Eulerian integral involving the multivariable I-function III

F.Y. AYANT ${ }^{1}$
1 Teacher in High School, France

ABSTRACT

In this paper, we derive two Eulerian integrals involving a product of two multivariable I-functions defined by Prasad [2], the Aleph-function of one variable, general class of polynomials of several variables and a extension of the Hurwitz-lerch Zeta-function. This general Eulerian integral formula is show to provide the key formula from which numerous others results for the multivariable I-function, H-function of several variables.

Keywords :multivariable I-function, Eulerian integral, Multivariable H-function, the Hurwitz-lerch Zeta-function, general class of polynomial,Alephfunction

2010 Mathematics Subject Classification. 33C60, 82C31

1. Introduction and preliminaries.

In this paper we establish two general Eulerian integrals concerning a product of two multivariable I-functions, the Aleph-function a general class of multivariable polynomials and a extension of the Hurwitz-lerch Zeta-function. These function generalize the multivariable H -function study by Srivastava et al [5], itself is an a generalisation of G-function of several variables. The multivariable I-function is defined in term of multiple Mellin-Barnes type integral :
$I\left(z_{1}, z_{2}, \ldots z_{r}\right)=I_{p_{2}, q_{2}, p_{3}, q_{3} ; \cdots ; p_{r}, q_{r}: p^{\prime}, q^{\prime} ; \cdots ; p^{(r)}, q^{(r)}}^{0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{r}: m^{\prime}, n^{\prime} ; \cdots ; m^{(r)}, n^{(r)}}\left(\begin{array}{c}\mathrm{z}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r}\end{array}\right)\left(\mathrm{a}_{2 j} ; \alpha_{2 j}^{\prime}, \alpha_{2 j}^{\prime \prime}\right)_{1, p_{2}} ; \cdots ;$

$$
\left.\begin{array}{l}
\left(\mathrm{a}_{r j} ; \alpha_{r j}^{\prime}, \cdots, \alpha_{r j}^{(r)}\right)_{1, p_{r}}:\left(a_{j}^{\prime}, \alpha_{j}^{\prime}\right)_{1, p^{\prime}} ; \cdots ;\left(a_{j}^{(r)}, \alpha_{j}^{(r)}\right)_{1, p^{(r)}} \\
\left(\mathrm{b}_{r j} ; \beta_{r j}^{\prime}, \cdots, \beta_{r j}^{(r)}\right)_{1, q_{r}}:\left(b_{j}^{\prime}, \beta_{j}^{\prime}\right)_{1, q^{\prime}} ; \cdots ;\left(b_{j}^{(r)}, \beta_{j}^{(r)}\right)_{1, q^{(r)}} \tag{1.1}
\end{array}\right)
$$

The defined integral of the above function, the existence and convergence conditions, see Y,N Prasad [2]. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function.

The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{k}\right|<\frac{1}{2} \Omega_{i}^{(k)} \pi$, where
$\Omega_{i}^{(k)}=\sum_{k=1}^{n^{(i)}} \alpha_{k}^{(i)}-\sum_{k=n^{(i)}+1}^{p^{(i)}} \alpha_{k}^{(i)}+\sum_{k=1}^{m^{(i)}} \beta_{k}^{(i)}-\sum_{k=m^{(i)}+1}^{q^{(i)}} \beta_{k}^{(i)}+\left(\sum_{k=1}^{n_{2}} \alpha_{2 k}^{(i)}-\sum_{k=n_{2}+1}^{p_{2}} \alpha_{2 k}^{(i)}\right)+$
$+\left(\sum_{k=1}^{n_{r}} \alpha_{r k}^{(i)}-\sum_{k=n_{r}+1}^{p_{r}} \alpha_{r k}^{(i)}\right)-\left(\sum_{k=1}^{q_{2}} \beta_{2 k}^{(i)}+\sum_{k=1}^{q_{3}} \beta_{3 k}^{(i)}+\cdots+\sum_{k=1}^{q_{r}} \beta_{r k}^{(i)}\right)$
where $i=1, \cdots, r$
The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function.

We may establish the the asymptotic expansion in the following convenient form :
$I\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\gamma_{1}^{\prime}}, \cdots,\left|z_{r}\right|^{\gamma_{r}^{\prime}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow 0$
$I\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|^{\beta_{s}^{\prime}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow \infty$
where $k=1, \cdots, z: \alpha_{k}^{\prime}=\min \left[\operatorname{Re}\left(b_{j}^{(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}^{\prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{(k)}-1\right) / \alpha_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will use these following notations in this paper :
$U=p_{2}, q_{2} ; p_{3}, q_{3} ; \cdots ; p_{r-1}, q_{r-1} ; V=0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{s-1}$
$W=\left(p^{\prime}, q^{\prime}\right) ; \cdots ;\left(p^{(r)}, q^{(r)}\right) ; X=\left(m^{\prime}, n^{\prime}\right) ; \cdots ;\left(m^{(r)}, n^{(r)}\right)$
$A=\left(a_{2 k}, \alpha_{2 k}^{\prime}, \alpha_{2 k}^{\prime \prime}\right) ; \cdots ;\left(a_{(r-1) k)}, \alpha_{(r-1) k}^{\prime}, \alpha_{(r-1) k}^{\prime \prime}, \cdots, \alpha_{(r-1) k}^{(r-1)}\right)$
$B=\left(b_{2 k}, \beta_{2 k}^{\prime}, \beta_{2 k}^{\prime \prime}\right) ; \cdots ;\left(b_{(r-1) k)}, \beta_{(r-1) k}^{\prime}, \beta_{(r-1) k}^{\prime \prime}, \cdots, \beta_{(r-1) k}^{(r-1)}\right)$
$\mathfrak{A}=\left(a_{s k} ; \alpha^{\prime}{ }_{r k}, \alpha_{r k}^{\prime \prime}, \cdots, \alpha_{r k}^{r}\right): \mathfrak{B}=\left(b_{r k} ; \beta^{\prime}{ }_{r k}, \beta_{r k}^{\prime \prime}, \cdots, \beta_{r k}^{r}\right)$
$A^{\prime}=\left(a_{k}^{\prime}, \alpha_{k}^{\prime}\right)_{1, p^{\prime}} ; \cdots ;\left(a_{k}^{(r)}, \alpha_{k}^{(r)}\right)_{1, p^{(r)}} ; B^{\prime}=\left(b_{k}^{\prime}, \beta_{k}^{\prime}\right)_{1, p^{\prime}} ; \cdots ;\left(b_{k}^{(r)}, \beta_{k}^{(r)}\right)_{1, p^{(r)}}$
The multivariable I-function write :
$I\left(z_{1}, \cdots, z_{r}\right)=I_{U: p_{r}, q_{r} ; W}^{V ; 0, n_{r} ; X}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A} ; \mathfrak{A} ; \mathrm{A}^{\prime} \\ \cdot & \\ \cdot & \\ \cdot & \mathrm{B} ; \mathfrak{B} ; \mathrm{B}^{\prime} \\ \mathrm{z}_{r} & \end{array}\right)$

The generalized polynomials of multivariable defined by Srivastava [3], is given in the following manner :
$S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left[y_{1}, \cdots, y_{s}\right]=\sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \frac{\left(-N_{1}\right)_{M_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{s}\right)_{M_{s} K_{s}}}{K_{s}!}$
$A\left[N_{1}, K_{1} ; \cdots ; N_{s}, K_{s}\right] y_{1}^{K_{1}} \cdots y_{s}^{K_{s}}$

The Aleph- function, introduced by Südland [7] et al, however the notation and complete definition is presented here in the following manner in terms of the Mellin-Barnes type integral :

for all z different to 0 and

$$
\begin{equation*}
\Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s)=\frac{\prod_{j=1}^{M} \Gamma\left(b_{j}+B_{j} s\right) \prod_{j=1}^{N} \Gamma\left(1-a_{j}-A_{j} s\right)}{\sum_{i=1}^{r} c_{i} \prod_{j=N+1}^{P_{i}} \Gamma\left(a_{j i}+A_{j i} s\right) \prod_{j=M+1}^{Q_{i}} \Gamma\left(1-b_{j i}-B_{j i} s\right)} \tag{1.13}
\end{equation*}
$$

With : $|\arg z|<\frac{1}{2} \pi \Omega$, where $\Omega=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N} \alpha_{j}-c_{i}\left(\sum_{j=M+1}^{Q_{i}} \beta_{j i}+\sum_{j=N+1}^{P_{i}} \alpha_{j i}\right)>0 ; i=1, \cdots, r$

For convergence conditions and other details of Aleph-function, see Südland et al [7]. Serie representation of Alephfunction is given by Chaurasia et al [1].
$\aleph_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(z)=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M, N}(s)}{B_{G} g!} z^{-s}$

With $s=\eta_{G, g}=\frac{b_{G}+g}{B_{G}}, P_{i}<Q_{i},|z|<1$ and $\Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s)$ is given in (1.2)

2. Required formulas

We have : $B(\alpha, \beta)=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} \mathrm{~d} t=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}, \quad \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0$
(2.1) can be rewritten in the form
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \mathrm{~d} t=(b-a)^{\alpha+\beta-1} \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}, \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, b \neq a$

The binomial expansions for $t \in[a, b]$ yields :
$(u t+v)^{\gamma}=(a u+v)^{\gamma} \sum_{m=0}^{\infty} \frac{(-\gamma)_{m}}{m!}\left\{\frac{-u(a-t)}{a u+v}\right\}^{m} \quad$ where $\left|\frac{(t-a) u}{a u+v}\right|<1$

With the help of (2.2) we obtain (see Srivastava et al [4])
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1}(u t+v)^{\gamma} \mathrm{d} t=(b-a)^{\alpha+\beta-1} B(\alpha, \beta)(a t+v)^{\gamma}{ }_{2} F_{1}\binom{\alpha,-\gamma ;-\frac{(b-a) u}{a u+v}}{\alpha+\beta}$
where $\operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0 ;\left|\arg \left(\frac{b u+v}{a u+v}\right)\right| \leqslant \pi-\epsilon(0<\epsilon<\pi), b \neq a$

3. Extension of the Hurwitz-Lerch Zeta function

The extension of the Hurwitz-Lerch Zeta function $\phi(z, S, a)$ is introduced by Srivastava et al ([6],eq.(6.2), page 503) as follows:
$\phi_{\left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{q}\right)}^{\left(\rho_{1}, \cdots, p_{p}, \sigma_{1}, \cdots, \sigma_{q}\right)}(z ; \mathfrak{s}, a)=\sum_{n=0}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{n \rho_{j}}}{(a+n)^{\mathfrak{s}} \prod_{j=1}^{q}\left(\mu_{j}\right)_{n \sigma_{j}}} \times \frac{z^{n}}{n!}$
with : $p, q \in \mathbb{N}_{0}, \lambda_{j} \in \mathbb{C}(j=1, \cdots, p), a, \mu_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{*}(j=1, \cdots, q), \rho_{j}, \sigma_{k} \in \mathbb{R}^{+}$ $(j=1, \cdots, p ; k=1, \cdots, q)$
where $\Delta>-1$ when $\mathfrak{s}, z \in \mathbb{C} ; \Delta=-1$ and $s \in \mathbb{C}$, when $|z|<\nabla^{*}, \Delta=-1$ and $\operatorname{Re}(\chi)>\frac{1}{2}$ when $|z|=\nabla^{*}$
$\nabla^{*}=\prod_{j=1}^{p} \rho_{j}^{\rho_{j}} \prod_{j=1}^{q} \sigma_{j}^{\sigma_{j}} ; \Delta=\sum_{j=1}^{q} \sigma_{j}-\sum_{j=1}^{p} \rho_{j} ; \chi=\mathfrak{s}+\sum_{j=1}^{q} \mu_{j}-\sum_{j=1}^{p} \lambda_{j}+\frac{p-q}{2}$
We denote these conditions, the conditions (f).

4. General Eulerian integral of the multivariable Aleph-function

In this section, we shall prove two main general Eulerian integrals involving the Aleph-function of one variable, general class of polynomials and several variables and multivariable Aleph-function.

We note : $a^{\prime}=\frac{\left(-N_{1}\right)_{M_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{s}\right)_{M_{s} K_{s}}}{K_{s}!} A\left[N_{1}, K_{1} ; \cdots ; N_{s}, K_{s}\right]$
and $b_{n}=\frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{n \rho_{j}}}{(a+n)^{\mathfrak{s}} \prod_{j=1}^{q}\left(\mu_{j}\right)_{n \sigma_{j}}}$. We have the following result :
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1}(u t+v)^{\gamma}(y t+z)^{\delta} \aleph_{P_{i}, Q_{i}, \mathfrak{c}_{i} ; r^{\prime}}^{M, \mathfrak{R}}\left(x(u t+v)^{c}(y t+z)^{d}\right)$
$S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}\mathrm{x}_{1}(u t+v)^{c_{1}}(y t+z)^{d_{1}} \\ \cdots \\ \cdots \\ \mathrm{x}_{s}(u t+v)^{c_{s}}(y t+z)^{d_{s}}\end{array}\right) \phi_{\left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{q}\right)}^{\left(\rho_{1}, \cdots, \rho_{p}, \sigma_{1}, \cdots, \sigma_{q}\right)}\left(z^{\prime}(u t+v)^{c^{\prime}}(y t+z)^{d^{\prime}} ; \mathfrak{s}, a\right)$
$I_{U: p_{r}, q_{r} ; W}^{V ; 0, n_{r} ; X}\left(\begin{array}{c}\mathrm{y}_{1}(u t+v)^{\sigma_{1}} \\ \cdots \\ \cdots \\ \mathrm{y}_{r}(u t+v)^{\sigma_{r}}\end{array}\right) I_{u: P_{R}, Q_{R} ; w}^{v ; 0, n_{R} ; x}\left(\begin{array}{c}\mathrm{z}_{1}(y t+z)^{\lambda_{1}} \\ \cdots \\ \cdots \\ \mathrm{z}_{R}(y t+z)^{\lambda_{R}}\end{array}\right) \mathrm{d} t$
$=(b-a)^{\alpha+\beta-1}(a u+v)^{\gamma}(b y+z)^{\delta} B(\alpha, \beta) \sum_{l, m=0}^{\infty} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \frac{(\alpha)_{l}(\beta)_{m}}{(\alpha+\beta)_{l+m} l!m!} a^{\prime}$
$\frac{(-)^{g} \Omega_{P_{i}, Q_{i}, \mathfrak{c}_{\mathrm{i}}, r^{\prime}}^{M, \eta^{\prime}}\left(\eta_{G, g}\right)}{B_{G} g!} X_{1}^{K_{1}} \cdots X_{s}^{K_{s}} X^{\eta_{G, g}} Y^{n}\left\{\frac{(b-a) u}{(a u+v)}\right\}^{l}\left\{-\frac{(b-a) y}{(b y+z)}\right\}^{m}$
$I_{U: p_{r}+1, q_{r}+1 ; W}^{V ; n_{r}+1 ; X}\left(\begin{array}{c|c}\mathrm{y}_{1}(a u+v)^{\sigma_{1}} & \mathrm{~A} ;\left(-\gamma-c \eta_{G, g}-c^{\prime} n-\sum_{i=1}^{s} c_{i} K_{i}: \sigma_{1}, \cdots, \sigma_{r}\right), \mathfrak{A}, A^{\prime} \\ \cdots & \cdots \\ \cdots \\ \mathrm{y}_{r}(a u+v)^{\sigma_{r}} & \left.\mathrm{~B} ;\left(-\gamma+l-c \eta_{G, g}-c^{\prime} n-\sum_{i=1}^{s} c_{i} K_{i}: \sigma_{1}, \cdots, \sigma_{r}\right), B, B^{\prime}\right)\end{array}\right)$
$I_{u: P_{R}+1, Q_{R}+1 ; w}^{v ; 0, n_{R}+1 ; x}\left(\begin{array}{c|c}\mathrm{z}_{1}(b y+z)^{\lambda_{1}} & \mathrm{~A}_{1} ;\left(-\delta-d \eta_{G, g}-d^{\prime} n-\sum_{i=1}^{s} d_{i} K_{i}: \lambda_{1}, \cdots, \lambda_{R}\right), \mathfrak{A}_{1} ; A_{1}^{\prime} \\ \cdots & \cdots \\ \cdots & \mathrm{B}_{1} ;\left(-\delta+m-d \eta_{G, g}-d^{\prime} n-\sum_{i=1}^{s} d_{i} K_{i}: \lambda_{1}, \cdots, \lambda_{R}\right), \mathfrak{B}_{1} ; B_{1}^{\prime}\end{array}\right)$ (4.1)
where $X=x(a u+v)^{c}(b y+z)^{d} \quad X_{i}=x_{i}(a u+v)^{c_{i}}(b y+z)^{d_{i}}, i=1, \cdots, s$ and $Y=z^{\prime}(a u+v)^{c^{\prime}}(b y+z)^{d^{\prime}}$

Provided that
а) $\min \left\{c, d, c^{\prime}, d^{\prime}, c_{i}, d_{i}, \sigma_{j}, \lambda_{k}\right\}>0, i=1, \cdots, s ; j=1, \cdots, r ; k=1, \cdots, R$
$\mathrm{b} \min \{\operatorname{Re}(\alpha), \operatorname{Re}(\beta)\}>0 ; b \neq a, \max \left\{\left|\frac{u(b-a)}{a u+v}\right|,\left|\frac{y(b-a)}{b y+z}\right|\right\}<1$
c) $R e\left[\gamma+c \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{B_{j}}+c^{\prime} n+\sum_{i=1}^{r} \sigma_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}}\right]>-1$
d) $R e\left[\delta+d \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{B_{j}}+d^{\prime} n+\sum_{i=1}^{r} \lambda_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{\prime(i)}}{\delta_{j}^{\prime(i)}}\right]>-1$
e) $\left|\arg y_{k}\right|<\frac{1}{2} \Omega_{i}^{(k)} \pi$, where $\Omega_{i}^{(k)}$ is given in (1.3) and e) $\left|\arg Z_{k}\right|<\frac{1}{2} \omega_{i}^{(k)} \pi$
f) The conditions (f) are satisfied
g) $|\operatorname{argx}|<\frac{1}{2} \pi \Omega$ Where $\Omega=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N} \alpha_{j}-\mathfrak{c}_{\mathfrak{i}}\left(\sum_{j=M+1}^{Q_{i}} \beta_{j i}+\sum_{j=\mathfrak{N}+1}^{P_{i}} \alpha_{j i}\right)>0$

Proof

We first replace the two multivariable I-functions defined by Prasad [2] on the L.H.S of (3.1) by its Mellin-barnes contour integral respectively, the Aleph-function of one variable, the general class of polynomials of several variables and a extension of the Hurwitz-lerch Zeta-function in series using respectively (1.14), (1.11) and (2.3), Now we interchange the order of summation and integrations (which is permissible under the conditions stated). Collect the powers of $(u t+v),(y t+z)$ and apply the binomial expansion (2.3). We then use the Eulerian integral (2.2) and interpret the resulting both Mellin-Barnes contour integral as an I-function of r variables and an I-function of R variables respectively, we arrive at the desired result.

In (3.1) replace a by $-a$ and y by $-y$, we obtain the following Eulerian integral :
$\int_{-a}^{b}(t+a)^{\alpha-1}(b-t)^{\beta-1}(u t+v)^{\gamma}(z-t y)^{\delta} \aleph_{P_{i}, Q_{i}, \mathfrak{c}_{i} ; r^{\prime}}^{M, \mathfrak{N}}\left(x(u t+v)^{c}(z-t y)^{d}\right)$
$S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}\mathrm{x}_{1}(u t+v)^{c_{1}}(z-t y)^{d_{1}} \\ \cdots \\ \cdots \cdot \\ \mathrm{x}_{s}(u t+v)^{c_{s}}(z-t y)^{d_{s}}\end{array}\right) \phi_{\left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{q}\right)}^{\left(\rho_{1}, \cdots, \rho_{p}, \sigma_{1}, \cdots, \sigma_{q}\right)}\left(z^{\prime}(u t+v)^{c^{\prime}}(z-t y)^{d^{\prime}} ; \mathfrak{s}, a\right)$
$I_{U: p_{r}, q_{r} ; W}^{V ; 0, n_{r} ; X}\left(\begin{array}{c}\mathrm{y}_{1}(u t+v)^{\sigma_{1}} \\ \cdots \\ \cdots \\ \mathrm{y}_{r}(u t+v)^{\sigma_{r}}\end{array}\right) I_{u: P_{R}, Q_{R} ; w}^{v ; 0, n_{R} ; x}\left(\begin{array}{c}\mathrm{z}_{1}(z-t y)^{\lambda_{1}} \\ \cdots \\ \cdots \\ \mathrm{z}_{R}(z-t y)^{\lambda_{R}}\end{array}\right) \mathrm{d} t$
$=(b+a)^{\alpha+\beta-1}(v-a u)^{\gamma}(z-b y)^{\delta} B(\alpha, \beta) \sum_{l, m=0}^{\infty} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \frac{(\alpha)_{l}(\beta)_{m}}{(\alpha+\beta)_{l+m} l!m!} a^{\prime}$
$\frac{(-)^{g} \Omega_{P_{i}, Q_{i}, \mathfrak{c}_{\mathfrak{i}}, r^{\prime}}^{M, \eta^{\prime}}\left(\eta_{G, g}\right)}{B_{G} g!} X_{1}^{K_{1}} \cdots X_{s}^{K_{s}} X^{\eta_{G, g}} Y^{n}\left\{\frac{(b+a) u}{(a u+v)}\right\}^{l}\left\{\frac{(b+a) y}{(b y-z)}\right\}^{m}$
$I_{U: p_{r}+1, q_{r}+1 ; W}^{V ; n_{r}+1 ; X}\left(\begin{array}{c|c}\mathrm{y}_{1}(v-a u)^{\sigma_{1}} & \mathrm{~A} ;\left(-\gamma-c \eta_{G, g}-c^{\prime} n-\sum_{i=1}^{s} c_{i} K_{i}: \sigma_{1}, \cdots, \sigma_{r}\right), \mathfrak{A}, A^{\prime} \\ \cdots & \cdots \\ \cdots \\ \mathrm{y}_{r}(v-a u)^{\sigma_{r}} & \mathrm{~B} ;\left(-\gamma+l-c \eta_{G, g}-c^{\prime} n-\sum_{i=1}^{s} c_{i} K_{i}: \sigma_{1}, \cdots, \sigma_{r}\right), B, B^{\prime}\end{array}\right)$

$$
I_{u: P_{R}+1, Q_{R}+1 ; w}^{v ; 0, n_{R}+1 ; x}\left(\begin{array}{c|c}
\mathrm{z}_{1}(z-b y)^{\lambda_{1}} & \mathrm{~A}_{1} ;\left(-\delta-d \eta_{G, g}-d^{\prime} n-\sum_{i=1}^{s} d_{i} K_{i}: \lambda_{1}, \cdots, \lambda_{R}\right), \mathfrak{A}_{1} ; A_{1}^{\prime} \tag{4.2}\\
\cdots & \\
\cdots & \mathrm{z}^{\prime} ;\left(-\delta+m-d \eta_{G, g}-d^{\prime} n-\sum_{i=1}^{s} d_{i} K_{i}: \lambda_{1}, \cdots, \lambda_{R}\right), \mathfrak{B}_{1} ; B_{1}^{\prime}
\end{array}\right) .(
$$

where $X=x(a u+v)^{c}(z-b y)^{d} \quad X_{i}=x_{i}(v-a u)^{c_{i}}(z-b y)^{d_{i}}, i=1, \cdots, s$ and

$$
Y=z(v-a u)^{c^{\prime}}(z-b y)^{d^{\prime}}
$$

where the same notations and validity conditions that (3.1).

5. Particular case

If $U=V=A=B=0$, the multivariable I-function defined by Prasad degenere in multivariable H -function defined by Srivastava et al [5]. We have the following results.

$$
\begin{aligned}
& \int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1}(u t+v)^{\gamma}(y t+z)^{\delta} \aleph_{P_{i}, Q_{i}, \mathfrak{c}_{i} ; r^{\prime}}^{M, \mathfrak{R}^{\prime}}\left(x(u t+v)^{c}(y t+z)^{d}\right) \\
& S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}
\mathrm{x}_{1}(u t+v)^{c_{1}}(y t+z)^{d_{1}} \\
\cdots \\
\cdots \\
\mathrm{x}_{s}(u t+v)^{c_{s}}(y t+z)^{d_{s}}
\end{array}\right) \phi_{\left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{q}\right)}^{\left(\rho_{1}, \cdots, \rho_{p}, \sigma_{1}, \cdots, \sigma_{q}\right)}\left(z^{\prime}(u t+v)^{c^{\prime}}(y t+z)^{d^{\prime}} ; \mathfrak{s}, a\right) \\
& H_{p_{r}, q_{r} ; W}^{0, n_{r} ; X}\left(\begin{array}{c}
\mathrm{y}_{1}(u t+v)^{\sigma_{1}} \\
\cdots \\
\cdots \\
\mathrm{y}_{r}(u t+v)^{\sigma_{r}}
\end{array}\right) H_{P_{R}, Q_{R} ; w}^{0, n_{R} ; x}\left(\begin{array}{c}
\mathrm{z}_{1}(y t+z)^{\lambda_{1}} \\
\cdots \\
\cdots \\
\mathrm{z}_{R}(y t+z)^{\lambda_{R}}
\end{array}\right) \mathrm{d} t
\end{aligned}
$$

$$
=(b-a)^{\alpha+\beta-1}(a u+v)^{\gamma}(b y+z)^{\delta} B(\alpha, \beta) \sum_{l, m=0}^{\infty} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \frac{(\alpha)_{l}(\beta)_{m}}{(\alpha+\beta)_{l+m} l!m!} a^{\prime}
$$

$$
\frac{(-)^{g} \Omega_{P_{i}, Q_{i}, \mathfrak{c}_{\mathfrak{i}}, r^{\prime}}^{\left.M, \eta_{G, g}\right)}}{B_{G} g!} X_{1}^{K_{1}} \cdots X_{s}^{K_{s}} X^{\eta_{G, g}} Y^{n}\left\{\frac{(b-a) u}{(a u+v)}\right\}^{l}\left\{-\frac{(b-a) y}{(b y+z)}\right\}^{m}
$$

$$
H_{p_{r}+1, q_{r}+1 ; W}^{0, n_{r}+1 ; X}\left(\begin{array}{c|c}
\mathrm{y}_{1}(a u+v)^{\sigma_{1}} & \left(-\gamma-c \eta_{G, g}-c^{\prime} n-\sum_{i=1}^{s} c_{i} K_{i}: \sigma_{1}, \cdots, \sigma_{r}\right), \mathfrak{A}, A^{\prime} \\
\cdots & \\
\cdots & \\
\mathrm{y}_{r}(a u+v)^{\sigma_{r}} & \left(-\gamma+l-c \eta_{G, g}-c^{\prime} n-\sum_{i=1}^{s} c_{i} K_{i}: \sigma_{1}, \cdots, \sigma_{r}\right), B, B^{\prime}
\end{array}\right)
$$

$$
H_{P_{R}+1, Q_{R}+1 ; w}^{0, n_{R}+1 ; x}\left(\begin{array}{c|c}
\mathrm{z}_{1}(b y+z)^{\lambda_{1}} & \left(-\delta-d \eta_{G, g}-d^{\prime} n-\sum_{i=1}^{s} d_{i} K_{i}: \lambda_{1}, \cdots, \lambda_{R}\right), \mathfrak{A}_{1} ; A_{1}^{\prime} \tag{5.1}\\
\cdots & \dot{\sim} \\
\cdots & \left(-\delta+m-d \eta_{G, g}-d^{\prime} n-\sum_{i=1}^{s} d_{i} K_{i}: \lambda_{1}, \cdots, \lambda_{R}\right), \mathfrak{B}_{1} ; B_{1}^{\prime}
\end{array}\right)
$$

under the same notations and conditions that (4.1) with $U=V=A=B=0$
and

$$
\int_{-a}^{b}(t+a)^{\alpha-1}(b-t)^{\beta-1}(u t+v)^{\gamma}(z-t y)^{\delta} \aleph_{P_{i}, Q_{i}, \mathfrak{c}_{i} ; r^{\prime}}^{M, \mathfrak{N}}\left(x(u t+v)^{c}(z-t y)^{d}\right)
$$

$$
S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}
\mathrm{x}_{1}(u t+v)^{c_{1}}(z-t y)^{d_{1}} \\
\cdots \\
\cdots \\
\mathrm{x}_{s}(u t+v)^{c_{s}}(z-t y)^{d_{s}}
\end{array}\right) \phi_{\left(\lambda_{1}, \cdots, \lambda_{p}, \mu_{1}, \cdots, \mu_{q}\right)}^{\left(\rho_{1}, \cdots, \rho_{p}, \sigma_{1}, \cdots, \sigma_{q}\right)}\left(z^{\prime}(u t+v)^{c^{\prime}}(z-t y)^{d^{\prime}} ; \mathfrak{s}, a\right)
$$

$$
H_{p_{r}, q_{r} ; W}^{0, n_{r} ; X}\left(\begin{array}{c}
\mathrm{y}_{1}(u t+v)^{\sigma_{1}} \\
\cdots \\
\cdots \\
\mathrm{y}_{r}(u t+v)^{\sigma_{r}}
\end{array}\right) H_{P_{R}, Q_{R} ; w}^{0, n_{R} ; x}\left(\begin{array}{c}
\mathrm{z}_{1}(z-t y)^{\lambda_{1}} \\
\cdots \\
\cdots \\
\mathrm{z}_{R}(z-t y)^{\lambda_{R}}
\end{array}\right) \mathrm{d} t
$$

$$
=(b+a)^{\alpha+\beta-1}(v-a u)^{\gamma}(z-b y)^{\delta} B(\alpha, \beta) \sum_{l, m=0}^{\infty} \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \frac{(\alpha)_{l}(\beta)_{m}}{(\alpha+\beta)_{l+m} l!m!} a^{\prime}
$$

$$
\frac{(-)^{g} \Omega_{P_{i}, Q_{i}, \mathfrak{c}_{\mathfrak{i}}, r^{\prime}}^{\left.M, \eta_{G, g}\right)}}{B_{G} g!} X_{1}^{K_{1}} \cdots X_{s}^{K_{s}} X^{\eta_{G, g}} Y^{n}\left\{\frac{(b+a) u}{(a u+v)}\right\}^{l}\left\{\frac{(b+a) y}{(b y-z)}\right\}^{m}
$$

$$
H_{p_{r}+1, q_{r}+1 ; W}^{0, n_{r}+1 ; X}\left(\right)
$$

$$
\begin{equation*}
H_{P_{R}+1, Q_{R}+1 ; w}^{0, n_{R}+1 ; x}\left(\right)(5 \tag{5.2}
\end{equation*}
$$

where $X=x(a u+v)^{c}(z-b y)^{d} \quad X_{i}=x_{i}(v-a u)^{c_{i}}(z-b y)^{d_{i}}, i=1, \cdots, s$ and
$Y=z(v-a u)^{c^{\prime}}(z-b y)^{d^{\prime}}$
under the same notations and conditions that (4.1) with $U=V=A=B=0$

6. Conclusion

In this paper we have evaluated two generalized Eulerian integrals involving the Aleph-function, a class of polynomials of several variables a extension of the Hurwitz-Lerch Zeta-function and product of two multivariable I-functions defined by Prasad [2]. The integral established in this paper is of very general nature as it contains multivariable Ifunction, which is a general function of several variables studied so far. Thus, the integral established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

[1] Chaurasia V.B.L and Singh Y. New generalization of integral equations of fredholm type using Aleph-function Int. J. of Modern Math. Sci. 9(3), 2014, p 208-220.
[2] Y.N. Prasad , Multivariable I-function , Vijnana Parishad Anusandhan Patrika 29 (1986) , page 231-237.
[3] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
[4] H.M. Srivastava and Hussain M.A. Fractional integration of the H-function of several variables. Comp. Math. Appl. 30(9), (1995), page 73-85.
[5] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
[6] H.M. Srivastava, R.K. Saxena, T.K. Pogány, R. Saxena, Integral and computational representations of the extended Hurwitz-Lerch zeta function, Integr.Transf. Spec. Funct. 22 (2011) 487-506
[7] Südland N.; Baumann, B. and Nonnenmacher T.F. , Open problem : who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4) (1998): 401-402.

[^0]
[^0]: Personal adress : 411 Avenue Joseph Raynaud
 Le parc Fleuri , Bat B
 83140 , Six-Fours les plages
 Tel : 06-83-12-49-68
 Department : VAR
 Country: FRANCE

