Fractional derivatives involving multivariable I-function I

F.Y. AYANT ${ }^{1}$
1 Teacher in High School, France

ABSTRACT
In this document, we derive three key formulas for the fractional derivatives of the multivariable I-function defined by Prasad [2] which is defined by a multiple contour integral of Mellin-Barnes type.

Keywords:Fractional derivative, multivariable I-function, Generalized Leibnitz rule.
2010 Mathematics Subject Classification. 33C60, 82C31

1.Introduction and preliminaries.

Srivastava et al [3] have obtained a number of key formulas for the fractional derivatives of the multivariable Hfunction defined by Srivastava et al [4].The main of this paper is obtained three formulas for the fractional derivatives of the multivariable I-function defined by Prasad [2].

The multivariable I-function of r-variables is defined in term of multiple Mellin-Barnes type integral :
$I\left(z_{1}, z_{2}, \ldots z_{r}\right)=I_{p_{2}, q_{2}, p_{3}, q_{3} ; \cdots ; p_{r}, q_{r}: p^{(1)}, q^{(1)} ; \cdots ; p^{(r)}, q^{(r)}}^{0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{r}: m^{(1)},{ }^{(1)}, \cdots ; m^{(r)}, n^{(r)}}\left(\begin{array}{c}\mathrm{z}_{1} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r}\end{array}\right)\left(\mathrm{a}_{2 j} ; \alpha_{2 j}^{\prime}, \alpha_{2 j}^{\prime \prime}\right)_{1, p_{2}} ; \cdots ;$

$$
\begin{align*}
& \left(\mathrm{a}_{r j} ; \alpha_{r j}^{(1)}, \cdots, \alpha_{r j}^{(r)}\right)_{1, p_{r}}:\left(a_{j}^{(1)}, \alpha_{j}^{(1)}\right)_{1, p^{(1)}} ; \cdots ;\left(a_{j}^{(r)}, \alpha_{j}^{(r)}\right)_{1, p^{(r)}} \tag{1.1}\\
& \left.\left(\mathrm{b}_{r j} ; \beta_{r j}^{(1)}, \cdots, \beta_{r j}^{(r)}\right)_{1, q_{r}}:\left(b_{j}^{(1)}, \beta_{j}^{(1)}\right)_{1, q^{(1)}} ; \cdots ;\left(b_{j}^{(r)}, \beta_{j}^{(r)}\right)_{1, q^{(r)}}\right) \tag{1.2}\\
& \quad=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \phi\left(s_{1}, \cdots, s_{r}\right) \prod_{i=1}^{r} \theta_{i}\left(t_{i}\right) z_{i}^{t_{i}} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{r}
\end{align*}
$$

The defined integral of the above function, the existence and convergence conditions, see Y,N Prasad [2]. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function.

The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{i}\right|<\frac{1}{2} \Omega_{i} \pi$, where
$\Omega_{i}=\sum_{k=1}^{n^{(i)}} \alpha_{k}^{(i)}-\sum_{k=n^{(i)}+1}^{p^{(i)}} \alpha_{k}^{(i)}+\sum_{k=1}^{m^{(i)}} \beta_{k}^{(i)}-\sum_{k=m^{(i)}+1}^{q^{(i)}} \beta_{k}^{(i)}+\left(\sum_{k=1}^{n_{2}} \alpha_{2 k}^{(i)}-\sum_{k=n_{2}+1}^{p_{2}} \alpha_{2 k}^{(i)}\right)+\cdots+$

$$
\begin{equation*}
\left(\sum_{k=1}^{n_{s}} \alpha_{s k}^{(i)}-\sum_{k=n_{s}+1}^{p_{s}} \alpha_{s k}^{(i)}\right)-\left(\sum_{k=1}^{q_{2}} \beta_{2 k}^{(i)}+\sum_{k=1}^{q_{3}} \beta_{3 k}^{(i)}+\cdots+\sum_{k=1}^{q_{s}} \beta_{s k}^{(i)}\right) \tag{1.3}
\end{equation*}
$$

where $i=1, \cdots, r$
The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function. We may establish the the asymptotic expansion in the following convenient form :
$I\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\alpha_{1}}, \cdots,\left|z_{r}\right|^{\alpha_{r}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow 0$
$I\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\beta_{1}}, \cdots,\left|z_{r}\right|^{\beta_{r}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow \infty$
where $k=1, \cdots, r: \alpha_{k}^{\prime}=\min \left[\operatorname{Re}\left(b_{j}^{(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}^{\prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{(k)}-1\right) / \alpha_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will use these following notations in this paper:
$U_{r}=p_{2}, q_{2} ; p_{3}, q_{3} ; \cdots ; p_{r-1}, q_{r-1} ; V_{r}=0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{r-1}$
$W_{r}=\left(p^{(1)}, q^{(1)}\right) ; \cdots ;\left(p^{(r)}, q^{(r)}\right) ; X_{r}=\left(m^{(1)}, n^{(1)}\right) ; \cdots ;\left(m^{(r)}, n^{(r)}\right)$
$A=\left(a_{2 k} ; \alpha_{2 k}^{(1)}, \alpha_{2 k}^{(2)}\right) ; \cdots ;\left(a_{(r-1) k} ; \alpha_{(r-1) k}^{(1)}, \alpha_{(r-1) k}^{(2)}, \cdots, \alpha_{(r-1) k}^{(r-1)}\right)$
$B=\left(b_{2 k} ; \beta_{2 k}^{(1)}, \beta_{2 k}^{(2)}\right) ; \cdots ;\left(b_{(r-1) k} ; \beta_{(r-1) k}^{(1)}, \beta_{(r-1) k}^{(2)}, \cdots, \beta_{(r-1) k}^{(r-1)}\right)$
$\mathfrak{A}=\left(a_{r k} ; \alpha_{r k}^{(1)}, \alpha_{r k}^{(2)}, \cdots, \alpha_{r k}^{(r)}\right): \mathfrak{B}=\left(b_{r k} ; \beta_{r k}^{(1)}, \beta_{r k}^{(2)}, \cdots, \beta_{r k}^{(r)}\right)$
$A_{1}=\left(a_{k}^{(1)}, \alpha_{k}^{(1)}\right)_{1, p^{(1)}} ; \cdots ;\left(a_{k}^{(r)}, \alpha_{k}^{(r)}\right)_{1, p^{(r)}} ; B_{1}=\left(b_{k}^{(1)}, \beta_{k}^{(1)}\right)_{1, p^{(1)}} ; \cdots ;\left(b_{k}^{(r)}, \beta_{k}^{(r)}\right)_{1, p^{(r)}}$
The multivariable I-function of r -variables write :
$I\left(z_{1}, \cdots, z_{r}\right)=I_{U_{r}: p_{r}, q_{r} ; W_{r}}^{V_{r} ; 0, n_{r} ; X_{r}}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A} ; \mathfrak{A} ; \mathrm{A}_{1} \\ \cdot & \\ \cdot & \\ \cdot & \mathrm{~B} ; \mathfrak{B} ; \mathrm{B}_{1} \\ \mathrm{z}_{r} & \mathrm{~A}\end{array}\right)$

$$
\begin{align*}
& \left(\mathrm{a}_{s j}^{\prime} ; \alpha^{(1) \prime}{ }_{s j}, \cdots, \alpha_{s j}^{\prime(s)}\right)_{1, p_{s}^{\prime}}:\left(a_{j}^{\prime(1)}, \alpha_{j}^{\prime(1)}\right)_{1, p^{\prime(1)}} ; \cdots ;\left(a_{j}^{\prime(s)}, \alpha_{j}^{\prime(s)}\right)_{1, p^{\prime(s)}} \tag{1.11}\\
& \left.\left(\mathrm{b}_{s j}^{\prime} ; \beta_{s j}^{\prime(1)}, \cdots, \beta_{s j}^{\prime(s)}\right)_{1, q_{s}^{\prime}}:\left(b_{j}^{\prime(1)}, \beta_{j}^{\prime(1)}\right)_{1, q^{\prime(1)}} ; \cdots ;\left(b_{j}^{\prime(s)}, \beta_{j}^{\prime(s)}\right)_{1, q^{\prime(s)}}\right) \tag{1.12}\\
& \quad=\frac{1}{(2 \pi \omega)^{s}} \int_{L_{1}} \cdots \int_{L_{s}} \psi\left(t_{1}, \cdots, t_{s}\right) \prod_{i=1}^{s} \xi_{i}\left(t_{i}\right) z_{i}^{t_{i}} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{s}
\end{align*}
$$

The defined integral of the above function, the existence and convergence conditions, see Y,N Prasad [2]. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function.

The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
where $\left|\arg z_{i}^{\prime}\right|<\frac{1}{2} \Omega_{i}^{\prime} \pi$,
$\Omega_{i}^{\prime}=\sum_{k=1}^{n^{\prime(i)}} \alpha_{k}^{\prime(i)}-\sum_{k=n^{\prime(i)}+1}^{{p^{\prime(i)}} \alpha_{k}^{\prime(i)}+\sum_{k=1}^{m^{\prime(i)}} \beta_{k}^{\prime(i)}-\sum_{k=m^{(i)}+1}^{q^{\prime(i)}} \beta_{k}^{\prime(i)}+\left(\sum_{k=1}^{n_{2}^{\prime}} \alpha_{2 k}^{\prime}{ }^{(i)}-\sum_{k=n_{2}+1}^{p_{2}^{\prime}} \alpha_{2 k}^{\prime(i)}\right) .}$
$+\cdots+\left(\sum_{k=1}^{n_{s}^{\prime}} \alpha_{s k}^{\prime}{ }^{(i)}-\sum_{k=n_{s}^{\prime}+1}^{p_{s}^{\prime}} \alpha_{s k}^{\prime}{ }^{(i)}\right)-\left(\sum_{k=1}^{q_{2}^{\prime}} \beta_{2 k}^{\prime}{ }^{(i)}+\sum_{k=1}^{q_{3}^{\prime}} \beta_{3 k}^{\prime}{ }^{(i)}+\cdots+\sum_{k=1}^{q_{s}^{\prime}} \beta_{s k}^{\prime}{ }^{(i)}\right)$
where $i=1, \cdots, s$
The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function.

We may establish the the asymptotic expansion in the following convenient form :
$I\left(z_{1}^{\prime}, \cdots, z_{s}^{\prime}\right)=0\left(\left|z_{1}^{\prime}\right|^{\alpha_{1}^{\prime}}, \cdots,\left|z_{s}^{\prime}\right|^{\alpha_{s}^{\prime}}\right), \max \left(\left|z_{1}^{\prime}\right|, \cdots,\left|z_{s}^{\prime}\right|\right) \rightarrow 0$
$I\left(z_{1}^{\prime}, \cdots, z_{s}^{\prime}\right)=0\left(\left|z_{1}^{\prime}\right|^{\beta_{1}^{\prime}}, \cdots,\left|z_{s}^{\prime}\right|^{\beta_{s}^{\prime}}\right), \min \left(\left|z_{1}^{\prime}\right|, \cdots,\left|z_{s}^{\prime}\right|\right) \rightarrow \infty$
where $k=1, \cdots, z: \alpha_{k}^{\prime \prime}=\min \left[\operatorname{Re}\left(b_{j}^{\prime(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}^{\prime}$ and

$$
\beta_{k}^{\prime \prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{\prime(k)}-1\right) / \alpha_{j}^{\prime(k)}\right)\right], j=1, \cdots, n_{k}^{\prime}
$$

We will use these following notations in this paper :
$U_{s}=p_{2}^{\prime}, q_{2}^{\prime} ; p_{3}^{\prime}, q_{3}^{\prime} ; \cdots ; p_{s-1}^{\prime}, q_{s-1}^{\prime} ; V_{s}=0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{s-1}$
$W_{s}=\left(p^{\prime(1)}, q^{\prime(1)}\right) ; \cdots ;\left(p^{\prime(s)}, q^{\prime(s)}\right) ; X_{s}=\left(m^{\prime(1)}, n^{\prime(1)}\right) ; \cdots ;\left(m^{\prime(s)}, n^{\prime(s)}\right)$
$A^{\prime}=\left(a_{2 k}^{\prime} ; \alpha_{2 k}^{\prime(1)}, \alpha_{2 k}^{\prime(2)}\right) ; \cdots ;\left(a_{(s-1) k}^{\prime} ; \alpha_{(s-1) k}^{\prime(1)}, \alpha_{(s-1) k}^{\prime(2)}, \cdots, \alpha_{(s-1) k}^{\prime(s-1)}\right)$
$B^{\prime}=\left(b_{2 k}^{\prime} ; \beta_{2 k}^{\prime(1)}, \beta_{2 k}^{\prime(2)}\right) ; \cdots ;\left(b_{(s-1) k}^{\prime} ; \beta_{(s-1) k}^{(1)}, \beta_{(s-1) k}^{(2)}, \cdots, \beta_{(s-1) k}^{(s-1)}\right)$
$\mathfrak{A}^{\prime}=\left(a_{s k}^{\prime} ; \alpha_{s k}^{\prime(1)}, \alpha_{s k}^{\prime(2)}, \cdots, \alpha_{s k}^{\prime(s)}\right): \mathfrak{B}^{\prime}=\left(b_{s k}^{\prime} ; \beta_{s k}^{\prime(1)}, \beta_{s k}^{\prime(2)}, \cdots, \beta_{s k}^{\prime(s)}\right)$
$A_{1}^{\prime}=\left(a_{k}^{\prime(1)}, \alpha_{k}^{(1)}\right)_{1, p^{(1)}} ; \cdots ;\left(a_{k}^{\prime(s)}, \alpha_{k}^{\prime(s)}\right)_{1, p^{\prime(s)}} ; B_{1}^{\prime}=\left(b_{k}^{(1)}, \beta_{k}^{\prime(1)}\right)_{1, p^{\prime(1)}} ; \cdots ;\left(b_{k}^{(s)}, \beta_{k}^{(s)}\right)_{1, p^{\prime(s)}}$

The multivariable I-function write :
$I\left(z_{1}^{\prime}, \cdots, z_{s}^{\prime}\right)=I_{U_{s}: p_{s}^{\prime}, q_{s}^{\prime} ; W_{s}}^{V_{s} ; 0, n_{s}^{\prime} ; X_{s}}\left(\begin{array}{c|c}\mathrm{z}^{\prime}{ }_{1} & \mathrm{~A}^{\prime} ; \mathfrak{A}^{\prime} ; \mathrm{A}^{\prime}{ }_{1} \\ \cdot & \\ \cdot & \\ \cdot & \mathrm{~B}^{\prime} ; \mathfrak{B}^{\prime} ; \mathrm{B}^{\prime}{ }_{1}\end{array}\right)$

The Riemann-Liouville fractional derivative (or integral) of order μ is defined as follows [1 ,page49]
$D_{x}^{\mu} f(x)=\left\{\begin{array}{c}\frac{1}{\Gamma(-u)} \int_{0}^{x}(x-t)^{-\mu-1} f(t) \mathrm{d} t, \operatorname{Re}(\mu)<0 \\ \cdots \\ \frac{d^{m}}{d x^{m}}\left[D_{x}^{\mu-m}\{f(x)\}\right], 0 \leqslant m, m \in \mathbb{N}\end{array}\right.$

We have the following fractional derivative formula [1,page 67, eq. (4.4.4)] is also required:
$D_{x}^{\mu}\left(x^{\lambda}\right)=\frac{\Gamma(\lambda+1)}{\Gamma(\lambda-\mu+1)} x^{\lambda-\mu}, \operatorname{Re}(\lambda)>-1$

The generalized Leibnitz formula for fractional calculus is required in the following form [1,page 76, eq.(5.5.2)]
$D_{x}^{\mu}[f(x) g(x)]=\sum_{l=0}^{\infty}\binom{\mu}{l} D_{x}^{\mu-l}[f(x)] D_{x}^{l}[g(x)]$
μ is a real or complex arbitrary number.
We have the binomial formula : $(x+a)^{\lambda}=a^{\lambda} \sum_{m=0}^{\infty}\binom{\lambda}{m}\left(\frac{x}{a}\right)^{m} ;\left|\frac{x}{a}\right|<1$
2. Main results

Formula 1

$D_{x}^{\mu}\left\{x^{k}\left(x^{v}+\zeta\right)^{\lambda} I\left[z_{1} x^{\rho_{1}}\left(x^{v}+\zeta\right)^{-\sigma_{1}}, \cdots, z_{r} x^{\rho_{r}}\left(x^{v}+\zeta\right)^{-\sigma_{r}}\right]\right\}=\zeta^{\lambda} x^{k-\mu} \sum_{m=0}^{\infty} \frac{\left(-x^{v} / \zeta\right)^{m}}{m!}$
$I_{U_{r}: p_{r}+2, q_{r}+2 ; W_{r}}^{V_{r} ; 0, n_{r}+2 ; X_{r}}\left(\begin{array}{c|c}\mathrm{z}_{1} \zeta^{-\sigma_{1}} x^{\rho_{1}} & \mathrm{~A} ;\left(1+\lambda-m ; \sigma_{1}, \cdots, \sigma_{r}\right),\left(-k-v m ; \rho_{1}, \cdots, \rho_{r}\right), \mathfrak{A} ; A_{1} \\ \cdot & \\ \cdot & \\ \cdot & \mathrm{~B} ;\left(1+\lambda ; \sigma_{1}, \cdots, \sigma_{r}\right),\left(\mu-k-v m ; \rho_{1}, \cdots, \rho_{r}\right), \mathfrak{B} ; B_{1} \\ \mathrm{z}_{r} \zeta^{-\sigma_{r}} x^{\rho_{r}} & \mathrm{~B} ;(1)\end{array}\right)$

Provided that :
a) $\min \left\{v, \rho_{i}, \sigma_{i}\right\}>0, i=1, \cdots, r ;\left|\arg \left(\frac{x^{v}}{\zeta}\right)\right|<\pi$
b) $R e\left[k+\sum_{i=1}^{r} \rho_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>-1$
c) $\left|\arg \left(z_{i}\right)\right|<\frac{1}{2} \Omega_{i} \pi(i=1, \cdots, r)$ where Ω_{i} is defined by (1.3)

Formula 2

$D_{x}^{\mu}\left\{x^{k}\left(x^{v}+\zeta\right)^{\lambda} I\left[z_{1} x^{\rho_{1}}\left(x^{v}+\zeta\right)^{-\sigma_{1}}, \cdots, z_{r} x^{\rho_{r}}\left(x^{v}+\zeta\right)^{-\sigma_{r}}\right] I^{*}\left[w_{1} x^{\lambda_{1}}, \cdots, w_{s} x^{\lambda_{s}}\right]\right\}$
$=\zeta^{\lambda} x^{k-\mu} \sum_{l, m=0}^{\infty}\binom{\mu}{l} \frac{\left(-x^{v} / \zeta\right)^{m}}{m!} I_{U_{r}: p_{r}+2, q_{r}+2 ; W_{r}}^{V_{;} ; n_{r}+2 ; X_{r}}\left(\begin{array}{c}\mathrm{z}_{1} \zeta^{-\sigma_{1}} x^{\rho_{1}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r} \zeta^{-\sigma_{r}} x^{\rho_{r}}\end{array}\right) \mathrm{A} ;\left(1+\lambda-m ; \sigma_{1}, \cdots, \sigma_{r}\right)$,
$\left.\left.\begin{array}{c}\left.-v m ; \rho_{1}, \cdots, \rho_{r}\right), \mathfrak{A} ; A_{1} \\ \left(\mathrm{l}-v m ; \rho_{1}, \cdots, \rho_{r}\right), \mathfrak{B} ; B_{1}\end{array}\right) \underset{\substack{I_{s} ; 0, n_{s}^{\prime}+1 ; X_{s} \\ I_{U_{s}: p_{s}^{\prime}+1, q_{s}^{\prime}+1 ; W_{s}}^{V_{s}}}}{\left(\begin{array}{c}\mathrm{w}_{1} x^{\lambda_{1}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{w}_{s} x^{\lambda_{s}}\end{array}\right.} \begin{array}{|c} \\ \mathrm{A}^{\prime} ;\left(-\mathrm{k} ; \lambda_{1}, \cdots, \lambda_{s}\right), \mathfrak{A}^{\prime} ; A_{1}^{\prime} \\ \end{array}\right)$
where $I^{*}(., \cdots,$.$) is the s$-variables I-function (occuring on the right-hand side) without the additional parameters $\left(-k ; \lambda_{1}, \cdots, \lambda_{s}\right)$ and $\left(\mu-k-l ; \lambda_{1}, \cdots, \lambda_{s}\right)$

Provided that :
а) $\min \left\{v, \rho_{i}, \sigma_{i}, \lambda_{j}\right\}>0, i=1, \cdots, r ; j=1, \cdots, s ;\left|\arg \left(\frac{x^{v}}{\zeta}\right)\right|<\pi$
b) $\sum_{i=1}^{r} \rho_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}>-1 ; R e\left[k+\sum_{i=1}^{s} \lambda_{i} \min _{1 \leqslant j \leqslant m_{i}^{\prime}} \frac{b_{j}^{\prime(i)}}{\beta_{j}^{(i)}}\right]>-1$
c) $\left|\arg \left(z_{i}\right)\right|<\frac{1}{2} \Omega_{i} \pi(i=1, \cdots, r)$ and $\quad\left|\arg \left(w_{i}\right)\right|<\frac{1}{2} \Omega_{i}^{\prime} \pi(i=1, \cdots, s)$
where $\Omega_{i}^{(k)}$ and $\Omega_{i}^{\prime(k)}$ are defined respectively by (1.3) and (1.13)

Formula 3

$$
\left.\left.\begin{array}{l}
D_{x}^{\mu} D_{x}^{\mu^{\prime}}\left\{x^{k} y^{k^{\prime}}\left(x^{v}+\zeta\right)^{\lambda}\left(y^{v^{\prime}}+\eta\right)^{\lambda^{\prime}} I\left(\begin{array}{c}
\mathrm{z}_{1} x^{\rho_{1}} y^{\lambda_{1}}\left(x^{v}+\zeta\right)^{-\sigma_{1}}\left(y^{v^{\prime}}+\eta\right)^{-v_{1}} \\
\cdot \\
\cdot \\
\mathrm{z}_{r} x^{\rho_{r}} y^{\lambda_{r}}\left(x^{v}+\zeta\right)^{-\sigma_{r}}\left(y^{v^{\prime}}+\eta\right)^{-v_{r}}
\end{array}\right)\right.
\end{array}\right)\right\}
$$

Provided that :
a) $\min \left\{v, v^{\prime} \rho_{i}, \sigma_{i}, \lambda_{i}, v_{i}\right\}>0, i=1, \cdots, r ;\left|\arg \left(\frac{x^{v}}{\zeta}\right)\right|<\pi,\left|\arg \left(\frac{y^{v^{\prime}}}{\eta}\right)\right|<\pi$
b) $R e\left[k+\sum_{i=1}^{r} \rho_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>-1 ; R e\left[k^{\prime}+\sum_{i=1}^{r} \lambda_{i} \min _{1 \leqslant j \leqslant m_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>-1$

Proof

To prove (2.1) we first replace the multivariable I-function occuring on the left-hand side by its Mellin-Barnes contour integral, collect the power of x and $\left(x^{v}+\zeta\right)$ and apply the binomial expansion with the help of (1.24). We can apply the formula (1.22) and interpret the resulting Mellin-Barnes contour integral as an I-function of r-variables.

To prove (2.2), we make use of the generalized Leibniz rule for fractional derivatives with the help of (1.23).
with $f(x)=I^{*}\left[w_{1} x^{\lambda_{1}}, \cdots, w_{s} x^{\lambda_{s}}\right]$ and
$g(x)=\left(x^{v}+\zeta\right)^{\lambda} I\left[z_{1} x^{\rho_{1}}\left(x^{v}+\zeta\right)^{-\sigma_{1}}, \cdots, z_{r} x^{\rho_{r}}\left(x^{v}+\zeta\right)^{-\sigma_{r}}\right]$
and apply two special cases of the formula (2.1) when $\mu \rightarrow \mu-l ; \lambda=0, \rho_{i}=\lambda_{i}$ and $\sigma_{i} \rightarrow 0 ; i=1, \cdots, r$ or when
$\mu=m\left(m \in \mathbb{N}_{0}\right)$, we arrive at (2.2), the s-variables I^{*} involved in (2.2), being identical.
To prove (2.3) , we apply the fractional derivative (2.1) twice, first with respect to y, and then with respect to x; here x and y are assumed to be independent variables.

3. Conclusion

In this paper we have evaluated three formulas concerning the fractional derivatives and the multivariable I-function defined by Prasad [2]. The three formulaes established in this paper is very general nature. Thus, the results established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

[1] Oldham K.B.and Spanier J. The fractional calculus. Academic Press , New York 1974.
[2] Prasad Y.N. Multivariable I-function, Vijnana Parishad Anusandhan Patrika 29 (1986) , page 231-237.
[3] Srivastava H.M. Chandel R.C. and Vishwakarma P.K. Fractional derivatives of certain generalized hypergeometric functions of several variables. Journal of Mathematical Analysis and Applications 184 (1994), page 560-572.
[4] Srivastava H.M. and Panda R. Some expansion theorems and generating relations for the H -function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.

```
Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140,Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country:FRANCE
```

