Eulerian integral involving the multivariable I-function II

F.Y. AY ANT ${ }^{1}$
1 Teacher in High School, France

ABSTRACT

In this paper, we derive a key Eulerian integral involving the multivariable I-function defined by Prasad [4], the Aleph-function of one variable, a general class of polynomials of several variables and a generalized multiple-index Mittag-Leffler function. This general Eulerian integral formula is show to provide the key formula from which numerous others results for the multivariable I-function and multivariable H -function

Keywords :multivariable : Eulerian integral, Multivariable I-function, a generalized multiple-index Mittag-Leffler function, general class of polynomial,Aleph-function, multivariable H -function

2010 Mathematics Subject Classification. 33C60, 82C31

1. Introduction and preliminaries.

In this paper we establish a general Eulerian integral concerning the multivariable I-function defined by Prasad [4], the Aleph-function, a general class of multivariable polynomials and a generalized multiple-index Mittag-Leffler function. The I-function of several variables generalize the multivariable H-function defined by Srivastava et al [6] , itself is an a generalisation of G-function of several variables. The multivariable I-function is defined in term of multiple Mellin-Barnes type integral :
$I\left(z_{1}, z_{2}, \ldots z_{r}\right)=I_{p_{2}, q_{2}, p_{3}, q_{3} ; \cdots ; p_{r}, q_{r}: p^{\prime}, q^{\prime} ; \cdots ; p^{(r)}, q^{(r)}}^{0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{r}: m^{\prime}, n^{\prime} ; \cdots ; m^{(r)}{ }_{2}^{(r)}}\left(\begin{array}{c}\mathrm{z}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r}\end{array}\right)\left(\mathrm{a}_{2 j} ; \alpha_{2 j}^{\prime}, \alpha_{2 j}^{\prime \prime}\right)_{1, p_{2}} ; \cdots ;$

$$
\left.\begin{array}{l}
\left(\mathrm{a}_{r j} ; \alpha_{r j}^{\prime}, \cdots, \alpha_{r j}^{(r)}\right)_{1, p_{r}}:\left(a_{j}^{\prime}, \alpha_{j}^{\prime}\right)_{1, p^{\prime}} ; \cdots ;\left(a_{j}^{(r)}, \alpha_{j}^{(r)}\right)_{1, p^{(r)}} \\
\left(\mathrm{b}_{r j} ; \beta_{r j}^{\prime}, \cdots, \beta_{r j}^{(r)}\right)_{1, q_{r}}:\left(b_{j}^{\prime}, \beta_{j}^{\prime}\right)_{1, q^{\prime}} ; \cdots ;\left(b_{j}^{(r)}, \beta_{j}^{(r)}\right)_{1, q^{(r)}} \tag{1.2}
\end{array}\right)
$$

The defined integral of the above function, the existence and convergence conditions, see Y,N Prasad [4]. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function.

The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} \Omega_{i}^{(k)} \pi$, where
$\Omega_{i}^{(k)}=\sum_{k=1}^{n^{(i)}} \alpha_{k}^{(i)}-\sum_{k=n^{(i)}+1}^{p^{(i)}} \alpha_{k}^{(i)}+\sum_{k=1}^{m^{(i)}} \beta_{k}^{(i)}-\sum_{k=m^{(i)}+1}^{q^{(i)}} \beta_{k}^{(i)}+\left(\sum_{k=1}^{n_{2}} \alpha_{2 k}^{(i)}-\sum_{k=n_{2}+1}^{p_{2}} \alpha_{2 k}^{(i)}\right)+$
$+\left(\sum_{k=1}^{n_{r}} \alpha_{r k}^{(i)}-\sum_{k=n_{r}+1}^{p_{r}} \alpha_{r k}^{(i)}\right)-\left(\sum_{k=1}^{q_{2}} \beta_{2 k}^{(i)}+\sum_{k=1}^{q_{3}} \beta_{3 k}^{(i)}+\cdots+\sum_{k=1}^{q_{r}} \beta_{r k}^{(i)}\right)$
where $i=1, \cdots, r$
The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function.

We may establish the the asymptotic expansion in the following convenient form :
$I\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\gamma_{1}^{\prime}}, \cdots,\left|z_{r}\right|^{\gamma_{r}^{\prime}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow 0$
$I\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|^{\beta_{s}^{\prime}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow \infty$
where $k=1, \cdots, z: \alpha_{k}^{\prime}=\min \left[\operatorname{Re}\left(b_{j}^{(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}^{\prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{(k)}-1\right) / \alpha_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will use these following notations in this paper :
$U=p_{2}, q_{2} ; p_{3}, q_{3} ; \cdots ; p_{r-1}, q_{r-1} ; V=0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{s-1}$
$W=\left(p^{\prime}, q^{\prime}\right) ; \cdots ;\left(p^{(r)}, q^{(r)}\right) ; X=\left(m^{\prime}, n^{\prime}\right) ; \cdots ;\left(m^{(r)}, n^{(r)}\right)$
$A=\left(a_{2 k}, \alpha_{2 k}^{\prime}, \alpha_{2 k}^{\prime \prime}\right) ; \cdots ;\left(a_{(r-1) k)}, \alpha_{(r-1) k}^{\prime}, \alpha_{(r-1) k}^{\prime \prime}, \cdots, \alpha_{(r-1) k}^{(r-1)}\right)$
$B=\left(b_{2 k}, \beta_{2 k}^{\prime}, \beta_{2 k}^{\prime \prime}\right) ; \cdots ;\left(b_{(r-1) k)}, \beta_{(r-1) k}^{\prime}, \beta_{(r-1) k}^{\prime \prime}, \cdots, \beta_{(r-1) k}^{(r-1)}\right)$
$\mathfrak{A}=\left(a_{s k} ; \alpha^{\prime}{ }_{r k}, \alpha_{r k}^{\prime \prime}, \cdots, \alpha_{r k}^{r}\right): \mathfrak{B}=\left(b_{r k} ; \beta^{\prime}{ }_{r k}, \beta_{r k}^{\prime \prime}, \cdots, \beta_{r k}^{r}\right)$
$A^{\prime}=\left(a_{k}^{\prime}, \alpha_{k}^{\prime}\right)_{1, p^{\prime}} ; \cdots ;\left(a_{k}^{(r)}, \alpha_{k}^{(r)}\right)_{1, p^{(r)}} ; B^{\prime}=\left(b_{k}^{\prime}, \beta_{k}^{\prime}\right)_{1, p^{\prime}} ; \cdots ;\left(b_{k}^{(r)}, \beta_{k}^{(r)}\right)_{1, p^{(r)}}$
The multivariable I-function write :
$I\left(z_{1}, \cdots, z_{r}\right)=I_{U: p_{r}, q_{r} ; W}^{V ; 0, n_{r} ; X}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A} ; \mathfrak{A} ; \mathrm{A}^{\prime} \\ \cdot & \\ \cdot & \\ \cdot & \mathrm{B} ; \mathfrak{B} ; \mathrm{B}^{\prime} \\ \mathrm{z}_{r} & \end{array}\right)$
The generalized polynomials of multivariable defined by Srivastava [5], is given in the following manner :
$S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left[y_{1}, \cdots, y_{s}\right]=\sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \frac{\left(-N_{1}\right)_{M_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{s}\right)_{M_{s} K_{s}}}{K_{s}!}$
$A\left[N_{1}, K_{1} ; \cdots ; N_{s}, K_{s}\right] y_{1}^{K_{1}} \cdots y_{s}^{K_{s}}$

The Aleph- function, introduced by Südland [8] et al, however the notation and complete definition is presented here in the following manner in terms of the Mellin-Barnes type integral :
$\aleph(z)=\aleph_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}\left(\begin{array}{l|l}\mathrm{z} & \begin{array}{c}\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \\ \left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}\end{array}\end{array}\right)=\frac{1}{2 \pi \omega} \int_{L} \Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s) z^{-s} \mathrm{~d} s$
for all z different to 0 and

$$
\begin{equation*}
\Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s)=\frac{\prod_{j=1}^{M} \Gamma\left(b_{j}+B_{j} s\right) \prod_{j=1}^{N} \Gamma\left(1-a_{j}-A_{j} s\right)}{\sum_{i=1}^{r} c_{i} \prod_{j=N+1}^{P_{i}} \Gamma\left(a_{j i}+A_{j i} s\right) \prod_{j=M+1}^{Q_{i}} \Gamma\left(1-b_{j i}-B_{j i} s\right)} \tag{1.13}
\end{equation*}
$$

With : $|\arg z|<\frac{1}{2} \pi \Omega$, where $\Omega=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N} \alpha_{j}-c_{i}\left(\sum_{j=M+1}^{Q_{i}} \beta_{j i}+\sum_{j=N+1}^{P_{i}} \alpha_{j i}\right)>0 ; i=1, \cdots, r$
For convergence conditions and other details of Aleph-function, see Südland et al [8]. Serie representation of Alephfunction is given by Chaurasia et al [1].
$\aleph_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(z)=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}(s)}{B_{G} g!} z^{-s}$

With $s=\eta_{G, g}=\frac{b_{G}+g}{B_{G}}, P_{i}<Q_{i},|z|<1$ and $\Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s)$ is given in (1.2)

2. Required formulas

We have : $B(\alpha, \beta)=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} \mathrm{~d} t=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}, \quad \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0$
(2.1) can be rewritten in the form
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \mathrm{~d} t=(b-a)^{\alpha+\beta-1} \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}, \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, b \neq a$

The binomial expansions for $t \in[a, b]$ yields :
$(u t+v)^{\gamma}=(a u+v)^{\gamma} \sum_{m=0}^{\infty} \frac{(-\gamma)_{m}}{m!}\left\{\frac{-u(a-t)}{a u+v}\right\}^{m} \quad$ where $\left|\frac{(t-a) u}{a u+v}\right|<1$

With the help of (2.2) we obtain (see Srivastava et al [6])
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1}(u t+v)^{\gamma} \mathrm{d} t=(b-a)^{\alpha+\beta-1} B(\alpha, \beta)(a t+v)^{\gamma}{ }_{2} F_{1}\binom{\alpha,-\gamma}{\alpha+-\frac{(b-a) u}{a u+v}}$
where $\operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0 ;\left|\arg \left(\frac{b u+v}{a u+v}\right)\right| \leqslant \pi-\epsilon(0<\epsilon<\pi), b \neq a$

3. Generalized multiple-index Mittag-Leffler function

A further generalization of the Mittag-Leffler functions is proposed recently in Paneva-Konovska [2]. These are 3mparametric Mittag-Leffler type functions generalizing the Prabhakar [3] 3-parametric function, defined as:
$E_{\left(\alpha_{i}\right),\left(\beta_{i}\right)}^{\left(\gamma_{i}\right), m}(z)=\sum_{k=0}^{\infty} \frac{\left(\gamma_{1}\right)_{k} \cdots\left(\gamma_{m}\right)_{k}}{\Gamma\left(\alpha_{1} k+\beta_{1}\right) \cdots \Gamma\left(\alpha_{m} k+\beta_{m}\right)} \frac{z^{k}}{k!}$
where $\alpha_{i}, \beta_{i}, \gamma_{i} \in \mathbb{C}, i=1, \cdots, m, \operatorname{Re}\left(\alpha_{i}\right)>0$

4. General Eulerian integral of the multivariable Aleph-function

In this section, we shall prove one main general Eulerian integral involving the Aleph-function of one variable, general class of polynomials of several variables and multivariable Aleph-function. We note :

$$
a^{\prime}=\frac{\left(-N_{1}\right)_{M_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{s}\right)_{M_{s} K_{s}}}{K_{s}!} A\left[N_{1}, K_{1} ; \cdots ; N_{s}, K_{s}\right] \text { and } \quad b_{k}=\frac{\left(\gamma_{1}\right)_{k} \cdots\left(\gamma_{m}\right)_{k}}{\Gamma\left(\alpha_{1} k+\beta_{1}\right) \cdots \Gamma\left(\alpha_{m} k+\beta_{m}\right)}
$$

We have the following result :

$$
\begin{aligned}
& \int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1}\left(u_{1} t+v_{1}\right)^{r_{1}}\left(u_{2} t+v_{2}\right)^{-r_{2}}\left(y_{1} t+z_{1}\right)^{\delta_{1}}\left(y_{2} t+z_{2}\right)^{-\delta_{2}} \\
& \aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(x\left(u_{1} t+v_{1}\right)^{c}\left(u_{2} t+v_{2}\right)^{d}\left(y_{1} t+z_{1}\right)^{e}\left(y_{2} t+z_{2}\right)^{f}\right) \\
& E_{\left(\alpha_{i}\right),\left(\beta_{i}\right)}^{\left(\gamma_{i}\right), m}\left(z\left(u_{1} t+v_{1}\right)^{c^{\prime}}\left(u_{2} t+v_{2}\right)^{d^{\prime}}\left(y_{1} t+z_{1}\right)^{e^{\prime}}\left(y_{2} t+z_{2}\right)^{f^{\prime}}\right)
\end{aligned}
$$

$$
S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}
\mathrm{x}_{1}\left(u_{1} t+v_{1}\right)^{c_{1}}\left(u_{2} t+v_{2}\right)^{d_{1}}\left(y_{1} t+z_{1}\right)^{e_{1}}\left(y_{2} t+z_{2}\right)^{f_{1}} \\
\cdots \cdot \\
\cdots \cdot \\
\mathrm{x}_{s}\left(u_{1} t+v_{1}\right)^{c_{s}}\left(u_{2} t+v_{2}\right)^{\dot{d}_{s}}\left(y_{1} t+z_{1}\right)^{e_{s}}\left(y_{2} t+z_{2}\right)^{f_{s}}
\end{array}\right)
$$

$$
I_{U: p_{r}, q_{r} ; W}^{V ; 0, n_{r} ; X}\left(\begin{array}{c}
\mathrm{Z}_{1}\left(u_{1} t+v_{1}\right)^{\rho_{1}}\left(u_{2} t+v_{2}\right)^{\rho_{1}^{\prime}}\left(y_{1} t+z_{1}\right)^{\sigma_{1}}\left(y_{2} t+z_{2}\right)^{\sigma_{1}^{\prime}} \\
\cdots \\
\cdots \\
\mathrm{Z}_{r}\left(u_{1} t+v_{1}\right)^{\rho_{r}}\left(u_{2} t+v_{2}\right)^{\rho_{r}^{\prime}}\left(y_{1} t+z_{1}\right)^{\sigma_{r}}\left(y_{2} t+z_{2}\right)^{\sigma_{r}^{\prime}}
\end{array}\right) \mathrm{d} t
$$

$$
=(b-a)^{\alpha+\beta-1}\left(a u_{1}+v_{1}\right)^{r_{1}}\left(a u_{2}+v_{2}\right)^{-r_{2}}\left(b y_{1}+z_{1}\right)^{\delta_{1}}\left(b y_{2}+z_{2}\right)^{-\delta_{2}} \sum_{l_{1}, l_{2}, l_{3}, l_{4}=0}^{\infty} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{k=0}^{\infty} \frac{b_{k} z^{k}}{k!}
$$

$\sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \frac{B\left(\alpha+l_{1}+l_{3}, \beta+l_{2}+l_{4}\right)}{l_{1}!l_{2}!l_{3}!l_{4}!} a^{\prime} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M, \eta_{G}}\left(\eta_{G, g}\right)}{B_{G} g!} X_{1}^{K_{1}} \cdots X_{s}^{K_{s}} X^{\eta_{G, g}} Y^{k}$
 $$
\left\{\frac{(b-a) u_{1}}{\left(a u_{1}+v_{1}\right)}\right\}^{l_{1}}\left\{-\frac{(b-a) y_{1}}{\left(b y_{1}+z_{1}\right)}\right\}^{l_{2}}\left\{-\frac{(b-a) u_{2}}{\left(a u_{2}+v_{2}\right)}\right\}^{l_{3}}\left\{\frac{(b-a) y_{2}}{\left(b y_{2}+z_{2}\right)}\right\}^{l_{4}} I_{U: p_{r}+4, q_{r}+4 ; W}^{V ; 0, n_{r}+4 ; X}\left(\begin{array}{c|c} \mathrm{Z}{ }_{1} & \mathrm{~A} ; \\ \cdots & \ldots \\ \cdots & \ldots \\ \mathrm{Z}_{r} & \mathrm{~B} \end{array}\right.
$$
 $$
\left(-\delta_{1}-e \eta_{G, g}-e^{\prime} k-\sum_{i=1}^{s} e_{i} K_{i}: \sigma_{1}, \cdots, \sigma_{r}\right), \quad\left(-\mathrm{r}_{1}-c \eta_{G, g}-c^{\prime} k-\sum_{i=1}^{s} c_{i} K_{i}: \rho_{1}, \cdots, \rho_{r}\right)
$$
 $$
\left(-\delta_{1}+l_{2}-e \eta_{G, g}-e^{\prime} k-\sum_{i=1}^{s} e_{i} K_{i}: \sigma_{1}, \cdots, \sigma_{r}\right),\left(-\mathrm{r}_{1}+l_{1}-c \eta_{G, g}-c^{\prime} k-\sum_{i=1}^{s} c_{i} K_{i}: \rho_{1}, \cdots, \rho_{r}\right),
$$
 $$
\left(\mathrm{r}_{2}-d \eta_{G, g}-d^{\prime} k-\sum_{i=1}^{s} d_{i} K_{i}: \rho_{1}^{\prime}, \cdots, \rho_{r}^{\prime}\right), \quad\left(\delta_{2}-f \eta_{G, g}-f^{\prime} k-\sum_{i=1}^{s} f_{i} K_{i}: \sigma_{1}^{\prime}, \cdots, \sigma_{r}^{\prime}\right),
$$
 $$
\left(\mathrm{r}_{2}+l_{3}-d \eta_{G, g}-d^{\prime} k-\sum_{i=1}^{s} d_{i} K_{i}: \rho_{1}^{\prime}, \cdots, \rho_{r}^{\prime}\right),\left(\delta_{2}+l_{4}-f \eta_{G, g}-f^{\prime} k-\sum_{i=1}^{s} f_{i} K_{i}: \sigma_{1}^{\prime}, \cdots, \sigma_{r}^{\prime}\right)
$$
 $$
\left.\begin{array}{c} \mathfrak{A} ; \mathrm{A}^{\prime} \tag{4.1}\\ \dot{\mathfrak{B}} ; \mathrm{B}^{\prime} \end{array}\right)
$$

where $X=x\left(a u_{1}+v_{1}\right)^{c}\left(a u_{2}+v_{2}\right)^{d}\left(b y_{1}+z_{1}\right)^{e}\left(b y_{2}+z_{2}\right)^{f}$
$Y=z\left(a u_{1}+v_{1}\right)^{c^{\prime}}\left(a u_{2}+v_{2}\right)^{d^{\prime}}\left(b y_{1}+z_{1}\right)^{e^{\prime}}\left(b y_{2}+z_{2}\right)^{f^{\prime}}$
$X_{i}=x_{i}\left(a u_{1}+v_{1}\right)^{c_{i}}\left(a u_{2}+v_{2}\right)^{d_{i}}\left(b y_{1}+z_{1}\right)^{e_{i}}\left(b y_{2}+z_{2}\right)^{f_{i}}, i=1, \cdots, s$ and
$Z_{i}^{\prime}=Z_{i}\left(a u_{1}+v_{1}\right)^{\rho_{i}}\left(a u_{2}+v_{2}\right)^{-\rho_{i}^{\prime}}\left(b y_{1}+z_{1}\right)^{\sigma_{i}}\left(b y_{2}+z_{2}\right)^{-\sigma_{i}^{\prime}}, i=1, \cdots, r$

Provided

а) $\min \left\{c, d, e, f, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}, c_{i}, d_{i}, e_{i}, f_{i}, \rho_{j}, \rho_{j}^{\prime}, \sigma_{j}, \sigma_{j}^{\prime}\right\}>0, i=1, \cdots, s ; j=1, \cdots, r$ $\mathrm{b} \min \{\operatorname{Re}(\alpha), \operatorname{Re}(\beta)\}>0, b \neq a$
с) $\max \left\{\left|\frac{u_{1}(b-a)}{a u_{1}+v_{1}}\right|,\left|\frac{y_{1}(b-a)}{b y_{1}+z_{1}}\right|,\left|\frac{(b-a) u_{2}}{a u_{2}+v_{2}}\right|,\left|\frac{(b-a) y_{2}}{b y_{2}+z_{2}}\right|\right\}<1$
d) $R e\left[r_{1}+c \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{B_{j}}+c^{\prime} k+\sum_{i=1}^{r} \rho_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>-1$
e) $R e\left[r_{2}+d \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{B_{j}}+d^{\prime} k+\sum_{i=1}^{r} \rho_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>-1$
f) $R e\left[\delta_{1}+e \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{B_{j}}+e^{\prime} k+\sum_{i=1}^{r} \sigma_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>-1$
g) $R e\left[\delta_{2}+f \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{B_{j}}+f^{\prime} k+\sum_{i=1}^{r} \sigma_{i}^{\prime} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>-1$
h) $\left|\arg Z_{k}\right|<\frac{1}{2} \Omega_{i}^{(k)} \pi$, where $\Omega_{i}^{(k)}$ is given in (1.3)
i) $|\arg x|<\frac{1}{2} \pi \Omega \quad$ Where $\Omega=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N} \alpha_{j}-c_{i}\left(\sum_{j=M+1}^{Q_{i}} \beta_{j i}+\sum_{j=N+1}^{P_{i}} \alpha_{j i}\right)>0$
j) $\alpha_{i}, \beta_{i}, \gamma_{i} \in \mathbb{C}, i=1, \cdots, m, \operatorname{Re}\left(\alpha_{i}\right)>0$

Proof

We first replace the multivariable I-function defined by Prasad [4] on the L.H.S of (3.1) by its Mellin-barnes contour integral (1.1), the Aleph-function , a general class of polynomials of several variables and the generalized multipleindex Mittag-Leffler function.in series using respectively (1.13), (1.11) and (3.1). Now we interchange the order of summation and integrations (which is permissible under the conditions stated). Collect the powers of $\left(u_{1} t+v_{1}\right),\left(u_{2} t+v_{2}\right),\left(y_{1} t+z_{1}\right),\left(y_{2} t+z_{2}\right)$, and apply the binomial expansion (2.3). We then use the Eulerian integral (2.2) and interpret the resulting Mellin-Barnes contour integral as a I-function of r variables, we arrive at the desired result.

5. Particular case

If $U=V=A=B=0$, the multivariable I-function defined by Prasad degenere in multivariable H-function defined by Srivastava et al [7]. We have the following result.
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1}\left(u_{1} t+v_{1}\right)^{r_{1}}\left(u_{2} t+v_{2}\right)^{-r_{2}}\left(y_{1} t+z_{1}\right)^{\delta_{1}}\left(y_{2} t+z_{2}\right)^{-\delta_{2}}$
$\aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(x\left(u_{1} t+v_{1}\right)^{c}\left(u_{2} t+v_{2}\right)^{d}\left(y_{1} t+z_{1}\right)^{e}\left(y_{2} t+z_{2}\right)^{f}\right)$
$E_{\left(\alpha_{i}\right),\left(\beta_{i}\right)}^{\left(\gamma_{i}\right), m}\left(z\left(u_{1} t+v_{1}\right)^{c^{\prime}}\left(u_{2} t+v_{2}\right)^{d^{\prime}}\left(y_{1} t+z_{1}\right)^{e^{\prime}}\left(y_{2} t+z_{2}\right)^{f^{\prime}}\right)$
$S_{N_{1}, \cdots, N_{s}}^{M_{1}, \ldots, M_{s}}\left(\begin{array}{c}\mathrm{x}_{1}\left(u_{1} t+v_{1}\right)^{c_{1}}\left(u_{2} t+v_{2}\right)^{d_{1}}\left(y_{1} t+z_{1}\right)^{e_{1}}\left(y_{2} t+z_{2}\right)^{f_{1}} \\ \cdot \cdot \\ \dot{\cdot} \cdot \\ \mathrm{x}_{s}\left(u_{1} t+v_{1}\right)^{c_{s}}\left(u_{2} t+v_{2}\right)^{d_{s}}\left(y_{1} t+z_{1}\right)^{e_{s}}\left(y_{2} t+z_{2}\right)^{f_{s}}\end{array}\right)$
$H_{p_{r}, q_{r} ; W}^{0, n_{n} ; X}\left(\begin{array}{c}\mathrm{Z}_{1}\left(u_{1} t+v_{1}\right)^{\rho_{1}}\left(u_{2} t+v_{2}\right)^{\rho_{1}^{\prime}}\left(y_{1} t+z_{1}\right)^{\sigma_{1}}\left(y_{2} t+z_{2}\right)^{\sigma_{1}^{\prime}} \\ \cdots \\ \cdots \\ \mathrm{Z}_{r}\left(u_{1} t+v_{1}\right)^{\rho_{r}}\left(u_{2} t+v_{2}\right)^{\rho_{r}^{\prime}}\left(y_{1} t+z_{1}\right)^{\sigma_{r}}\left(y_{2} t+z_{2}\right)^{\sigma_{r}^{\prime}}\end{array}\right) \mathrm{d} t$

$$
=(b-a)^{\alpha+\beta-1}\left(a u_{1}+v_{1}\right)^{r_{1}}\left(a u_{2}+v_{2}\right)^{-r_{2}}\left(b y_{1}+z_{1}\right)^{\delta_{1}}\left(b y_{2}+z_{2}\right)^{-\delta_{2}} \sum_{l_{1}, l_{2}, l_{3}, l_{4}=0}^{\infty} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{k=0}^{\infty} \frac{b_{k} z^{k}}{k!}
$$

$$
\left.\begin{array}{c}
\mathfrak{A} ; \mathrm{A}^{\prime} \tag{5.1}\\
\mathfrak{B} ; \mathrm{B}^{\prime}
\end{array}\right)
$$

6. Conclusion

In this paper we have evaluated a generalized Eulerian integral involving the Aleph-function, a class of polynomials of several variables, the generalized multiple-index Mittag-Leffler function and the multivariable I-function defined by Prasad [4]. The integral established in this paper is of very general nature as it contains multivariable I-function, which is a general function of several variables studied so far. Thus, the integral established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

[1] Chaurasia V.B.L and Singh Y. New generalization of integral equations of fredholm type using Aleph-function Int. J. of Modern Math. Sci. 9(3), 2014, p 208-220.
[2] J. Paneva-Konovska, Multi-index (3m-parametric) Mittag-Leffler functions and fractional calculus.Compt. Rend. de l’Acad. Bulgare des Sci. 64, No 8 (2011), page 1089-1098.
[3] T. R. Prabhakar, A singular integral equation with a generalizedMittag-Leffler function in the kernel.Yokohama Math. J.19(1971), page 7-15.
[4] Y.N. Prasad , Multivariable I-function, Vijnana Parishad Anusandhan Patrika 29 (1986) , page 231-237.
[5] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by

$$
\begin{aligned}
& \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \frac{B\left(\alpha+l_{1}+l_{3}, \beta+l_{2}+l_{4}\right)}{l_{1}!l_{2}!l_{3}!l_{4}!} a^{\prime} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M, N}\left(\eta_{G, g}\right)}{B_{G} g!} X_{1}^{K_{1}} \cdots X_{s}^{K_{s}} X^{\eta_{G, g}} Y^{k} \\
& \left\{\frac{(b-a) u_{1}}{\left(a u_{1}+v_{1}\right)}\right\}^{l_{1}}\left\{-\frac{(b-a) y_{1}}{\left(b y_{1}+z_{1}\right)}\right\}^{l_{2}}\left\{-\frac{(b-a) u_{2}}{\left(a u_{2}+v_{2}\right)}\right\}^{l_{3}}\left\{\frac{(b-a) y_{2}}{\left(b y_{2}+z_{2}\right)}\right\}^{l_{4}} H_{p_{r}+4, q_{r}+4 ; W}^{0, n_{r}+4 ; X}\left(\left.\begin{array}{c}
\mathrm{Z}_{1}{ }_{1} \\
\cdots \\
\cdots \\
\mathrm{Z}_{r}{ }_{r}
\end{array} \right\rvert\,\right. \\
& \left(-\delta_{1}-e \eta_{G, g}-e^{\prime} k-\sum_{i=1}^{s} e_{i} K_{i}: \sigma_{1}, \cdots, \sigma_{r}\right), \quad\left(-\mathrm{r}_{1}-c \eta_{G, g}-c^{\prime} k-\sum_{i=1}^{s} c_{i} K_{i}: \rho_{1}, \cdots, \rho_{r}\right), \\
& \left(-\delta_{1}+l_{2}-e \eta_{G, g}-e^{\prime} k-\sum_{i=1}^{s} e_{i} K_{i}: \sigma_{1}, \cdots, \sigma_{r}\right),\left(-\mathrm{r}_{1}+l_{1}-c \eta_{G, g}-c^{\prime} k-\sum_{i=1}^{s} c_{i} K_{i}: \rho_{1}, \cdots, \rho_{r}\right), \\
& \left(\mathrm{r}_{2}-d \eta_{G, g}-d^{\prime} k-\sum_{i=1}^{s} d_{i} K_{i}: \rho_{1}^{\prime}, \cdots, \rho_{r}^{\prime}\right), \quad\left(\delta_{2}-f \eta_{G, g}-f^{\prime} k-\sum_{i=1}^{s} f_{i} K_{i}: \sigma_{1}^{\prime}, \cdots, \sigma_{r}^{\prime}\right), \\
& \left(\mathrm{r}_{2}+l_{3}-d \eta_{G, g}-d^{\prime} k-\sum_{i=1}^{s} d_{i} K_{i}: \rho_{1}^{\prime}, \cdots, \rho_{r}^{\prime}\right),\left(\delta_{2}+l_{4}-f \eta_{G, g}-f^{\prime} k-\sum_{i=1}^{s} f_{i} K_{i}: \sigma_{1}^{\prime}, \cdots, \sigma_{r}^{\prime}\right),
\end{aligned}
$$

Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
[6] H.M. Srivastava and Hussain M.A. Fractional integration of the H-function of several variables. Comp. Math. Appl. 30(9), (1995), page 73-85.
[7] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
[8] Südland N.; Baumann, B. and Nonnenmacher T.F. , Open problem : who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4) (1998): 401-402.

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE

