1} \leftarrow \mathrm{c}_{2}
$$

$$
\text { for } \mathrm{i}=1 \text { to } \mathrm{m} \text { do }
$$

\{

\}
end for
for $\mathrm{i}=1$ to $\mathrm{m}-1$ do
\{

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{i}+1} \leftarrow \mathrm{c}_{\mathrm{i}+2} \\
& \mathrm{v}_{\mathrm{i}+1}, v_{i+1}^{\prime} \leftarrow \mathrm{c}_{\mathrm{m}+1+\mathrm{i}}
\end{aligned}
$$

$$
\text { \} }
$$

end if

end procedure.

Theorem 3.3.

Let $\operatorname{DGM}\left(\mathrm{K}_{\mathrm{m}}\right)$ be the duplicate graph of the Complete graph K_{m}, where m is the number of vertices in complete graph, then $\chi^{2}\left(\operatorname{DGM}\left(\mathrm{~K}_{\mathrm{m}}\right)\right)=\Delta+2$.

Proof.

Let $\operatorname{DGM}\left(\mathrm{K}_{\mathrm{m}}\right)$ be the duplicate graph of the Complete graph K_{m}, where m is the number of vertices in complete graph. Define a function $\mathrm{f}: \mathrm{V}$ $\rightarrow\{1,2, \ldots\}$ such that $\mathrm{f}(\mathrm{u}) \neq \mathrm{f}(\mathrm{v})$ if $\mathrm{uv} \in \mathrm{E}$, where

V is the vertex set and E is the edge set of $\operatorname{DGM}\left(\mathrm{K}_{\mathrm{m}}\right)$ as follows. From the structure of $\operatorname{DGM}\left(\mathrm{K}_{\mathrm{m}}\right),\left|\mathrm{N}\left(\mathrm{v}_{\mathrm{i}}\right)\right|=\left|\mathrm{N}\left(\mathrm{v}_{\mathrm{i}}^{\prime}\right)\right|=\Delta$ and
$|\mathrm{N}(\mathrm{w})|=\left|\mathrm{N}\left(\mathrm{w}^{\prime}\right)\right|=\left|\mathrm{N}\left(\mathrm{u}_{\mathrm{i}}\right)\right|=\left|\mathrm{N}\left(\mathrm{u}_{\mathrm{i}}^{\prime}\right)\right|<\Delta$.
Using algorithm 3.3,
$\mathrm{f}(\mathrm{w})=\mathrm{f}\left(\mathrm{u}_{1}\right)=\mathrm{f}\left(\mathrm{v}_{1}^{\prime}\right)=\mathrm{c}_{1}, \mathrm{f}\left(\mathrm{w}^{\prime}\right)=\mathrm{f}\left(\mathrm{v}_{1}\right)=\mathrm{c}_{2}$
and $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}^{\prime}\right)=\mathrm{c}_{\mathrm{i}+1} 1 \leq \mathrm{i} \leq \mathrm{m}$ and $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\mathrm{c}_{\mathrm{i}+2}$ where
$1 \leq \mathrm{i} \leq \mathrm{m}-1$ and $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}^{\prime}\right)=\mathrm{c}_{\mathrm{m}+1+\mathrm{i}}$ for
$1 \leq \mathrm{i} \leq \mathrm{m}-3$. Since $\left|\mathrm{N}\left(\mathrm{v}_{\mathrm{m}-1}\right)\right|=\Delta$, hence $\Delta+1$ colours are neede to colour $\mathrm{N}\left[\mathrm{v}_{\mathrm{m}-1}\right], \mathrm{f}\left(v_{m}\right)=$ $f\left(N\left(v_{m-1}\right)\right)$ and
$\mathrm{d}\left(\mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}-1}\right) \leq 2$. Hence $\Delta+2$ colours are needed to
colour $\quad \mathrm{N}\left[\mathrm{v}_{\mathrm{m}}\right]$ and $\mathrm{d}\left(\mathrm{v}_{\mathrm{m}-1}, \mathrm{v}_{\mathrm{m}-1}^{\prime}\right)>2$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{m}-1}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{m}-1}^{\prime}\right) \quad$ and $\quad \mathrm{d}\left(\mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}}^{\prime}\right)>2$,
$f\left(v_{m}\right)=f\left(v_{m}^{\prime}\right)$.Hence
$\chi^{2}\left(\operatorname{DGM}\left(\mathrm{~K}_{\mathrm{m}}\right)\right)=\Delta+2$.

Conclusion

In this paper, we presented algorithms and determined the distance-2 chromatic number for
the duplicate graph of the Mycielskian graph of paths, cycles and complete graphs.

References

[1] O.V. Borodin, A.O. Ivanova and N.T. Neustroeva, Distance-2 colouring of sparse plane graphs (in Russian), Siberian Electronic Mathematical Reports, 1 (2004), 76-90.
[2] G.J. Chang, L. Huang and X. Zhu, Circular chromatic numbers of Mycielski's graphs, Discrete Mathematics, 205 (1999), 23-37.
[3] G. Fertin, E. Godard and A. Raspaud, Acyclic and Kdistance colouring of the grid, Inform. Process. Lett., 87 (2003), 51-58.
[4] G. Fertin, A. Raspaud and B. Reed, On star colouring of graphs, Lecture Notes in Computer Science, 2204 (2001), 140-153.
[5] J. Mycielski, Sur le colouriage des graphs, Colloq. Math., 3 (1955), 161-162.
[6] K. Thirusangu, P.P. Ulaganathan and B. Selvam, Cordial labeling in duplicate graphs, Int. J. Computer Math. Sci. Appl., 4(1-2) (2010), 179-186.
[7] P.P. Ulaganathan, K. Thirusangu and B. Selvam, Edge magic total labeling in extended duplicate graph of path, International Journal of Applied Engineering Research, 6(10) (2011), 1211

Example: Distance- 2 colored of $\operatorname{DGM}\left(\mathrm{P}_{5}\right),(\mathrm{m} \geq 2)$.

$\operatorname{Fig}(\mathrm{i}) \chi^{2}\left(\mu\left(\mathrm{P}_{5}\right)\right)=6$
Example: Distance- 2 colored of $\operatorname{DGM}\left(\mathrm{C}_{5}\right)$,

Fig(ii) $\chi^{2}\left(\mu\left(\mathrm{C}_{5}\right)\right)=7$

