On Embedding of Every Finite Group into a Group of Automorphism

Kuldeep Singh^{#1}, Ankur Bala^{#2}

^{#1} Department of Mathematics, Government PG College, Hisar (Haryana) ^{#2} Department of Applied Science, CDL Government Polytechnic College (Nathusari Chopta)

India

Abstract— In this Article, We have proved that every group of finite order can be embedded into a group of automorphism. We have used the famous classic result of cayley, which states that every group can be embedded into a group of permutations.

Keywords— Embedding, Finite Group, Group of Automorphism, $Aut(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \cdots n \text{ copies})$

Notation:

$$Aut(\mathbb{Z}^n) = Aut(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \cdots n \text{ copies})$$
 is

group of automorphisms with respect to composition of function.

$$GL(n,\mathbb{Z}) = \left\{ [a_{ij}]_{n \times n} : a_{ij} \in \mathbb{Z} \& \det([a_{ij}]_{n \times n}) = \pm 1 \right\}$$

Theorem 1: (*Cayley's*) Every finite group can be embedded in S_n for some $n \in N$.

Theorem 2: $GL(n,\mathbb{Z})$ is isomorphic

to $Aut(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \cdots n \ copies)$.

Theorem 3: S_n can be embedded in $GL(n,\mathbb{Z})$ for

all $n \in N$.

Main Theorem: Using theorem 1, 2 &3 we can say that every finite group can be embedded into group

 $Aut(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \cdots n \ copies)$ for

some $n \in N$.

Proof of Theorem 2:

Let
$$f, g \in Aut(\mathbb{Z}^{n})$$

Then
 $f(1,0,0,0....) = (a_{11}, a_{12},....a_{1n})$
 $f(0,1,0,0....) = (a_{21}, a_{21},....a_{2n})$
.
.
.
 $f(0,0,0,....,1) = (a_{n1}, a_{n2},....,a_{nn})$
Now define $\varphi : Aut(\mathbb{Z}^{n}) \longrightarrow GL(n)$

Such that

$$\varphi(f) = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

 $\Rightarrow f$ is associated with a $n \times n$ matrix with determinant ± 1 .

If f is an automorphism then f has an inverse automorphism which is multiplication by

$$N = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nn} \end{pmatrix}$$

Such that MN = I.

The determinants are integers satisfying det(M). $det(M^{-1}) = 1$

$$\Rightarrow \det(M) = \pm 1$$

 \Rightarrow There is a bijection between $GL(n,\mathbb{Z})$

and $Aut(\mathbb{Z}^n)$.

Composition of automorphisms corresponds to multiplication of matrices.

So, it is an isomorphism.

 \Rightarrow Aut(\mathbb{Z}^n) is isomorphic to $GL(n,\mathbb{Z})$.

Proof of Theorem 3:

Let S_n be the permutation group on n symbols.

Define
$$\varphi: S_n \longrightarrow GL(n, \mathbb{Z})$$
 such that

$$\varphi(\sigma) = \left[\sigma\right]_{n \times n} \forall \sigma \in S_n$$

Where $[\sigma]_{n \times n}$ is permutation matrix obtained by σ .

i.e. if
$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \beta_1 & \beta_2 & \cdots & \beta_n \end{pmatrix}$$
 then
$$\left[\sigma\right]_{n \times n} = \begin{pmatrix} R_1 \\ R_2 \\ \vdots \\ R_n \end{pmatrix}$$

Where R_i is $R_{\beta_i}^{th}$ row of identity matrix.

Z)

Clearly φ is a homomorphism.

Now consider the kernel of this homomorphism.

$$\ker \varphi = \big\{ \sigma : \varphi(\sigma) = I_{n \times n} \big\}$$

$$\Rightarrow i = \beta_i \quad \forall i$$

 $\Rightarrow \ker \varphi$ is trivial.

Hence the homomorphism is injective.

 $\Rightarrow: S_n$ can be embedded in $GL(n,\mathbb{Z})$ for

all
$$n \in N$$
.

Proof of Main Theorem:

Since every finite group can be embedded in S_n as stated in theorem 1 & by theorem 3 we can say that S_n can be embedded in $GL(n,\mathbb{Z})$.

So, every finite group can be embedded in $GL(n,\mathbb{Z})$.

And in theorem 2, we have proved that $GL(n,\mathbb{Z})$

is isomorphic to $Aut(\mathbb{Z}^n)$.

Now, combining all these statements one can easily conclude that every finite group is isomorphic to a subgroup of a group of automorphisms.

CONCLUSION

Every finite group is isomorphic to a subgroup of group of permutations by the famous cayley's theorem.

But we have proved that every finite group is isomorphic to the subgroup of a group of automorphisms i.e. $Aut(\mathbb{Z}^n)$.

REFERENCES

- Contemporary Abstract Algebra, J.A. Gallian, Cengage Learning, 2016. ISBN: 1305887859, 9781305887855
- [2] Abstract Algebra (3rd Edition), David S. Dummit, Richard M. Foote, ISBN: 978-0-471-43334-7