# A study of unified results involving a product of generalized Legendre's function, a 

general class of polynomials, Aleph-function with the multivariable Aleph-function

$$
F . Y . A Y A N T^{1}
$$

1 Teacher in High School, France

Paper dedicated to Professor M.A. Pathan on the occasion of his 75 th birthday

## ABSTRACT

In this paper an integral involving general class of polynomials, Legendre's associated function, Aleph-function and Aleph-function of several variables has been evaluated and an expansion formula for product of the general class of polynomials, Legendre's associated function, Alephfunction and Aleph-function of several variables has been established with the application of this integral. The result established in this paper are of general nature and hence encompass several particular cases.

Keywords :Multivariable Aleph-function, Aleph-function, Legendre's associated function, general class of polynomials, expansion formula
2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

The Aleph- function, introduced by Südland [9] et al, however the notation and complete definition is presented here in the following manner in terms of the Mellin-Barnes type integral :
$\aleph(z)=\aleph_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}\left(\begin{array}{l|l}\mathrm{z} & \begin{array}{c}\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \\ \left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}\end{array}\end{array}\right)=\frac{1}{2 \pi \omega} \int_{L} \Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s) z^{-s} \mathrm{~d} s$
for all $z$ different to 0 and

$$
\begin{equation*}
\Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s)=\frac{\prod_{j=1}^{M} \Gamma\left(b_{j}+B_{j} s\right) \prod_{j=1}^{N} \Gamma\left(1-a_{j}-A_{j} s\right)}{\sum_{i=1}^{r} c_{i} \prod_{j=N+1}^{P_{i}} \Gamma\left(a_{j i}+A_{j i} s\right) \prod_{j=M+1}^{Q_{i}} \Gamma\left(1-b_{j i}-B_{j i} s\right)} \tag{1.2}
\end{equation*}
$$

With :
$|\arg z|<\frac{1}{2} \pi \Omega \quad$ Where $\Omega=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N} \alpha_{j}-c_{i}\left(\sum_{j=M+1}^{Q_{i}} \beta_{j i}+\sum_{j=N+1}^{P_{i}} \alpha_{j i}\right)>0$ with $i=1, \cdots, r$
For convergence conditions and other details of Aleph-function, see Südland et al [9].
Serie representation of Aleph-function is given by Chaurasia et al [2].
$\aleph_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(z)=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}(s)}{B_{G} g!} z^{-s}$
With $s=\eta_{G, g}=\frac{b_{G}+g}{B_{G}}, P_{i}<Q_{i},|z|<1$ and $\Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s)$ is given in (1.2)
The generalized polynomials defined by Srivastava [7], is given in the following manner :
$S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left[y_{1}, \cdots, y_{s}\right]=\sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \frac{\left(-N_{1}\right)_{M_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{s}\right)_{M_{s} K_{s}}}{K_{s}!}$
$A\left[N_{1}, K_{1} ; \cdots ; N_{s}, K_{s}\right] y_{1}^{K_{1}} \cdots y_{s}^{K_{s}}$

Where $M_{1}, \cdots, M_{s}$ are arbitrary positive integers and the coefficients $A\left[N_{1}, K_{1} ; \cdots ; N_{s}, K_{s}\right]$ are arbitrary constants, real or complex. In the present paper, we use the following notation
$a=\frac{\left(-N_{1}\right)_{M_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{s}\right)_{M_{s} K_{s}}}{K_{s}!} A\left[N_{1}, K_{1} ; \cdots ; N_{s}, K_{s}\right]$
The Aleph-function of several variables generalize the multivariable h-function defined by H.M. Srivastava and R. Panda [8], itself is an a generalisation of G and H -functions of multiple variables. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

We have : $\aleph\left(z_{1}, \cdots, z_{r}\right)=\mathcal{M}_{p_{i}, \boldsymbol{q}_{i}, \tau_{i} ; R: p_{i}(1), q_{i}(1), \tau_{i}(1) ; R^{(1)} ; \cdots ; p_{i}(r), q_{i}(r) ; \tau_{i(r)} ; R^{(r)}}^{0, m_{1}}\left(\begin{array}{c}\mathrm{z}_{1} \\ \vdots \\ \vdots \\ \mathrm{z}_{r}\end{array}\right)$

$$
\left[\begin{array}{cl}
{\left[\left(\mathrm{a}_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, \mathfrak{n}}\right]} & ,\left[\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{\mathfrak{n}+1, p_{i}}\right]: \\
\quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots & ,\left[\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right]:
\end{array}\right.
$$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.7}
\end{equation*}
$$

with $\omega=\sqrt{-1}$
For more details, see Ayant [1].
The reals numbers $\tau_{i}$ are positives for $i=1, \cdots, R, \tau_{i(k)}$ are positives for $i^{(k)}=1, \cdots, R^{(k)}$
The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where

$$
\begin{align*}
& A_{i}^{(k)}=\sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)}-\tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{j i}^{(k)}-\tau_{i} \sum_{j=1}^{q_{i}} \beta_{j i}^{(k)}+\sum_{j=1}^{n_{k}} \gamma_{j}^{(k)}-\tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i(k)}} \gamma_{j i(k)}^{(k)} \\
& +\sum_{j=1}^{m_{k}} \delta_{j}^{(k)}-\tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{j i(k)}^{(k)}>0, \text { with } k=1 \cdots, r, i=1, \cdots, R, i^{(k)}=1, \cdots, R^{(k)} \tag{1.8}
\end{align*}
$$

The complex numbers $z_{i}$ are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.
We may establish the the asymptotic expansion in the following convenient form :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}}, \cdots,\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow 0$
$\aleph\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}}, \cdots,\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow \infty$
where, with $k=1, \cdots, r: \alpha_{k}=\min \left[\operatorname{Re}\left(d_{j}^{(k)} / \delta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}=\max \left[\operatorname{Re}\left(\left(c_{j}^{(k)}-1\right) / \gamma_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will use these following notations in this paper
$U=p_{i}, q_{i}, \tau_{i} ; R ; V=m_{1}, n_{1} ; \cdots ; m_{r}, n_{r}$
$\mathrm{W}=p_{i^{(1)}}, q_{i^{(1)}}, \tau_{i^{(1)}} ; R^{(1)}, \cdots, p_{i^{(r)}}, q_{i^{(r)}}, \tau_{i(r)} ; R^{(r)}$
$A=\left\{\left(a_{j} ; \alpha_{j}^{(1)}, \cdots, \alpha_{j}^{(r)}\right)_{1, n}\right\},\left\{\tau_{i}\left(a_{j i} ; \alpha_{j i}^{(1)}, \cdots, \alpha_{j i}^{(r)}\right)_{n+1, p_{i}}\right\}$
$B=\left\{\tau_{i}\left(b_{j i} ; \beta_{j i}^{(1)}, \cdots, \beta_{j i}^{(r)}\right)_{m+1, q_{i}}\right\}$
$\left.\left.C=\left\{\left(c_{j}^{(1)} ; \gamma_{j}^{(1)}\right)_{1, n_{1}}\right\}, \tau_{i^{(1)}}\left(c_{j i^{(1)}}^{(1)} ; \gamma_{j i^{(1)}}^{(1)}\right)_{n_{1}+1, p_{i}(1)}\right\}, \cdots,\left\{\left(c_{j}^{(r)} ; \gamma_{j}^{(r)}\right)_{1, n_{r}}\right\}, \tau_{i^{(r)}}\left(c_{j i(r)}^{(r)} ; \gamma_{j i(r)}^{(r)}\right)_{n_{r}+1, p_{i}(r)}\right\}$
$\left.\left.D=\left\{\left(d_{j}^{(1)} ; \delta_{j}^{(1)}\right)_{1, m_{1}}\right\}, \tau_{i(1)}\left(d_{j i(1)}^{(1)} ; \delta_{j i(1)}^{(1)}\right)_{m_{1}+1, q_{i}(1)}\right\}, \cdots,\left\{\left(d_{j}^{(r)} ; \delta_{j}^{(r)}\right)_{1, m_{r}}\right\}, \tau_{i(r)}\left(d_{j i^{(r)}}^{(r)} ; \delta_{j i(r)}^{(r)}\right)_{m_{r}+1, q_{i}(r)}\right\}$
The multivariable Aleph-function write :
$\aleph\left(z_{1}, \cdots, z_{r}\right)=\aleph_{U: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A}: \mathrm{C} \\ \cdot & : \mathrm{C} \\ \cdot & \cdots \\ \cdot & \mathrm{B}: \mathrm{D} \\ \mathrm{z}_{r} & :\end{array}\right)$

## 2. Generalized Legendre's associated function

Formula 1
The following results are required in our investigation ([3],p.343, Eq(38); [3], p.340, Eq(26) and eq (27))
$\int_{-1}^{1}(1-x)^{\rho}(1+x)^{\sigma} P_{k-\frac{m-n}{2}}^{m, n}(x) \mathrm{d} x=\frac{2^{\rho+\sigma-\frac{m-n}{2}} \Gamma\left(\rho-\frac{m}{2}+1\right) \Gamma\left(\sigma+\frac{n}{2}+1\right)}{\Gamma(1-m) \Gamma\left(\rho+\sigma-\frac{m-n}{2}+2\right)}$
$\times{ }_{3} F_{2}\left(-k, n-m+k+1, \rho-\frac{m}{2}+1 ; 1-m, \rho-\sigma-\frac{m-n}{2}+2 ; 1\right)$
Provided that $\operatorname{Re}\left(\rho-\frac{m}{2}\right)>-1 ; \operatorname{Re}\left(\sigma+\frac{n}{2}\right)>-1$
Formula 2
$\int_{-1}^{1} P_{k-\frac{u-v}{2}}^{u, v}(x) P_{t-\frac{u-v}{2}}^{u, v}(x) \mathrm{d} x=\frac{2^{-u+v+1} k!\Gamma(k+v+1+1)}{(2 k-u+v+1) \Gamma(k-u+1) \Gamma(k-u+v+1)} \delta_{k, t}$
Where $\delta_{k, t}=1$ if $k=t, 0$ else.
Provided $\operatorname{Re}(u)<1, \operatorname{Re}(v)>-1$
3. Main integral formula
$\int_{-1}^{1}(1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} P_{k-\frac{u-v}{2}}^{u, v}(x) \aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(y(1-x)^{\mathfrak{g}}(1+x)^{w} \left\lvert\, \begin{array}{c}\left(a_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \\ \left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}\end{array}\right.\right)$
$S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}\mathrm{y}_{1}(1-x)^{g_{1}}(1+x)^{w_{1}} \\ \dot{\cdot} \cdot \\ \mathrm{y}_{s}(1-x)^{g_{s}}(1+x)^{w_{s}}\end{array}\right) \aleph_{U: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c}\mathrm{z}_{1}(1-x)^{h_{1}}(1+x)^{k_{1}} \\ \dot{\cdot} \cdot \\ \mathrm{z}_{r}(1-x)^{h_{r}}(1+x)^{k_{r}}\end{array}\right) \mathrm{d} x$

$$
\begin{aligned}
& =\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \sum_{l=0}^{\infty} a \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M,\left(\eta_{G, g}\right)}}{B_{G} g!} \frac{(-k)_{l} l^{v-u+k+1}}{l!\Gamma(1-u+l)} 2^{\rho-u+v+\sigma+(\mathfrak{g}+w) \eta_{G, g}+1} y^{\eta_{G, g}} \\
& \prod_{j=1}^{s} y_{j}^{K_{j}} 2^{\left(g_{j}+w_{j}\right) K_{j}} \aleph_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c}
\mathrm{z}_{1} 2^{h_{1}+k_{1}} \\
\cdot \\
\cdot \\
\mathrm{z}_{r} 2^{h_{r}+k_{r}}
\end{array}\right)\left(-\sigma-v-w \eta_{G, g}-\sum_{i=1}^{s} w_{i} K_{i}: k_{1}, \cdots, k_{r}\right) \\
& \cdots \\
& \cdots
\end{aligned}
$$

$$
\begin{gather*}
\left(-\rho-m-\mathfrak{g} \eta_{G, g}+u-\sum_{i=1}^{s} g_{i} K_{i}: h_{1}, \cdots, h_{r}\right), A: C  \tag{3.1}\\
\left(\mathrm{u}-\mathrm{v}-\rho-\sigma-m-(\mathfrak{g}+w) \eta_{G, g}-\sum_{i=1}^{s} \dot{\left.\left(g_{i}+w_{i}\right) K_{i}: h_{1}+k_{1}, \cdots, h_{r}+k_{r}\right), B: D}\right)
\end{gather*}
$$

where $U_{21}=p_{i}+2, q_{i}+1, \tau_{i} ; R$, provided that
a) $\operatorname{Re}(u)>-1, \operatorname{Re}(v)<1$
b) $g, w>0 ; g_{i}, w_{i}>0, i=1, \cdots, s ; h_{i}, k_{i}>0, i=1, \cdots, r ; k, k-(u-v) / 2$ positive integer
c) $\operatorname{Re}\left[\rho-u+\mathfrak{g} \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{B_{j}}+\sum_{i=1}^{r} h_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>-1$
d) $R e\left[\sigma+v+w \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{B_{j}}+\sum_{i=1}^{r} h_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>-1$
e) $\left|\arg z_{k}\right|<\frac{1}{2} A_{i}^{(k)} \pi$, where $A_{i}^{(k)}$ is given in (1.8)
f) $|\operatorname{argy}|<\frac{1}{2} \pi \Omega \quad$ Where $\Omega=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N} \alpha_{j}-c_{i}\left(\sum_{j=M+1}^{Q_{i}} \beta_{j i}+\sum_{j=N+1}^{P_{i}} \alpha_{j i}\right)>0$

## Proof

To prove the formula(3.1), we express the general polynomials, the Aleph-function of one variable with the help of equation (1.5) and (1.3) respectively and the multivariable Aleph-function in terms of Mellin-Barnes type contour integrals with the help of equation (1.7). Now interchanging the order of summation and integration (which permissible under the conditions stated ), and then evaluate the inner x-integral by using the formula (2.1); we arrive at the desired result.

## 4. Expansion formula

In this section, we evaluate an expansion formula for product of the general class of polynomials, Legendre's associated function, Aleph-function and Aleph-function of several variables. We have.
$(1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} \aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(y(1-x)^{\mathfrak{g}}(1+x)^{w} \left\lvert\, \begin{array}{c}\binom{\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r}}{\left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}}\end{array}\right.\right.$
$S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}\mathrm{y}_{1}(1-x)^{g_{1}}(1+x)^{w_{1}} \\ \dot{\cdot} \cdot \\ \mathrm{y}_{s}(1-x)^{g_{s}}(1+x)^{w_{s}}\end{array}\right) \aleph_{U: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c}\mathrm{z}_{1}(1-x)^{h_{1}}(1+x)^{k_{1}} \\ \dot{\cdot} \cdot \dot{子} \\ \mathrm{z}_{r}(1-x)^{h_{r}}(1+x)^{k_{r}}\end{array}\right)$

$$
=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M,}\left(\eta_{G, g}\right)(-k)_{l} \Gamma(v-u+k+l+1)}{B_{G} g!} a
$$

$$
\frac{(2 k-u+v+1) \Gamma(k-u+1)}{k!\Gamma(k+v+1)} P_{k-\frac{u-v}{2}}^{u, v}(x) 2^{\rho+\sigma+(\mathfrak{g}+w) \eta_{G, g}} \prod_{j=1}^{s} y_{j}^{K_{j}} 2^{\left(g_{j}+w_{j}\right) K_{j}} y^{\eta_{G, g}}
$$

$$
\aleph_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|c}
\mathrm{z}_{1} 2^{h_{1}+k_{1}} \\
\cdot & \left(-\sigma-v-w \eta_{G, g}-\sum_{i=1}^{s} w_{i} K_{i}: k_{1}, \cdots, k_{r}\right), \\
\cdot & \cdots
\end{array}\right.
$$

$$
\left.\begin{array}{c}
\left(-\rho-m-\mathfrak{g} \eta_{G, g}+u-\sum_{i=1}^{s} g_{i} K_{i}: h_{1}, \cdots, h_{r}\right), A: C  \tag{4.1}\\
\left(\mathrm{u}-\mathrm{v}-\rho-\sigma-m-(\mathfrak{g}+w) \eta_{G, g}-\sum_{i=1}^{s}\left(g_{i}+w_{i}\right) K_{i}: h_{1}+k_{1}, \cdots, h_{r}+k_{r}\right), B: D
\end{array}\right)
$$

where $U_{21}=p_{i}+2, q_{i}+1, \tau_{i} ; R$, which holds true under the same conditions as needed in (3.1)

## Proof

Let $f(x)=(1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} \aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(y(1-x)^{\mathfrak{g}}(1+x)^{w} \left\lvert\, \begin{array}{c}\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \\ \left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}\end{array}\right.\right)$
$S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}\mathrm{y}_{1}(1-x)^{g_{1}}(1+x)^{w_{1}} \\ \cdots \cdot \\ \mathrm{y}_{s}(1-x)^{g_{s}}(1+x)^{w_{s}}\end{array}\right) \aleph_{U: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c}\mathrm{z}_{1}(1-x)^{h_{1}}(1+x)^{k_{1}} \\ \cdots \cdot \cdot \\ \mathrm{z}_{r}(1-x)^{h_{r}}(1+x)^{k_{r}}\end{array}\right)=\sum_{k=0}^{\infty} c_{k} P_{k-\frac{u-v}{2}}^{u, v}(x)$

The equation (4.2) is valid since $f(x)$ is continuous and bounded variation in the interval ( $-1,1$ ). Now , multiplying both the sides of (4.2) by $P_{t-\frac{m-n}{2}}^{m, n}(x)$ and integrating with respect to x from -1 to 1 ; change the order of integration and summation (which is permissible) on the right,

$$
\begin{align*}
& \int_{-1}^{1}(1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} \aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(y(1-x)^{\mathfrak{g}}(1+x)^{w} \left\lvert\, \begin{array}{c}
\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \\
\left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i}, r}
\end{array}\right.\right) \\
& P_{t-\frac{u-v}{2}}^{u, v}(x) S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}
\mathrm{y}_{1}(1-x)^{g_{1}}(1+x)^{w_{1}} \\
\cdot \dot{y_{s}} \\
\mathrm{y}_{s}(1-x)^{g_{s}}(1+x)^{w_{s}}
\end{array}\right) \aleph_{U: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c}
\mathrm{z}_{1}(1-x)^{h_{1}}(1+x)^{k_{1}} \\
\dot{k_{1}} \\
\mathrm{z}_{r}(1-x)^{h_{r}}(1+x)^{k_{r}}
\end{array}\right) \mathrm{d} x \\
& =\sum_{k=0}^{\infty} c_{k} \int_{-1}^{1} P_{k-\frac{u-v}{2}}^{u, v}(x) P_{t-\frac{u-v}{2}}^{u, v}(x) \mathrm{d} x \tag{4.3}
\end{align*}
$$

using the orthogonality property for the generalized Legendre's associated function on the right (2.2) on the right-hand side and the result (3.1) on the left hand side of (4.3) ; we obtain
$c_{k}=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \sum_{l=0}^{k} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M,}\left(\eta_{G, g}\right)(-k)_{l} \Gamma(v-u+k+l+1)}{B_{G} g!} a$

$$
\begin{gather*}
\frac{(2 k-u+v+1) \Gamma(k-u+1)}{k!\Gamma(k+v+1)} P_{k-\frac{u-v}{2}}^{u, v}(x) 2^{\rho+\sigma+(\mathfrak{g}+w) \eta_{G, g}} \prod_{j=1}^{s} y_{j}^{K_{j}} 2^{\left(g_{j}+w_{j}\right) K_{j}} y^{\eta_{G, g}} \\
\aleph_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c}
\mathrm{z}_{1} 2^{h_{1}+k_{1}} \\
\cdot \\
\cdot \\
\mathrm{z}_{r} 2^{h_{r}+k_{r}}
\end{array}\right. \\
\left.\begin{array}{c}
\left(-\sigma-v-w \eta_{G, g}-\sum_{i=1}^{s} w_{i} K_{i}: k_{1}, \cdots, k_{r}\right), \\
\cdots \\
\left(-\rho-m-\mathfrak{g} \eta_{G, g}+u-\sum_{i=1}^{s} g_{i} K_{i}: h_{1}, \cdots, h_{r}\right), A: C \\
\cdots \\
\left(\mathrm{u}-\mathrm{v}-\rho-\sigma-m-(\mathfrak{g}+w) \eta_{G, g}-\sum_{i=1}^{s}\left(g_{i}+w_{i}\right) K_{i}: h_{1}+k_{1}, \cdots, h_{r}+k_{r}\right), B: D
\end{array}\right)
\end{gather*}
$$

Now on substituing the value of $c_{k}$ in (4.2), the result (4.1) follows.

## 5. Particular cases

a) If $\tau_{i}=\tau_{i^{(1)}}=\cdots=\tau_{i^{(r)}}=1$, the Aleph-function of several variables degenere to the I-function of several variables. We have the following expansion formula for multivariable I-function defined by Sharma et al [3]

$$
\begin{aligned}
& (1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} \aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(y(1-x)^{\mathfrak{g}}(1+x)^{w} \left\lvert\, \begin{array}{c}
\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \\
\left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}
\end{array}\right.\right) \\
& S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}
\mathrm{y}_{1}(1-x)^{g_{1}}(1+x)^{w_{1}} \\
\cdots \\
\mathrm{y}_{s}(1-x)^{g_{s}}(1+x)^{w_{s}}
\end{array}\right) I\left(\begin{array}{c}
\mathrm{z}_{1}(1-x)^{h_{1}}(1+x)^{k_{1}} \\
\cdots \cdot \\
\mathrm{z}_{r}(1-x)^{h_{r}}(1+x)^{k_{r}}
\end{array}\right)
\end{aligned}
$$

$$
=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M,}\left(\eta_{G, g}\right)(-k)_{l} \Gamma(v-u+k+l+1)}{B_{G} g!} a
$$

$$
\frac{(2 k-u+v+1) \Gamma(k-u+1)}{k!\Gamma(k+v+1)} P_{k-\frac{u-v}{2}}^{u, v}(x) 2^{\rho+\sigma+(\mathfrak{g}+w) \eta_{G, g}} \prod_{j=1}^{s} y_{j}^{K_{j}} 2^{\left(g_{j}+w_{j}\right) K_{j}} y^{\eta_{G, g}}
$$

$$
I_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|c}
\mathrm{z}_{1} 2^{h_{1}+k_{1}} \\
\cdot & \left(-\sigma-v-w \eta_{G, g}-\sum_{i=1}^{s} w_{i} K_{i}: k_{1}, \cdots, k_{r}\right), \\
\cdot \\
\mathrm{z}_{r} 2^{h_{r}+k_{r}}
\end{array}\right)
$$

$$
\left.\begin{array}{c}
\left(-\rho-m-g \eta_{G, g}+u-\sum_{i=1}^{s} g_{i} K_{i}: h_{1}, \cdots, h_{r}\right), A^{\prime}: C^{\prime}  \tag{5.2}\\
\left.\left(\mathrm{u}-\mathrm{v}-\rho-\sigma-m-(g+w) \eta_{G, g}-\sum_{i=1}^{s} \dot{( } g_{i}+w_{i}\right) K_{i}: h_{1}+k_{1}, \cdots, h_{r}+k_{r}\right), B^{\prime}: D^{\prime}
\end{array}\right)
$$

Where $U_{21}=p_{i}+2, q_{i}+1 ; R$, which holds true under the same conditions and notations as needed in (3.1)
b )If $\tau_{i}=\tau_{i^{(1)}}=\cdots=\tau_{i^{(r)}}=1$ and $R=R^{(1)}=, \cdots, R^{(r)}=1$ the Aleph-function of several variables degenere to the H -function of several variables. We have the following expansion formula for multivariable H -function defined by Srivastava et al [8].

$$
\begin{aligned}
& (1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} \aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(y(1-x)^{\mathfrak{g}}(1+x)^{w} \left\lvert\, \begin{array}{c}
\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \\
\left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i}, r}
\end{array}\right.\right) \\
& S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}
\mathrm{y}_{1}(1-x)^{g_{1}}(1+x)^{w_{1}} \\
\dot{w_{1}} \\
\mathrm{y}_{s}(1-x)^{g_{s}}(1+x)^{w_{s}}
\end{array}\right) H\left(\begin{array}{c}
\mathrm{z}_{1}(1-x)^{h_{1}}(1+x)^{k_{1}} \\
\dot{\sim} \\
\mathrm{z}_{r}(1-x)^{h_{r}}(1+x)^{k_{r}}
\end{array}\right)
\end{aligned}
$$

$$
=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M, N}\left(\eta_{G, g}\right)(-k)_{l} \Gamma(v-u+k+l+1)}{B_{G} g!} a
$$

$$
\frac{(2 k-u+v+1) \Gamma(k-u+1)}{k!\Gamma(k+v+1)} P_{k-\frac{u-v}{2}}^{u, v}(x) 2^{\rho+\sigma+(\mathfrak{g}+w) \eta_{G, g}} \prod_{j=1}^{s} y_{j}^{K_{j}} 2^{\left(g_{j}+w_{j}\right) K_{j}} y^{\eta_{G, g}}
$$

$$
H_{p+2, q+1: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|c}
\mathrm{z}_{1} 2^{h_{1}+k_{1}} \\
\cdot & \left(-\sigma-v-w \eta_{G, g}-\sum_{i=1}^{s} w_{i} K_{i}: k_{1}, \cdots, k_{r}\right) \\
\cdot & \cdots \\
\mathrm{z}_{r} 2^{2_{r}+k_{r}} & \cdots
\end{array}\right.
$$

$$
\left.\begin{array}{c}
\left(-\rho-m-\mathfrak{g} \eta_{G, g}+u-\sum_{i=1}^{s} g_{i} K_{i}: h_{1}, \cdots, h_{r}\right), A^{\prime \prime}: C^{\prime \prime}  \tag{5.3}\\
\left(\mathrm{u}-\mathrm{v}-\rho-\sigma-m-(\mathfrak{g}+w) \eta_{G, g}-\sum_{i=1}^{s}\left(g_{i}+w_{i}\right) K_{i}: h_{1}+k_{1}, \cdots, h_{r}+k_{r}\right), B^{\prime \prime}: D^{\prime \prime}
\end{array}\right)
$$

which holds true under the same conditions and notations as needed in (3.1)
c ) if $U=n=0$, the Aleph-function of r variables degenere to product of r Aleph-functions of one variable, and we have

$$
\left.\begin{array}{l}
(1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} \aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(y(1-x)^{\mathfrak{g}}(1+x)^{w} \left\lvert\, \begin{array}{c}
\left(a_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \\
\left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i}, r}
\end{array}\right.\right) \\
S_{N_{1}, \cdots, N_{s}}^{M_{1}, \ldots, M_{s}}\left(\begin{array}{c}
\mathrm{y}_{1}(1-x)^{g_{1}}(1+x)^{w_{1}} \\
\cdots \\
\mathrm{y}_{s}(1-x)^{g_{s}}(1+x)^{w_{s}}
\end{array}\right) \prod_{u=1}^{r} \aleph_{p_{i}(u), q_{i}(u), \tau_{i}(u) ; r^{(u)}}^{m_{u}, n_{u}}\left(z_{u}(1-x)^{h_{u}}(1+x)^{k_{u}}\right) \\
=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M,\left(\eta_{G, g}\right)(-k)_{l} \Gamma(v-u+k+l+1)}}{B_{G} g!} a \\
l!\Gamma(1-u+l)
\end{array}\right]
$$

$$
\begin{align*}
& \frac{(2 k-u+v+1) \Gamma(k-u+1)}{k!\Gamma(k+v+1)} P_{k-\frac{u-v}{2}}^{u, v}(x) 2^{\rho+\sigma+(\mathfrak{g}+w) \eta_{G, g}} \prod_{j=1}^{s} y_{j}^{K_{j}} 2^{\left(g_{j}+w_{j}\right) K_{j}} y^{\eta_{G, g}} \\
& \aleph_{2,1: W}^{0,2: V}\left(\begin{array}{c}
\mathrm{z}_{1} 2^{h_{1}+k_{1}} \\
\cdot \\
\cdot \\
\mathrm{z}_{r} 2^{\dot{h_{r}+k_{r}}}
\end{array} \left\lvert\, \begin{array}{c}
\left(-\sigma-v-w \eta_{G, g}-\sum_{i=1}^{s} w_{i} K_{i}: h_{1}, \cdots, h_{r}\right), \\
\cdots \\
\left(-\rho-m-\mathfrak{g} \eta_{G, g}+u-\sum_{i=1}^{s} g_{i} K_{i}: h_{1}, \cdots, h_{r}\right): C \\
\cdots \\
\left(\mathrm{u}-\mathrm{v}-\rho-\sigma-m-(\mathfrak{g}+w) \eta_{G, g}-\sum_{i=1}^{s}\left(g_{i}+w_{i}\right) K_{i}: h_{1}+k_{1}, \cdots, h_{r}+k_{r}\right): D
\end{array}\right.\right)
\end{align*}
$$

d ) If $r=2$, the Aleph-function of several variables degenere to Aleph-function of two variables defined by K.Sharma [5]. We get the following expansion formula.
$(1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} \aleph_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}\left(y(1-x)^{\mathfrak{g}}(1+x)^{w} \left\lvert\, \begin{array}{c}\binom{\left.\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r}}{\left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}}\end{array}\right.\right.$
$S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}\mathrm{y}_{1}(1-x)^{g_{1}}(1+x)^{w_{1}} \\ \cdot \dot{\cdot} \\ \mathrm{y}_{s}(1-x)^{g_{s}}(1+x)^{w_{s}}\end{array}\right) \aleph_{U: W}^{0, \mathfrak{n}: V}\left(\begin{array}{c}\mathrm{z}_{1}(1-x)^{h_{1}}(1+x)^{k_{1}} \\ \dot{\cdot} \cdot \dot{子} \\ \mathrm{z}_{2}(1-x)^{h_{2}}(1+x)^{k_{2}}\end{array}\right)$
$=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{\left.(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M,\left(\eta_{G}, g\right.}\right)(-k)_{l} \Gamma(v-u+k+l+1)}{B_{G} g!} a$
$\frac{(2 k-u+v+1) \Gamma(k-u+1)}{k!\Gamma(k+v+1)} P_{k-\frac{u-v}{2}}^{u, v}(x) 2^{\rho+\sigma+(\mathfrak{g}+w) \eta_{G, g}} \prod_{j=1}^{s} y_{j}^{K_{j}} 2^{\left(g_{j}+w_{j}\right) K_{j}} y^{\eta_{G, g}}$
$\aleph_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|c}\mathrm{z}_{1} 2^{h_{1}+k_{1}} & \left(-\sigma-v-w \eta_{G, g}-\sum_{i=1}^{s} w_{i} K_{i}: k_{1}, k_{2}\right), \\ \dot{.} & \cdots \\ \mathrm{z}_{2} 2^{h_{2}+k_{2}} & \cdots\end{array}\right.$
$\left.\begin{array}{c}\left(-\rho-m-\mathfrak{g} \eta_{G, g}+u-\sum_{i=1}^{s} g_{i} K_{i}: h_{1}, h_{2}\right), A_{2}: C_{2} \\ \left(\mathrm{u}-\mathrm{v}-\rho-\sigma-m-(\mathfrak{g}+w) \eta_{G, g}-\sum_{i=1}^{s}\left(g_{i}+w_{i}\right) K_{i}: h_{1}+k_{1}, h_{2}+k_{2}\right), B_{2}: D_{2}\end{array}\right)$
Where $U_{21}=p_{i}+2, q_{i}+1, \tau_{i} ; R$, which holds true under the same conditions as needed in (3.1) with $r=2$
e ) If $r=1$, we obtain the Aleph-function of one variable defined by Südland [9]. And we have
$(1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} \aleph_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}\left(y(1-x)^{\mathfrak{g}}(1+x)^{w} \left\lvert\, \begin{array}{l}\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i}, r} \\ \left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}\end{array}\right.\right)$

$$
\begin{aligned}
& S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\binom{\mathrm{y}_{1}(1-x)^{g_{1}}(1+x)^{w_{1}}}{\mathrm{y}_{s}(1-x)^{g_{s}}(1+x)^{w_{s}}} \aleph_{P_{i}^{\prime}, Q_{i}^{\prime}, c_{i}^{\prime} ; r^{\prime}}^{M^{\prime}, N^{\prime}}\left(\mathrm{z}_{1}(1-x)^{h_{1}}(1+x)^{k_{1}}\right) \\
& =\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, \eta^{\prime}}\left(\eta_{G, g}\right)(-k)_{l} \Gamma(v-u+k+l+1)}{B_{G} g!} a \\
& \frac{(2 k-u+v(1-u+l)}{k!\Gamma(k+v+1)} a r(k-u+1) \\
& P_{k-\frac{u-v}{2}}^{u, v}(x) 2^{\rho+\sigma+(\mathfrak{g}+w) \eta_{G, g}} \prod_{j=1}^{s} y_{j}^{K_{j}} 2^{\left(g_{j}+w_{j}\right) K_{j}} y^{\eta_{G, g}}
\end{aligned}
$$

$$
\aleph_{P_{i}^{\prime}+2, Q_{i}^{\prime}+1, c_{i}^{\prime \prime} ; r^{\prime}}^{M^{\prime}, N^{\prime}+2}\left(\mathrm{z}_{1} 2^{h_{1}+k_{1}} \left\lvert\, \begin{array}{c}
\left(\mathrm{a}^{\prime}{ }_{j}, A_{j}^{\prime}\right)_{1, \mathfrak{n}^{\prime}},\left[c_{i}^{\prime}\left(a_{j i}, A_{j i}^{\prime}\right)\right]_{\mathfrak{n}^{\prime}+1, p_{i}^{\prime} ; r},\left(-\sigma-v-w \eta_{G, g}-\sum_{i=1}^{s} w_{i} K_{i}: k_{1}\right), \\
\left(\mathrm{b}^{\prime}{ }_{j}, B_{j}^{\prime}\right)_{1, m},\left[c_{i}\left(b_{j i}^{\prime}, B_{j i}^{\prime}\right)\right]_{m^{\prime}+1, q_{i}^{\prime} ; r^{\prime}},
\end{array}\right.\right.
$$

$$
\left.\begin{array}{c}
\left(-\rho-m-\mathfrak{g} \eta_{G, g}+u-\sum_{i=1}^{s} g_{i} K_{i}: h_{1}\right), A_{1}: C_{1}  \tag{5.6}\\
\left(\mathrm{u}-\mathrm{v}-\rho-\sigma-m-(\mathfrak{g}+w) \eta_{G, g}-\sum_{i=1}^{s}\left(g_{i}+w_{i}\right) K_{i}: h_{1}+k_{1}\right), B_{1}: D_{1}
\end{array}\right)
$$

f) If $y_{2}=\cdots=y_{s}=0$, then the class of polynomials $S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(y_{1}, \cdots, y_{s}\right)$ defined of (1.14) degenere to the class of polynomials $S_{N^{\prime}}^{M^{\prime}}(y)$ defined by Srivastava [6] and we have

$$
(1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} \aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(y(1-x)^{\mathfrak{g}}(1+x)^{w} \left\lvert\, \begin{array}{c}
\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \\
\left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}
\end{array}\right.\right)
$$

$$
S_{N^{\prime}}^{M^{\prime}}\left(\mathrm{y}(1-\mathrm{x})^{g^{\prime}}(1+x)^{w^{\prime}}\right) \aleph_{U: W}^{0, \mathrm{n}: V}\left(\begin{array}{c}
\mathrm{z}_{1}(1-x)^{h_{1}}(1+x)^{k_{1}} \\
\dot{k_{1}} \\
\mathrm{z}_{r}(1-x)^{h_{r}}(1+x)^{k_{r}}
\end{array}\right)
$$

$$
=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{=}=0}^{\left[N^{\prime} / M^{\prime}\right]} \sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M,\left(\eta_{G, g}\right)(-k)_{l} \Gamma(v-u+k+l+1)}}{B_{G} g!} a^{\prime}
$$

$$
\frac{(2 k-u+v+1) \Gamma(k-u+1)}{k!\Gamma(k+v+1)} P_{k-\frac{u-v}{2}}^{u, v}(x) 2^{\rho+\sigma+(\mathfrak{g}+w) \eta_{G, g}} y^{K} 2^{\left(g^{\prime}+w^{\prime}\right) K_{K} y_{G, g}}
$$

$$
\aleph_{U_{21}: W}^{0, \mathfrak{n}+2: V}\left(\begin{array}{c|c}
\mathrm{z}_{1} 2^{h_{1}+k_{1}} & \left(-\sigma-v-w \eta_{G, g}-w^{\prime} K: k_{1}, \cdots, k_{r}\right), \\
\cdot & \cdots \\
\mathrm{z}_{r} 2^{h_{r}+k_{r}} & \cdots
\end{array}\right.
$$

$$
\left.\begin{array}{c}
\left(-\rho-m-\mathfrak{g} \eta_{G, g}+u-g^{\prime} K: h_{1}, \cdots, h_{r}\right), A: C  \tag{5.7}\\
\left(\mathrm{u}-\mathrm{v}-\rho-\sigma-m-(\mathfrak{g}+w) \eta_{G, g}-\left(g^{\prime}+w^{\prime}\right) K: h_{1}+k_{1}, \cdots, h_{r}+k_{r}\right), B: D
\end{array}\right)
$$

Where $U_{21}=p_{i}+2, q_{i}+1, \tau_{i} ; R$, which holds true under the same conditions as needed in (3.1)

## 6. Conclusion

The aleph-function of several variables presented in this paper, is quite basic in nature. Therefore, on specializing the parameters of this function, we may obtain various other special functions such as, multivariable H -function, defined by Srivastava et al [8], the Aleph-function of two variables defined by K.sharma [5].

## REFERENCES

[1] Ayant F.Y. An integral associated with the Aleph-functions of several variables. International Journal of Mathematics Trends and Technology (IJMTT). 2016 Vol 31 (3), page 142-154.
[2] Chaurasia V.B.L and Singh Y. New generalization of integral equations of fredholm type using Aleph-function Int. J. of Modern Math. Sci. 9(3), 2014, p 208-220.
[3] Meulendbeld, B. and Robin, L.; Nouveaux resultats aux functions de Legendre's generalisees, Nederl. Akad. Wetensch. Proc. Ser. A 64(1961), page 333-347
[4] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113116.
[5] Sharma K. On the integral representation and applications of the generalized function of two variables , International Journal of Mathematical Engineering and Sciences, Vol 3 , issue1 ( 2014 ), page1-13.
[6] Srivastava H.M., A contour integral involving Fox's H-function. Indian J.Math. 14(1972), page1-6.
[7] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
[8] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
[9] Südland N.; Baumann, B. and Nonnenmacher T.F. , Open problem : who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4) (1998): 401-402.
Personal adress : 411 Avenue Joseph Raynaud

Le parc Fleuri , Bat B

83140, Six-Fours les plages

Tel : 06-83-12-49-68

Department : VAR

Country : FRANCE

