Eulerian integrals involving the multivariable I-function I

F.Y. AYANT ${ }^{1}$

1 Teacher in High School, France

In this paper, we derive a general Eulerian integral involving the multivariable I-function defined by Prasad [3], the Aleph-function of one variable, a general class of polynomials of several variables and a extension of the Hurwitz-lerch Zeta-function. Some of this key formula could provide useful generalizations of some known as well as of some new results concerning the multivariable H -function.

Keywords : Eulerian integral, Multivariable I-function, general class of polynomial, Aleph-function, multivariable H-function, a extension of the Hurwitz-lerch Zeta-function

2010 Mathematics Subject Classification. 33C60, 82C31

1.Introduction and preliminaries.

The object of this document is to evaluate a multiple Eulerian integrals involving the multivariable I-function defined by Prasad [3], the Aleph-function of one variable, a general class of polynomials of several variables and a extension of the Hurwitz-lerch Zeta-function.. These function generalize the multivariable H-function study by Srivastava et al [6], itself is a generalisation of G-function of several variables. The multivariable I-function is defined in term of multiple Mellin-Barnes type integral :
$I\left(z_{1}, z_{2}, \ldots z_{r}\right)=I_{p_{2}, q_{2}, p_{3}, q_{3} ; \cdots ; p_{r}, q_{r}: p^{\prime}, q^{\prime} ; \cdots ; p^{(r)}, q^{(r)}}^{0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{r}: m^{\prime}, n^{\prime} ; \cdots ; m^{(r)},{ }^{(r)}}\left(\begin{array}{c}\mathrm{z}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r}\end{array}\right)\left(\mathrm{a}_{2 j} ; \alpha_{2 j}^{\prime}, \alpha_{2 j}^{\prime \prime}\right)_{1, p_{2}} ; \cdots ;$

$$
\begin{align*}
& \left(\mathrm{a}_{r j} ; \alpha_{r j}^{\prime}, \cdots, \alpha_{r j}^{(r)}\right)_{1, p_{r}}:\left(a_{j}^{\prime}, \alpha_{j}^{\prime}\right)_{1, p^{\prime}} ; \cdots ;\left(a_{j}^{(r)}, \alpha_{j}^{(r)}\right)_{1, p^{(r)}} \tag{1.1}\\
& \left.\left(\mathrm{b}_{r j} ; \beta_{r j}^{\prime}, \cdots, \beta_{r j}^{(r)}\right)_{1, q_{r}}:\left(b_{j}^{\prime}, \beta_{j}^{\prime}\right)_{1, q^{\prime}} ; \cdots ;\left(b_{j}^{(r)}, \beta_{j}^{(r)}\right)_{1, q^{(r)}}\right) \\
& \quad=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \xi\left(t_{1}, \cdots, t_{r}\right) \prod_{i=1}^{s} \phi_{i}\left(s_{i}\right) z_{i}^{s_{i}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.2}
\end{align*}
$$

The defined integral of the above function, the existence and convergence conditions, see Y,N Prasad [3]. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function.

The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} \Omega_{i}^{(k)} \pi$, where
$\Omega_{i}^{(k)}=\sum_{k=1}^{n^{(i)}} \alpha_{k}^{(i)}-\sum_{k=n^{(i)}+1}^{p^{(i)}} \alpha_{k}^{(i)}+\sum_{k=1}^{m^{(i)}} \beta_{k}^{(i)}-\sum_{k=m^{(i)}+1}^{q^{(i)}} \beta_{k}^{(i)}+\left(\sum_{k=1}^{n_{2}} \alpha_{2 k}^{(i)}-\sum_{k=n_{2}+1}^{p_{2}} \alpha_{2 k}^{(i)}\right)+$
$+\left(\sum_{k=1}^{n_{r}} \alpha_{r k}^{(i)}-\sum_{k=n_{r}+1}^{p_{r}} \alpha_{r k}^{(i)}\right)-\left(\sum_{k=1}^{q_{2}} \beta_{2 k}^{(i)}+\sum_{k=1}^{q_{3}} \beta_{3 k}^{(i)}+\cdots+\sum_{k=1}^{q_{r}} \beta_{r k}^{(i)}\right)$
where $i=1, \cdots, r$
The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function.

We may establish the the asymptotic expansion in the following convenient form :
$I\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\gamma_{1}^{\prime}}, \cdots,\left|z_{r}\right|^{\gamma_{r}^{\prime}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow 0$
$I\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|^{\beta_{s}^{\prime}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow \infty$
where $k=1, \cdots, z: \alpha_{k}^{\prime}=\min \left[\operatorname{Re}\left(b_{j}^{(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}^{\prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{(k)}-1\right) / \alpha_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will use these following notations in this paper :
$U=p_{2}, q_{2} ; p_{3}, q_{3} ; \cdots ; p_{r-1}, q_{r-1} ; V=0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{s-1}$
$W=\left(p^{\prime}, q^{\prime}\right) ; \cdots ;\left(p^{(r)}, q^{(r)}\right) ; X=\left(m^{\prime}, n^{\prime}\right) ; \cdots ;\left(m^{(r)}, n^{(r)}\right)$
$A=\left(a_{2 k}, \alpha_{2 k}^{\prime}, \alpha_{2 k}^{\prime \prime}\right) ; \cdots ;\left(a_{(r-1) k)}, \alpha_{(r-1) k}^{\prime}, \alpha_{(r-1) k}^{\prime \prime}, \cdots, \alpha_{(r-1) k}^{(r-1)}\right)$
$B=\left(b_{2 k}, \beta_{2 k}^{\prime}, \beta_{2 k}^{\prime \prime}\right) ; \cdots ;\left(b_{(r-1) k)}, \beta_{(r-1) k}^{\prime}, \beta_{(r-1) k}^{\prime \prime}, \cdots, \beta_{(r-1) k}^{(r-1)}\right)$
$\mathfrak{A}=\left(a_{s k} ; \alpha^{\prime}{ }_{r k}, \alpha_{r k}^{\prime \prime}, \cdots, \alpha_{r k}^{r}\right): \mathfrak{B}=\left(b_{r k} ; \beta^{\prime}{ }_{r k}, \beta_{r k}^{\prime \prime}, \cdots, \beta_{r k}^{r}\right)$
$A^{\prime}=\left(a_{k}^{\prime}, \alpha_{k}^{\prime}\right)_{1, p^{\prime}} ; \cdots ;\left(a_{k}^{(r)}, \alpha_{k}^{(r)}\right)_{1, p^{(r)}} ; B^{\prime}=\left(b_{k}^{\prime}, \beta_{k}^{\prime}\right)_{1, p^{\prime}} ; \cdots ;\left(b_{k}^{(r)}, \beta_{k}^{(r)}\right)_{1, p^{(r)}}$
The multivariable I-function write :
$I\left(z_{1}, \cdots, z_{r}\right)=I_{U: p_{r}, q_{r} ; W}^{V ; 0, n_{r} ; X}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A} ; \mathfrak{A} ; \mathrm{A}^{\prime} \\ \cdot & \\ \cdot & \\ \cdot & \mathrm{B} ; \mathfrak{B} ; \mathrm{B}^{\prime} \\ \mathrm{z}_{r} & \end{array}\right)$

The generalized polynomials defined by Srivastava [4], is given in the following manner :
$S_{N_{1}^{\prime}, \cdots, N_{t}^{\prime}}^{M_{1}^{\prime}, \cdots, M_{t}^{\prime}}\left[y_{1}, \cdots, y_{t}\right]=\sum_{K_{1}=0}^{\left[N_{1}^{\prime} / M_{1}^{\prime}\right]} \cdots \sum_{K_{t}=0}^{\left[N_{t}^{\prime} / M_{t}^{\prime}\right]} \frac{\left(-N_{1}^{\prime}\right)_{M_{1}^{\prime} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{t}^{\prime}\right)_{M_{t}^{\prime} K_{t}}}{K_{t}!}$
$A\left[N_{1}^{\prime}, K_{1} ; \cdots ; N_{t}^{\prime}, K_{t}\right] y_{1}^{K_{1}} \cdots y_{t}^{K_{t}}$

Where $M_{1}^{\prime}, \cdots, M_{s}^{\prime}$ are arbitrary positive integers and the coefficients $A\left[N_{1}^{\prime}, K_{1} ; \cdots ; N_{t}^{\prime}, K_{t}\right]$ are arbitrary constants, real or complex. In the present paper, we use the following notation
$a_{1}=\frac{\left(-N_{1}^{\prime}\right)_{M_{1}^{\prime} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{t}^{\prime}\right)_{M_{t}^{\prime} K_{t}}}{K_{t}!} A\left[N_{1}^{\prime}, K_{1} ; \cdots ; N_{t}^{\prime}, K_{t}\right]$

The Aleph- function, introduced by Südland [8] et al, however the notation and complete definition is presented here in the following manner in terms of the Mellin-Barnes type integral :

for all z different to 0 and

$$
\begin{equation*}
\Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s)=\frac{\prod_{j=1}^{M} \Gamma\left(b_{j}+B_{j} s\right) \prod_{j=1}^{N} \Gamma\left(1-a_{j}-A_{j} s\right)}{\sum_{i=1}^{r} c_{i} \prod_{j=N+1}^{P_{i}} \Gamma\left(a_{j i}+A_{j i} s\right) \prod_{j=M+1}^{Q_{i}} \Gamma\left(1-b_{j i}-B_{j i} s\right)} \tag{1.14}
\end{equation*}
$$

With $|\arg z|<\frac{1}{2} \pi \Omega$ where $\Omega=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N} \alpha_{j}-c_{i}\left(\sum_{j=M+1}^{Q_{i}} \beta_{j i}+\sum_{j=N+1}^{P_{i}} \alpha_{j i}\right)>0, i=1, \cdots, r$
For convergence conditions and other details of Aleph-function, see Südland et al [8].The serie representation of Alephfunction is given by Chaurasia et al [2].
$\aleph_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(z)=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M,(s)}}{B_{G} g!} z^{-s}$
With $s=\eta_{G, g}=\frac{b_{G}+g}{B_{G}}, P_{i}<Q_{i},|z|<1$ and $\Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s)$ is given in (1.2)

2. Extension of the Hurwitz-Lerch Zeta function

The extension of the Hurwitz-Lerch Zeta function $\phi(z, S, a)$ is introduced by Srivastava et al ([6],eq.(6.2), page 503) as follows :
$\phi_{\left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{q}\right)}^{\left(\rho_{1}, \cdots, \rho_{p}, \sigma_{1}, \cdots, \sigma_{q}\right)}(z ; \mathfrak{s}, a)=\sum_{n=0}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{n \rho_{j}}}{(a+n)^{\mathfrak{s}} \prod_{j=1}^{q}\left(\mu_{j}\right)_{n \sigma_{j}}} \times \frac{z^{n}}{n!}$
with : $p, q \in \mathbb{N}_{0}, \lambda_{j} \in \mathbb{C}(j=1, \cdots, p), a, \mu_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{*}(j=1, \cdots, q), \rho_{j}, \sigma_{k} \in \mathbb{R}^{+}$ $(j=1, \cdots, p ; k=1, \cdots, q)$
where $\Delta>-1$ when $\mathfrak{s}, z \in \mathbb{C} ; \Delta=-1$ and $s \in \mathbb{C}$, when $|z|<\nabla^{*}, \Delta=-1$ and $\operatorname{Re}(\chi)>\frac{1}{2}$ when $|z|=\nabla^{*}$
$\nabla^{*}=\prod_{j=1}^{p} \rho_{j}^{\rho_{j}} \prod_{j=1}^{q} \sigma_{j}^{\sigma_{j}} ; \Delta=\sum_{j=1}^{q} \sigma_{j}-\sum_{j=1}^{p} \rho_{j} ; \chi=\mathfrak{s}+\sum_{j=1}^{q} \mu_{j}-\sum_{j=1}^{p} \lambda_{j}+\frac{p-q}{2}$
We denote these conditions, the conditions (f).

3. Required formulas

We have : $B(\alpha, \beta)=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} \mathrm{~d} t=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}, \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0$
(2.1) can be rewritten in the form
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \mathrm{~d} t=(b-a)^{\alpha+\beta-1} \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}, \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, b \neq a$
The binomial expansions for $t \in[a, b]$ yields :
$(u t+v)^{\gamma}=(a u+v)^{\gamma} \sum_{m=0}^{\infty} \frac{(-\gamma)_{m}}{m!}\left\{\frac{-u(a-t)}{a u+v}\right\}^{m} \quad$ where $\left|\frac{(t-a) u}{a u+v}\right|<1$

With the help of (2.2) we obtain (see Srivastava et al [5])
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1}(u t+v)^{\gamma} \mathrm{d} t=(b-a)^{\alpha+\beta-1} B(\alpha, \beta)(a t+v)^{\gamma}{ }_{2} F_{1}\left(\begin{array}{c}\alpha,-\gamma \\ \alpha+\beta\end{array} ; \frac{(b-a) u}{a u+v}\right)(3$

4. The general Eulerian integral

Let $g_{1}(t)=\frac{(t-a)^{\delta_{1}}(b-t)^{\eta_{1}}(u t+v)^{1-\delta_{1}-\eta_{1}}}{B(u t+v)+(A-B)(t-a)} ; g_{2}(t)=\frac{(t-a)^{\delta_{2}}(b-t)^{\eta_{2}}(y t+z)^{1-\delta_{2}-\eta_{2}}}{D(y t+z)+(C-D)(t-a)}$
$a^{\prime}=\frac{\left(-N_{1}\right)_{M_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{s}\right)_{M_{s} K_{s}}}{K_{s}!} A\left[N_{1}, K_{1} ; \cdots ; N_{s}, K_{s}\right]$ and $b_{n}=\frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{n \rho_{j}}}{(a+n)^{\mathfrak{s}} \prod_{j=1}^{q}\left(\mu_{j}\right)_{n \sigma_{j}}}$

We have the following formula

$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1}(u t+v)^{\gamma}(y t+z)^{\rho} S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}\mathrm{y}_{1}\left(g_{1}(t)\right)^{c_{1}}\left(g_{2}(t)\right)^{d_{1}} \\ \cdots \\ \cdots \\ \cdots \\ \mathrm{y}_{s}\left(g_{1}(t)\right)^{c_{s}}\left(g_{2}(t)\right)^{d_{s}}\end{array}\right)$
$\aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(x\left(g_{1}(t)\right)^{c}\left(g_{2}(t)\right)^{d}\right) \phi_{\left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{q}\right)}^{\left(\rho_{1}, \cdots, \rho_{p}, \sigma_{1}, \cdots, \sigma_{q}\right)}\left(z\left(g_{1}(t)\right)^{c^{\prime}}(g(t))^{d^{\prime}} ; \mathfrak{s}, a\right)$
$I_{U: p_{r}, q_{r} ; W}^{V ; 0, n_{r} ; X}\left(\begin{array}{c}\mathrm{z}_{1}\left(g_{1}(t)\right)^{u_{1}}\left(g_{2}(t)\right)^{v_{1}} \\ \cdots \\ \dot{u^{\prime}} \\ \mathrm{z}_{r}\left(g_{1}(t)\right)^{u_{r}}\left(g_{2}(t)\right)^{v_{r}}\end{array}\right) \mathrm{d} t$
$=(b-a)^{\alpha+\beta-1}(a u+v)^{\gamma}(b y+z)^{\rho} \sum_{l, m, k_{1}, k_{2}=0}^{\infty} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M,}\left(\eta_{G, g}\right)}{B_{G} g!}$
$\frac{(B-A / B)^{l}(D-C / D)^{m}}{l!m!k_{1}!k_{2}!} \frac{b_{n} z^{n}}{n!} a^{\prime} Y_{1}^{K_{1}} \cdots y_{s}^{K_{s}} X^{\eta_{G, g}} Y^{n}\left\{-\frac{(b-a) u}{(a u+v)}\right\}^{k_{1}}\left\{\frac{(b-a) y}{(b y+z)}\right\}^{k_{2}}$
$I_{U: p_{r}+7, q_{r}+6 ; W}^{V ; 0, n_{r}+7 ; X}\left(\begin{array}{c|c}\mathrm{Z}_{1} & \mathrm{~A} ;\left(1-\mathrm{l} \mathrm{c} \eta_{G, g}-c^{\prime} n-\sum_{i=1}^{s} c_{i} K_{i}: u_{1}, \cdots, u_{r}\right), \\ \cdots & \\ \cdots & \mathrm{B} ;\left(1-\mathrm{c} \eta_{G, g}-c^{\prime} n-\sum_{i=1}^{s} \cdot\right. \\ \mathrm{Z}_{r} & \left.c_{i} K_{i}: u_{1}, \cdots, u_{r}\right),\end{array}\right.$
$\left(1-\alpha-l-m-k_{1}-\left(c \delta_{1}+d \delta_{2}\right) \eta_{G, g}-\left(c^{\prime} \delta_{1}+d^{\prime} \delta_{2}\right) n-\sum_{i=1}^{s}\left(\delta_{1} c_{i}+\delta_{2} d_{i}\right) K_{i}: \delta_{1} u_{1}+\delta_{2} v_{1}, \cdots, \delta_{1} u_{r}+\delta_{2} v_{r}\right)$, B_{1},
$\left(1-\beta-k_{2}-\left(c \eta_{1}+d \eta_{2}\right) \eta_{G, g}-\left(c^{\prime} \eta_{1}+d^{\prime} \eta_{2}\right) n-\sum_{i=1}^{s}\left(\eta_{1} c_{i}+\eta_{2} d_{i}\right) K_{i}: \eta_{1} u_{1}+\eta_{2} v_{1}, \cdots, \eta_{1} u_{r}+\eta_{2} v_{r}\right)$, $\left(1+\gamma-l-\left(\delta_{1}+\eta_{1}\right) c \eta_{G, g}-\left(\delta_{1}+\eta_{1}\right) c^{\prime} n-\sum_{i=1}^{s}\left(\delta_{1}+\eta_{1}\right) c_{i} K_{i} ;\left(\delta_{1}+\eta_{1}\right) u_{1}, \cdots,\left(\delta_{1}+\eta_{1}\right) u_{r}\right)$,
$\left(1+\rho-m-k_{2}-\left(\eta_{2}+\delta_{2}\right) d \eta_{G, g}-\left(\eta_{2}+\delta_{2}\right) d^{\prime} n-\sum_{i=1}^{s}\left(\eta_{2}+\delta_{2}\right) d_{i} K_{i}:\left(\eta_{2}+\delta_{2}\right) v_{1}, \cdots,\left(\eta_{2}+\delta_{2}\right) v_{r}\right)$, $\left(1+\rho-m-\left(\eta_{2}+\delta_{2}\right) d \eta_{G, g}-\left(\eta_{2}+\delta_{2}\right) d^{\prime} n-\sum_{i=1}^{s}\left(\eta_{2}+\delta_{2}\right) d_{i} K_{i}:\left(\eta_{2}+\delta_{2}\right) v_{1}, \cdots,\left(\eta_{2}+\delta_{2}\right) v_{r}\right)$,
$\left(1+\gamma-l-k_{1}-\left(\delta_{1}+\eta_{1}\right) c \eta_{G, g}-\left(\delta_{1}+\eta_{1}\right) c^{\prime} n-\sum_{i=1}^{s}\left(\eta_{1}+\delta_{1}\right) c_{i} K_{i}:\left(\eta_{1}+\delta_{1}\right) u_{1}, \cdots,\left(\eta_{1}+\delta_{1}\right) u_{r}\right)$,
$\left(1-\mathrm{m}-\mathrm{d} \eta_{G, g}-d^{\prime} n-\sum_{i=1}^{s} d_{i} K_{i}: v_{1}, \cdots, v_{r}\right), A_{1}, \mathfrak{A} ; A^{\prime}$
$\left.\left(1-\mathrm{d} \eta_{G, g}-d^{\prime} n-\sum_{i=1}^{s} d_{i} \dot{K_{i}}: v_{1}, \cdots, v_{r}\right), B_{1}, B_{2}, \mathfrak{B} ; B^{\prime}\right)$
Where
$\mathrm{B}_{1}=\left(1-\alpha-\beta-m-c\left(\delta_{1}+\eta_{1}\right) \eta_{G, g}-d\left(\delta_{2}+\eta_{2}\right) \eta_{G, g}-\sum_{i=1}^{s}\left(\delta_{1}+\eta_{1}\right) c_{i} K_{i}-\sum_{i=1}^{s}\left(\delta_{2}+\eta_{2}\right) d_{i} K_{i}\right.$
$\left.-c^{\prime}\left(\delta_{1}+\eta_{1}\right) n-d^{\prime}\left(\delta_{2}+\eta_{2}\right) n ;\left(\delta_{1}+\eta_{1}\right) u_{1}+\left(\delta_{2}+\eta_{2}\right) v_{1}, \cdots,\left(\delta_{1}+\eta_{1}\right) u_{r}+\left(\delta_{2}+\eta_{2}\right) v_{r}\right)$

$$
\begin{aligned}
& \mathrm{A}_{1}=\left(1-\alpha-\beta-l-m-c\left(\delta_{1}+\eta_{1}\right) \eta_{G, g}-d\left(\delta_{2}+\eta_{2}\right) \eta_{G, g}-\sum_{i=1}^{s}\left(\delta_{1}+\eta_{1}\right) c_{i} K_{i}-\sum_{i=1}^{s}\left(\delta_{2}+\eta_{2}\right) d_{i} K_{i}\right. \\
& \left.-c^{\prime}\left(\delta_{1}+\eta_{1}\right) n-d^{\prime}\left(\delta_{2}+\eta_{2}\right) n ;\left(\delta_{1}+\eta_{1}\right) u_{1}+\left(\delta_{2}+\eta_{2}\right) v_{1}, \cdots,\left(\delta_{1}+\eta_{1}\right) u_{r}+\left(\delta_{2}+\eta_{2}\right) v_{r}\right) \\
& \mathrm{B}_{2}=\left(1-\alpha-\beta-m-l-k_{1}-k_{2}-c\left(\delta_{1}+\eta_{1}\right) \eta_{G, g}-d\left(\delta_{2}+\eta_{2}\right) \eta_{G, g}-\sum_{i=1}^{s}\left(\delta_{1}+\eta_{1}\right) c_{i} K_{i}-\right. \\
& -\sum_{i=1}^{s}\left(\delta_{2}+\eta_{2}\right) d_{i} K_{i}-c^{\prime}\left(\delta_{1}+\eta_{1}\right) n-d^{\prime}\left(\delta_{2}+\eta_{2}\right) n ;\left(\delta_{1}+\eta_{1}\right) u_{1}+\left(\delta_{2}+\eta_{2}\right) v_{1}, \cdots,
\end{aligned}
$$

$$
\left.\left(\delta_{1}+\eta_{1}\right) u_{r}+\left(\delta_{2}+\eta_{2}\right) v_{r}\right)
$$

$$
Z_{i}=\frac{z_{i}(b-a)^{\left(\delta_{1}+\eta_{1}\right) u_{i}+\left(\delta_{2}+\eta_{2}\right) v_{i}}}{B^{u_{i}} D^{v_{i}}(a u+v)^{\left(\delta_{1}+\eta_{1}\right) u_{i}}(b y+z)^{\left(\delta_{2}+\eta_{2}\right) v_{i}}}, i=1, \cdots, r
$$

$$
Y_{i}=\frac{y_{i}(b-a)^{\left(\delta_{1}+\eta_{1}\right) c_{i}+\left(\delta_{2}+\eta_{2}\right) d_{i}}}{B^{c_{i}} D^{d_{i}}(a u+v)^{\left(\delta_{1}+\eta_{1}\right) c_{i}}(b y+z)^{\left(\delta_{2}+\eta_{2}\right) d_{i}}}, i=1, \cdots, s
$$

$$
X=\frac{x(b-a)^{\left(\delta_{1}+\eta_{1}\right) c+\left(\delta_{2}+\eta_{2}\right) d}}{B^{c} D^{d}(a u+v)^{\left(\delta_{1}+\eta_{1}\right) c}(b y+z)^{\left(\delta_{2}+\eta_{2}\right) d}} \text { and } Y=\frac{z(b-a)^{\left(\delta_{1}+\eta_{1}\right) c^{\prime}+\left(\delta_{2}+\eta_{2}\right) d^{\prime}}}{B^{c^{\prime}} D^{d^{\prime}}(a u+v)^{\left(\delta_{1}+\eta_{1}\right) c^{\prime}}(b y+z)^{\left(\delta_{2}+\eta_{2}\right) d^{\prime}}}
$$

Provided that
a) $\min \left\{c, d, c^{\prime}, d^{\prime}, c_{i}, d_{i}, u_{j}, v_{j}\right\}>0, i=1, \cdots, s ; j=1, \cdots, r$
b $\min \{\operatorname{Re}(\alpha), \operatorname{Re}(\beta)\}>0, b \neq a$
c) $\max \left\{\left|\frac{u(b-a)}{a u+v}\right|,\left|\frac{y(b-a)}{b y+z}\right|,\left|\frac{(t-a)(B-A)}{B(u t+v)}\right|,\left|\frac{(t-a)(D-C)}{D(y t+z)}\right|\right\}<1, t \in[a, b]$
d) $R e\left[\alpha+\left(c \delta_{1}+d \delta_{2}\right) \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{B_{j}}+\left(c^{\prime} \delta_{1}+d^{\prime} \delta_{2}\right) n+\sum_{i=1}^{r}\left(\delta_{1} u_{i}+\delta_{2} v_{i}\right) \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>-1$
e) $\operatorname{Re}\left[\beta+\left(c \eta_{1}+d \eta_{2}\right) \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{B_{j}}+\left(c^{\prime} \eta_{1}+d^{\prime} \eta_{2}\right) n+\sum_{i=1}^{r}\left(\eta_{1} u_{i}+\eta_{2} v_{i}\right) \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>-1$
f) The conditions (f) are satisfied
g) $\left|\arg z_{k}\right|<\frac{1}{2} \Omega_{i}^{(k)} \pi$, where $\Omega_{i}^{(k)}$ is given in (1.3)
h) $|\arg x|<\frac{1}{2} \pi \Omega \quad$ Where $\Omega=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N} \alpha_{j}-c_{i}\left(\sum_{j=M+1}^{Q_{i}} \beta_{j i}+\sum_{j=N+1}^{P_{i}} \alpha_{j i}\right)>0$

Proof of (3.1) Let $M=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \psi\left(s_{1}, \cdots, s_{r}\right) \prod_{k=1}^{r} \theta_{k}\left(s_{k}\right) z_{k}^{s_{k}}$
We first replace the multivariable I-function on the L.H.S of (4.1) by its Mellin-barnes contour integral (1.1), the Alephfunction,the general class of polynomials of several variables and the extension of the Hurwitz-Lerch Zeta function in series using respectively (1.15), (1.11) and (2.1).Now we interchange the order of summation and integrations (which is
permissible under the conditions stated). We get :

$$
\begin{align*}
& \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} a^{\prime} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M, N}\left(\eta_{G, g}\right)}{B_{G} g!} x^{\eta_{G, g}} y_{1}^{K_{1}} \cdots y_{s}^{K_{s}} \int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \\
& (u t+v)^{\gamma}(y t+z)^{\rho}\left\{M\left\{\left(g_{1}(t)\right)^{c \eta_{G, g}+c^{\prime} n+\sum_{i=1}^{s} c_{i} K_{i}+\sum_{i=1}^{r} u_{i} s_{i}}\left(g_{2}(t)\right)^{d \eta_{G, g}+d^{\prime} n+\sum_{i=1}^{s} d_{i} K_{i}+\sum_{i=1}^{r} v_{i} s_{i}}\right\}\right. \\
& \left.\mathrm{d} s_{1} \cdots \mathrm{~d} s_{r}\right\} \mathrm{d} t \tag{4.2}
\end{align*}
$$

We change the order of t-integral and $\left(s_{1}, \cdots, s_{r}\right)$-integral, we obtain :
$\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} a^{\prime} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M,\left(\eta_{G, g}\right)}}{B_{G} g!} x^{\eta_{G, g}} y_{1}^{K_{1}} \cdots y_{s}^{K_{s}}$
$M\left\{B^{-\left(c \eta_{G, g}+c^{\prime} n+\sum_{i=1}^{s} c_{i} K_{i}+\sum_{i=1}^{r} u_{i} s_{i}\right)} D^{-\left(d \eta_{G, g}+d^{\prime} n+\sum_{i=1}^{s} d_{i} K_{i}+\sum_{i=1}^{r} v_{i} s_{i}\right)}\right.$
$\int_{a}^{b}(t-a)^{\alpha+\delta_{1}\left(c \eta_{G, g}+c^{\prime} n+\sum_{i=1}^{s} c_{i} K_{i}+\sum_{i=1}^{r} u_{i} s_{i}\right)+\delta_{2}\left(d \eta_{G, g}+d^{\prime} n+\sum_{i=1}^{s} d_{i} K_{i}+\sum_{i=1}^{r} v_{i} s_{i}\right)-1}$
$(b-t)^{\beta+\eta_{1}\left(c \eta_{G, g}+c^{\prime} n+\sum_{i=1}^{s} c_{i} K_{i}+\sum_{i=1}^{r} u_{i} s_{i}\right)+\eta_{2}\left(d \eta_{G, g}+d^{\prime} n+\sum_{i=1}^{s} d_{i} K_{i}+\sum_{i=1}^{r} v_{i} s_{i}\right)-1}$
$(u t+v)^{\gamma-\left(\delta_{1}+\eta_{1}\right)\left(c \eta_{G, g}+c^{\prime} n+\sum_{i=1}^{s} c_{i} K_{i}+\sum_{i=1}^{r} u_{i} s_{i}\right)}$

$\left.\left(1-\frac{(B-A)(t-a)}{B(u t+v)}\right)^{-\left(c \eta_{G, g}+c^{\prime} n+\sum_{i=1}^{s} c_{i} K_{i}+\sum_{i=1}^{r} u_{i} s_{i}\right)} \mathrm{d} t\right\} \mathrm{d} s_{1} \cdots \mathrm{~d} s_{r}$

Using binomial expansion (2.3) provided that $\max \left\{\left|\frac{(t-a)(B-A)}{B(u t+v)}\right|,\left|\frac{(t-a)(D-C)}{D(y t+z)}\right|\right\}<1, t \in[a, b]$
and also that the order of binomial summation and integration can be inversed, we get
$\sum_{l, m=0}^{\infty} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} a^{\prime} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M,\left(\eta_{G, g}\right)(B-A / B)^{l}(D-C / D)^{m}}}{B_{G} g!} x^{\eta_{G, g}}$
$y_{1}^{K_{1}} \cdots y_{s}^{K_{s}} M\left\{B^{-\left(c \eta_{G, g}+c^{\prime} n+\sum_{i=1}^{s} c_{i} K_{i}+\sum_{i=1}^{r} u_{i} s_{i}\right)} D^{-\left(d \eta_{G, g}+d^{\prime} n+\sum_{i=1}^{s} d_{i} K_{i}+\sum_{i=1}^{r} v_{i} s_{i}\right)}\right.$
$\frac{\Gamma\left(l+c \eta_{G, g}+c^{\prime} n+\sum_{i=1}^{s} c_{i} K_{i}+\sum_{i=1}^{r} u_{i} s_{i}\right) \Gamma\left(m+d \eta_{G, g}+d^{\prime} n+\sum_{i=1}^{s} d_{i} K_{i}+\sum_{i=1}^{r} v_{i} s_{i}\right)}{\Gamma\left(c \eta_{G, g}+c^{\prime} n+\sum_{i=1}^{s} c_{i} K_{i}+\sum_{i=1}^{r} u_{i} s_{i}\right) \Gamma\left(d \eta_{G, g}+d^{\prime} n+\sum_{i=1}^{s} d_{i} K_{i}+\sum_{i=1}^{r} v_{i} s_{i}\right)}$
$\int_{a}^{b}(t-a)^{\alpha+l+m+\delta_{1}\left(c \eta_{G, g}+c^{\prime} n+\sum_{i=1}^{s} c_{i} K_{i}+\sum_{i=1}^{r} u_{i} s_{i}\right)+\delta_{2}\left(d \eta_{G, g}+d^{\prime} n+\sum_{i=1}^{s} d_{i} K_{i}+\sum_{i=1}^{r} v_{i} s_{i}\right)-1}$
$(b-t)^{\beta+\eta_{1}\left(c \eta_{G, g}+c^{\prime} n+\sum_{i=1}^{s} c_{i} K_{i}+\sum_{i=1}^{r} u_{i} s_{i}\right)+\eta_{2}\left(d \eta_{G, g}+d^{\prime} n+\sum_{i=1}^{s} d_{i} K_{i}+\sum_{i=1}^{r} v_{i} s_{i}\right)-1}$
$(y t+z)^{\rho-m-\left(\delta_{2}+\eta_{2}\right)\left(d \eta_{G, g}+d^{\prime} n+\sum_{i=1}^{s} d_{i} K_{i}+\sum_{i=1}^{r} v_{i} s_{i}\right)}$
$\left.(u t+v)^{\gamma-l-\left(\delta_{1}+\eta_{1}\right)\left(c \eta_{G, g}+c^{\prime} n+\sum_{i=1}^{s} c_{i} K_{i}+\sum_{i=1}^{r} u_{i} s_{i}\right)} \mathrm{d} t\right\} \mathrm{d} s_{1} \cdots \mathrm{~d} s_{r}$

The inner integral in (3.4) can be evaluated by using the following extension of Eulerian integral of Beta function given by Hussain and Srivastava [5].
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1}(u t+v)^{\gamma}(y t+z)^{\rho} \mathrm{d} t=(b-a)^{\alpha+\beta-1}(a u+v)^{\gamma}(b y+z)^{\delta} B(\alpha, \beta)$
$\times F_{3}\left[\alpha, \beta,-\gamma,-\rho ; \alpha+\beta ;-\frac{(b-a) u}{a u+v}, \frac{(b-a) y}{b y+z}\right]$
where for convergence $\min \{\operatorname{Re}(\alpha), \operatorname{Re}(\beta)\}>0, b \neq a$ and $\max \left\{\left|\frac{u(b-a)}{a u+v}\right|,\left|\frac{y(b-a)}{b y+t}\right|\right\}<1$
and where F_{3} denote the Appell function of two variables, see Appell et al [1]. Finally interpreting the resulting MellinBarnes contour integral as a multivariable I-function, we obtain the desired result (3.1).

5. Particular case

If $U=V=A=B=0$, the multivariable I-function defined by Prasad degenere in multivariable H -function defined by Srivastava et al $[6]$. We have the following result.
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1}(u t+v)^{\gamma}(y t+z)^{\rho} S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}\mathrm{y}_{1}\left(g_{1}(t)\right)^{c_{1}}\left(g_{2}(t)\right)^{d_{1}} \\ \cdots \\ \cdots \\ \mathrm{y}_{s}\left(g_{1}(t)\right)^{c_{s}}\left(g_{2}(t)\right)^{d_{s}}\end{array}\right)$
$\aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(x\left(g_{1}(t)\right)^{c}\left(g_{2}(t)\right)^{d}\right) \phi_{\left(\begin{array}{l}\left(, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{q}\right)\end{array}\right.}^{\left(\rho_{1}, \cdots, \rho_{p}, \sigma_{1}, \cdots, \sigma_{q}\right)}\left(z\left(g_{1}(t)\right)^{c^{\prime}}(g(t))^{d^{\prime}} ; \mathfrak{s}, a\right)$

$$
\begin{align*}
& H_{p_{r}, q_{r} ; W}^{0, n_{r} ; X}\left(\begin{array}{c}
\mathrm{z}_{1}\left(g_{1}(t)\right)^{u_{1}}\left(g_{2}(t)\right)^{v_{1}} \\
\cdots \\
\dot{\cdot} \cdot \\
\mathrm{z}_{r}\left(g_{1}(t)\right)^{u_{r}}\left(g_{2}(t)\right)^{v_{r}}
\end{array}\right) \mathrm{d} t \\
& =(b-a)^{\alpha+\beta-1}(a u+v)^{\gamma}(b y+z)^{\rho} \sum_{l, m, k_{1}, k_{2}=0}^{\infty} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M,(}\left(\eta_{G, g}\right)}{B_{G} g!} \\
& \frac{(B-A / B)^{l}(D-C / D)^{m}}{l!m!k_{1}!k_{2}!} \frac{b_{n} z^{n}}{n!} a^{\prime} \quad Y_{1}^{K_{1}} \cdots y_{s}^{K_{s}} X^{\eta_{G, g}} Y^{n}\left\{-\frac{(b-a) u}{(a u+v)}\right\}^{k_{1}}\left\{\frac{(b-a) y}{(b y+z)}\right\}^{k_{2}} \\
& H_{p_{r}+7, q_{r}+6 ; W}^{0, n_{r}+7 ; X}\left(\begin{array}{c|c}
\mathrm{Z}_{1} \\
\cdots \\
\cdots \\
\cdots \\
\mathrm{Z}_{r} & \left(1-\mathrm{l}-\mathrm{c} \eta_{G, g}-c^{\prime} n-\sum_{i=1}^{s} c_{i} K_{i}: u_{1}, \cdots, u_{r}\right), \\
\left(1-\mathrm{c} \eta_{G, g}-c^{\prime} n-\sum_{i=1}^{s} c_{i} K_{i}: u_{1}, \cdots, u_{r}\right),
\end{array}\right. \\
& \left(1-\alpha-l-m-k_{1}-\left(c \delta_{1}+d \delta_{2}\right) \eta_{G, g}-\left(c^{\prime} \delta_{1}+d^{\prime} \delta_{2}\right) n-\sum_{i=1}^{s}\left(\delta_{1} c_{i}+\delta_{2} d_{i}\right) K_{i}: \delta_{1} u_{1}+\delta_{2} v_{1}, \cdots, \delta_{1} u_{r}+\delta_{2} v_{r}\right), \\
& B_{1} \text {, } \\
& \left(1-\beta-k_{2}-\left(c \eta_{1}+d \eta_{2}\right) \eta_{G, g}-\left(c^{\prime} \eta_{1}+d^{\prime} \eta_{2}\right) n-\sum_{i=1}^{s}\left(\eta_{1} c_{i}+\eta_{2} d_{i}\right) K_{i}: \eta_{1} u_{1}+\eta_{2} v_{1}, \cdots, \eta_{1} u_{r}+\eta_{2} v_{r}\right), \\
& \left(1+\gamma-l-\left(\delta_{1}+\eta_{1}\right) c \eta_{G, g}-\left(\delta_{1}+\eta_{1}\right) c^{\prime} n-\sum_{i=1}^{s}\left(\delta_{1}+\eta_{1}\right) c_{i} K_{i} ;\left(\delta_{1}+\eta_{1}\right) u_{1}, \cdots,\left(\delta_{1}+\eta_{1}\right) u_{r}\right), \\
& \left(1+\rho-m-k_{2}-\left(\eta_{2}+\delta_{2}\right) d \eta_{G, g}-\left(\eta_{2}+\delta_{2}\right) d^{\prime} n-\sum_{i=1}^{s}\left(\eta_{2}+\delta_{2}\right) d_{i} K_{i}:\left(\eta_{2}+\delta_{2}\right) v_{1}, \cdots,\left(\eta_{2}+\delta_{2}\right) v_{r}\right), \\
& \left(1+\rho-m-\left(\eta_{2}+\delta_{2}\right) d \eta_{G, g}-\left(\eta_{2}+\delta_{2}\right) d^{\prime} n-\sum_{i=1}^{s}\left(\eta_{2}+\delta_{2}\right) d_{i} K_{i}:\left(\eta_{2}+\delta_{2}\right) v_{1}, \cdots,\left(\eta_{2}+\delta_{2}\right) v_{r}\right), \\
& \left(1+\gamma-l-k_{1}-\left(\delta_{1}+\eta_{1}\right) c \eta_{G, g}-\left(\delta_{1}+\eta_{1}\right) c^{\prime} n-\sum_{i=1}^{s}\left(\eta_{1}+\delta_{1}\right) c_{i} K_{i}:\left(\eta_{1}+\delta_{1}\right) u_{1}, \cdots,\left(\eta_{1}+\delta_{1}\right) u_{r}\right), \\
& \left.\begin{array}{c}
\left(1-\mathrm{m}-\mathrm{d} \eta_{G, g}-d^{\prime} n-\sum_{i=1}^{s} d_{i} K_{i}: v_{1}, \cdots, v_{r}\right), A_{1}, \mathfrak{A} ; A^{\prime} \\
\left(1-\mathrm{d} \eta_{G, g}-d^{\prime} n-\sum_{i=1}^{s} d_{i} K_{i}: v_{1}, \cdots, v_{r}\right), B_{1}, B_{2}, \mathfrak{B} ; B^{\prime}
\end{array}\right) \tag{5.1}
\end{align*}
$$

under the same notations and conditions that (4.1) with $U=V=A=B=0$

6. Conclusion

In this paper we have evaluated a generalized Eulerian integral involving the Aleph-function, a class of polynomials of several variables, a extension of the Hurwitz-Lerch Zeta-function and the multivariable I-function defined by Prasad [3]. The integral established in this paper is of very general nature as it contains multivariable I-function, which is a general function of several variables studied so far. Thus, the integral established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

[1]Appell P. and Kampe de Feriet J. Fonctions hypergeometriques et hypersphériques, polynôme d'Hermite, GautierVilars. Paris (1926).
[2] Chaurasia V.B.L and Singh Y. New generalization of integral equations of fredholm type using Aleph-function Int. J. of Modern Math. Sci. 9(3), 2014, p 208-220.
[3] Y.N. Prasad , Multivariable I-function, Vijnana Parishad Anusandhan Patrika 29 (1986) , page 231-237.
[4] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
[5] H.M. Srivastava and Hussain M.A. Fractional integration of the H-function of several variables. Comp. Math. Appl. 30(9), (1995), page 73-85.
[6] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
[7] H.M. Srivastava, R.K. Saxena, T.K. Pogány, R. Saxena, Integral and computational representations of the extended Hurwitz-Lerch zeta function, Integr.Transf. Spec. Funct. 22 (2011) 487-506
[8] Südland N.; Baumann, B. and Nonnenmacher T.F. , Open problem : who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4) (1998): 401-402.

[^0]
[^0]: Personal adress : 411 Avenue Joseph Raynaud
 Le parc Fleuri , Bat B
 83140 , Six-Fours les plages
 Tel : 06-83-12-49-68
 Department: VAR
 Country: FRANCE

