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Abstract — In this paper, we will study the resulting 

thermal similarity equation for laminar flow and 

heat transfer between two separated fluids for 

various Prandtl numbers and a range of values 

characterizing the hot fluid convection process. The 

problem of hydrodynamic and thermal boundary 

layers over a flat plate in a uniform stream of fluid 

has been solved analytically using homotopy 

analysis method (HAM) and numerically using 

Matlab bvp4c numerical routine. Velocity and 

temperature distributions were numerically 

discussed and presented in the graphs.Convergence 

of the HAM solution is checked. The effects of 

various Prandtl numbers and a range of values of 

the parameter characterizing the hot fluid 

convection process for similarity energy equation 

are considered. The temperature and heat transfer 

characteristics of the Blasius flow have been 

investigated if the convective heat transfer of the 

fluid heating the plate on its lower surface is 

proportional to . The comparison between 

analytical and numerical results has an excellent 

agreement with previously published works. 
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I. INTRODUCTION  

 The problem of a similarity solution for the 

laminar flow and heat transfer between two 

separated fluids has been attracted a lot of attention 

recently. Aziz [1] has demonstrated that a similarity 

solution is possible for a convective boundary 

condition at the plate, where the convective heat 

transfer of the fluid heating the plate on its lower 

surface is proportional to  . Shokouhmand H. et 

al. [2] has described the development of local and 

non-local similarity solutions for laminar flow and 

heat transfer between two separated fluids. Magyari 

E. [3] has been investigated the exact solution for the 

temperature boundary layer in terms of the solution 

of the flow problem in a compact integral form. 

 The homotopy analysis method (HAM) is 

one of the well-known methods to solve non-linear 

equations that does not need to any small parameter. 

This method has been introduced by Liao in 1992 

[4-9]. The method has been used by many authors 

[10–24] in a wide variety of scientific and 

engineering applications to solve different types of 

governing differential equations: linear and non-

linear, homogeneous and non-homogeneous, and 

coupled and decoupled as well. This method offers 

highly accurate successive approximations of the 

solution. In this paper, we will study the resulting 

thermal similarity equation for laminar flow and heat 

transfer between two separated fluids for various 

Prandtl numbers and a range of values characterizing 

the hot fluid convection process. The system of 

nonlinear coupled ordinary differential equations is 

solved analytically using homotopy analysis method 

(HAM) and numerically using Matlab bvp4c 

numerical routine. 

 

 

2. Problem formulation 

 

 Consider the problem of hydrodynamic and 

thermal boundary layer flows over a flat plate in a 

stream of cold fluid at temperature  moving over 

the top surface of the plate with a uniform velocity 

. Assuming steady, incompressible, laminar flow 

with constant fluid properties and negligible viscous 

dissipation, and recognizing that  the 

boundary layer equations can be written as: 

 

Continuity: 

 

 

Momentum: 

 

 

Energy: 

 

 

Where  and  are the  (along the plate) and the  

(normal to the plate) components of the velocities, 

respectively,  is the temperature,  is the kinematic 
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viscosity of the fluid, and  is the thermal diffusivity 

of the fluid.  

The velocity boundary conditions can be expressed 

as 

 

 

 
 

As mentioned before, the bottom surface of the plate 

is heated by convection from a hot fluid at 

temperature  which provides a heat transfer 

coefficient . The boundary conditions at the plate 

surface and far into the cold fluid may be written as 

 

 

 

 
 

A similarity solution of Eqs. (1) – (5) is obtained by 

defining an independent variable  and a dependent 

variable  in terms of the stream function  as 

 

 

 

 

 

Similarly defining a dimensionless temperature  as 

 

 

 

Eqs. (1) – (3) reduce to: 

 

 

 

 

 

Here the primes denote differentiation of  with 

respect to  

The boundary conditions in terms of the similarity 

variables are: 

 

 

 

 
  

 

 

 

 

where 

 

 

 

For the energy equation to have a similarity solution, 

the quantity  must be a constant and not a function 

of  as in Eq. (17). This condition can be met if the 

heat transfer coefficient  is proportional to  

We therefore assume 

 

  

 

Where  is a constant. With the introduction of Eq. 

(18) into Eq. (17), we have 

 

 

 

With  defined by Eq. (19), the solutions of Eqs. (11) 

– (15) yield the similarity solutions. With  defined 

by Eq. (17), the solutions generated are the local 

similarity solutions. 

 

 

3. Homotopy analysis solution 

 
3.1. Zero-order deformation equations 

 

 Solving Eqs. (11)–(16) using HAM [25,26–

29]. From the boundary conditions (13) – (16), it is 

obvious to choose: 

 

 

 

 

 

as the initial approximations of   and , 

respectively, and to choose: 

 

 

 

 

 

as the auxiliary linear operators, which have the 

following properties: 

 

 

 

 

 

where   are arbitrary constants. 

Based on (11) and (12), This paper is led to define 

the non-linear operators: 
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Let h denote the non-zero auxiliary parameter. Then 

construct the zeroth-order deformation equations: 

 

 

 

 

 

 
 

Subject to the boundary conditions: 

 

 

 

 

 

 

 

 

 

 

 

where  is an embedding parameter. When 

 , it is straightforward that: 

 

 

 

When  the zeroth-order deformation equations 

(27)–(31) are equivalent to the original equations 

(11)–(16), so that we have: 

 

 
 

respectively. Thus as  increases from 0 to 1, 

 and  vary from the initial guess 

 and  to the solutions  and  of the 

problem, respectively. So expanding  and 

 in Taylor’s series about the embedding 

parameter , we have: 

 

 

 

 

 

where: 

 

 

 

 

 

If h is properly chosen, the series (34) and (35) are 

convergent at , we have, using (32) and (33), 

the solution series: 

 

 

 

 

 

 
3.2 Higher order deformation equations 

Differentiating the zero-order deformation equations 

(27) and (28) m times about q, then setting , 

and finally dividing them by  , we obtain the mth-

order deformation  equations: 

 

 

 

 

 

 

 

subject to the boundary conditions: 

 

 
 

 

 

where 

 

and 
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According to initial approximations and the auxiliary 

linear operators, we set: 

 

 

 

The first order deformation equations: 

 

 

 

 

 

and the boundary conditions: 

 

 

 

 

 

so that we have: 

 

 

 

 
 

 

 

 

 

 

 

 

 

Similarly, we obtain: 

 

 

 

 
 

 

 

 

 

 

 

 

 

Since the solutions  and  are too long, so 

they are calculated and shown graphically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Temperature distribution on a flat plate with 

convective boundary condition for various values of 

parameter  . 
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Table 1 Analytical and numerical solutions for 

variation of temperature on the flat plate compared 

with previous work [1, 2, 3] 

a Pr 

  

Analytical Numerical 
Previous 

Work 
Analytical Numerical 

Previous 

Work 

0.05 0.1 0.253733 0.253733 0.2536 0.0373134 0.0373134 0.0373 

0.1 0.1 0.40456 0.40456 0.4046 0.059544 0.059544 0.0594 

0.2 0.1 0.576067 0.576067 0.5761 0.0847866 0.0847866 0.848 

0.4 0.1 0.731019 0.731019 0.7310 0.107593 0.107593 0.1076 

0.6 0.1 0.803018 0.803018 0.8030 0.118189 0.118189 0.1182 

0.8 0.1 0.844611 0.844611 0.8446 0.124311 0.124311 0.1243 

1 0.1 0.871701 0.871701 0.8717 0.128299 0.128299 0.1283 

5 0.1 0.971405 0.971405 0.9714 0.142973 0.142973 0.1430 

10 0.1 0.985495 0.985495 0.9855 0.145047 0.145047 0.1450 

        

0.05 0.72 0.145023 0.145023 0.1447 0.0427488 0.0427488 0.0428 

0.1 0.72 0.252756 0.252756 0.2528 0.0747244 0.0747244 0.0747 

0.2 0.72 0.403523 0.403523 0.4035 0.119295 0.119295 0.1193 

0.4 0.72 0.575014 0.575014 0.5750 0.169994 0.169994 0.1700 

0.6 0.72 0.669916 0.669916 0.6699 0.198051 0.198051 0.1981 

0.8 0.72 0.730170 0.730170 0.7302 0.215864 0.215864 0.2159 

1 0.72 0.771822 0.771822 0.7718 0.228178 0.228178 0.2282 

5 0.72 0.944174 0.944174 0.9441 0.279131 0.279131 0.2791 

10 0.72 0.971285 0.971285 0.9713 0.287146 0.287146 0.2871 

        

0.05 10 0.0657465 0.0657465 0.0643 0.0467127 0.0467127 0.0468 

0.1 10 0.120752 0.120752 0.1208 0.0879248 0.0879248 0.0879 

0.2 10 0.215484 0.215484 0.2155 0.156903 0.156903 0.1569 

0.4 10 0.354565 0.354565 0.3546 0.258174 0.258174 0.2582 

0.6 10 0.451759 0.451759 0.4518 0.328945 0.328945 0.3289 

0.8 10 0.523512 0.523512 0.5235 0.381191 0.381191 0.3812 

1 10 0.578656 0.578656 0.5787 0.421344 0.421344 0.4213 

5 10 0.872883 0.872883 0.8729 0.635583 0.635583 0.6356 

10 10 0.932128 0.932128 0.9321 0.678721 0.678721 0.6787 

 

 
Fig. 2. Plots of the dimensionless temperature 

profiles  for the value   of the convective 

heat transfer parameter and the indicated values of 

the Prandtl number Pr 

 

   

 
Fig. 3. Plots of the wall temperature  as a 

function of the Prandtl number Pr for the indicated 

values of the convective heat transfer parameter . 

 

 

 

 
Fig. 4. Plots of the wall temperature  as a 

function of the convective heat transfer parameter  

for the indicated values of the Prandtl number Pr. 

 

 

4. Convergence of the HAM solution 

 

For an analytic solution obtained by the homotopy 

analysis method, its convergent depends on the 

auxiliary parameter . If this parameter is properly 

chosen, the given solution is valid, as verified in 

previous works [25, 26–29]. Since the interval for 

the admissible values of  corresponds to the line 

segments nearly parallel to the horizontal axis. Then 

we know that the 

admissible values for the parameter  is  

. In this paper we choose  .  

 

 

5. Results and discussion 

 

In Table 1, the results of the problem for fixed 

Prandtl numbers of 0.05, 0.1, 0.2, 0.4, 0.6,  

0.8, 1, 5 and 10. For each Prandtl number, both  

and  increase as  increases. 

According to the results, as  the solution 

approaches the classical solution for the constant 

surface temperature. This can be seen from the 

boundary condition equation (15) which reduces to 

 as . It can be observed that these 

results of previous work, numerical and analytical 

solutions agree up to four places of decimal.  

Fig. 1 compares the Homotopy analysis method with 

the numerical solutions for a fixed Prandtl number of 

0.72 and for a range of values of the parameter . 

For each curve, the vertical intercept gives the plate 

surface temperature. The plate surface temperature 

increases as  increases. 

In Fig. 2 the temperature profiles  are shown for 

the value  of the convective heat transfer 

parameter and seven selected values of the Prandtl 

number Pr for both numerical and analytical 

solutions. The larger Pr, the smaller temperature 

profiles . 

As an illustration of the comparing between 

analytical and numerical results, in Fig. 3 the wall 

temperature  is plotted as a function of Pr for 

three selected values of . The wall temperature 

 increases monotonically with increasing values 

of  for all specified values of Pr. When  
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and  approaches the value 1 for any , in a full 

agreement with Eq. (30). 

In fig. 4 the numerical and analytical solutions for 

the wall temperature  is plotted as a function of  

 for three selected values of Pr. As it is seen in Fig. 

4, the wall temperature decreases monotonically 

with increasing value of Pr for all specified values of 

. 

 

The temperature and heat transfer characteristics of 

the Blasius flow have been investigated if the 

convective heat transfer of the fluid heating the plate 

on its lower surface is proportional to . 

Numerical and analytical solutions were compared 

with previous work [1, 2, 3] in order to get an 

excellent agreement between results.  
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