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Abstract:                                                                      

    The theoretical investigations made in this paper 

are to study the combined effect of pressure-dependent 

viscosity (PDV) and micropolar fluids on squeeze film 

circular step plate. The modified Reynolds equations 

in both the regions accounting for the pressure-

dependent viscosity of micropolar fluids are 

mathematically derived. From the analysis, it has been 

found that the non dimensional pressure, non 

dimensional load carrying capacity, and non 

dimensional squeeze film time decreases with 

increasing value of non dimensional step distance (K) 

and increases as compared with iso-viscous lubricant 

case.  

Keywords: Squeeze film, Circular stepped plates, 
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 1 Introduction 

Numbers of theories have been proposed to 

explain the peculiar behaviour of fluids which contain 

microstructures such as additives, suspension of 

granular matter. The theory of micropolar fluids 

introduced by Eringen[1-2] deals with a class of fluids 

which exhibits certain microscopic effects arising 

from the local structures and micro motion of fluids 

elements. These fluids can support stress movements 

and body movements and are influenced by the spin 

inertia. A subclass of these fluids is the micropolar 

fluids which exhibits the micro rotational effects and 

micro rotational inertia. Eringen’s micropolar fluid 

theory defines the rotation vector called micro rotation 

vector, setting up of stress-strain rate constitutive 

equations. The study of micropolar fluids has received 

considerable attention due to their applications in a 

number of processes that occur in industries such as 

the extrusion of polymer fluids, Solidification of liquid 

crystal, animal bloods, Exotic lubricants and Colloidal 

solution.  

   Several researchers used the micropolar fluid for the 

study of several bearing systems. The properties of 

micropolar lubricant were examined by Maiti[3] in 

reference to composite and step slider bearing. The 

lubrication theory for micropolar fluids and its 

applications to a journal bearing is presented by 

Prakash and Sinha[4]. In their study, the orders of 

magnitude arguments are used to reduce the governing 

balance equations to a system of coupled ordinary 

differential equations and are solved subject to 

appropriate boundary conditions. Micropolar fluid 

lubrication of one-dimensional journal bearings is 

presented by Isa and Zaheeruddin[5]. It is found that 

the load carrying capacity increases as the micropolar 

parameter increases and decreases as the step height 

increases. Agarwal et al.[6] made a theoretical study 

of a porous pivoted slider bearings lubricated with 

micropolar fluid and proved that their load capacity is 

greater than with Newtonian fluid. Sinha and Singh[7] 

applied in Eringen theory the study of lubrication of an 

inclined stepped composite bearing with additives in 

lubricant. Their results were in good agreement with 

experimental observations. Prakash and Tiwari[8] 

presented an analysis of the squeeze film between 

porous rectangular plates including the surface 

roughness effects. These authors shown that, the 

nominal geometry as characterized by the aspect ratio 

of the plates has a profound effect on the system. The 

analytical solution of the problem of squeeze film 

lubrication of micropolar fluid between two parallel 

plates is given by Bujurke et al.[9]. The performance 

of finite journal bearings lubricated with micropolar 

fluids is analyzed by Khonsari and Brewe[10]. The 

finite Reynolds equation for micropolar fluids is 

solved by applying central finite difference scheme. It 

is shown that although the frictional force associated 

with micropolar fluid is in general higher than that of a 

Newtonian fluid, the friction co-efficient of micropolar 

fluids tends to be lower than that of Newtonian. Huang 

and Wang [11] studied the dynamic characteristics of 

finite width journal bearings with micropolar fluid and 

have analyzed the dynamic characteristics of finite 
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width journal bearings lubricated with a micropolar 

fluid by linear stability theory. The stiffness and 

damping coefficients and the critical stability 

parameter for the micropolar fluid are obtained and it 

is reported that the normal stiffness coefficient is 

larger while the damping coefficient is smaller for 

micropolar lubricants. 

Khonsari[12] studied the effect of viscous 

dissipation on the lubrication characteristics of 

micropolar fluids and shown that the heat generation 

due to viscous dissipation plays an important role on 

the load carrying capacity of a journal bearing 

lubricated with micropolar fluids. On the conical 

whirls instability of hydrodynamic journal bearing 

lubricated with micropolar fluids is presented by Das 

et al. [13]. It is found that, for any micropolar 

lubrication condition, the bearing is always stable as 

the ratio of the moment of inertia approaches the value 

of conical whirl ratio. Naduvinamani and Marali[14] 

presented the dynamic Reynolds equation for 

micropolar fluids and the analysis of plane inclined 

slider bearings with squeezing effect and have shown 

that the micropolar fluids provide an improved 

characteristics for both steady state and the dynamic 

stiffness and damping characteristics. It is found that, 

the maximum steady load carrying capacity is a 

function of the coupling parameter. Naduvinamani and 

Siddanagouda[15] studied the porous inclined stepped 

composite bearings with micropolar fluid. It is 

observed that the micropolar fluid lubricants provide 

an increased load carrying capacity and decreased 

coefficient of friction as compared to the 

corresponding Newtonian case. Naduvinamani and 

Santosh[16] studied the micropolar fluid squeeze film 

lubrication of finite porous journal bearing. It is 

observed that the micropolar fluid effect significantly 

increases the squeeze film pressure and the load 

carrying capacity as compared to the corresponding 

Newtonian case. 

Abdallah and Al-Fadhalah[17] analysed a 

squeeze film characteristics between a sphere and a 

rough porous flat plate with micropolar fluids and 

reported that lubrication by a micropolar fluid will 

increase the load-carrying capacity and lengthen the 

squeeze film time, regardless to the surface rough and 

porosity of the flat plate. It is also found that excessive 

permeability of the porous layer causes a significant 

drop in the squeeze film characteristics and minimises 

the effect of surface roughness. For the case of limited 

or no permeability, the azimuthal roughness is found 

to increase the load-carrying capacity and squeeze 

time, whereas the reverse results are obtained for the 

case of radial roughness. 

Lin at. al.,[18] analysed the  Effects of non-

Newtonian micropolar fluids on the squeeze-film 

characteristics between a sphere and a plate and it is 

analysed that the results, the effects of non-Newtonian 

micropolar fluids provide an increase in the load 

capacity, and therefore lengthen the response time to 

prevent the contact of sphere with plate. Furthermore, 

the non-Newtonian effects on the squeeze-film 

characteristics are more emphasized under lower 

squeeze-film heights with larger coupling numbers 

and smaller interacting parameters. Syeda Tasneem 

Fhatima at. al.[19-20] analysed the effects of MHD 

and couplestress fluids on rectangular plates. It is 

found that MHD and couplestress fluids provide an 

increase in pressure, load carrying capacity and 

squeeze film time.  

Present analysis is a first attempt to report the 

effects of Pressure-dependent viscosity and 

Micropolar fluids on squeeze film Circular stepped 

plates. The existing studies on pressure dependent 

viscosity mainly concentrate on circular plates with 

micropolar fluids. Hence, the present works is mainly 

motivated, since in earlier works the viscosity is 

treated as constant. 

    The relation between viscosity and pressure is 

analysed by Barus[21] and Bartz and Ether[22] and is 

given by the relation 

0

pe                       (1) 

where β denotes the coefficient of pressure-dependent 

viscosity (PDV) and µ0 is the viscosity at ambient 

pressure and a constant temperature. Equation (1) 

indicates the lubricant viscosity is increasing 

exponentially and it could alter the predicted 

performance of squeeze film bearings. 

     Naduvinamani et. al.[23] analysed the effect of 

surface roughness and viscosity-pressure dependency 

on the couple stress squeeze film characteristics of 

parallel circular plates. It is reported that the effects of 

couple stresses and viscosity-pressure dependency are 

to increase the load carrying capacity and squeeze film 

time for both azimuthal and radial roughness patterns. 

Lu and Lin[24] studied a theoretical study of 

combined effects of non-Newtonian rheology and 

viscosity-pressure dependence in the sphere-plate 

squeeze-film system. It is observed that the combined 

effects of couple stresses produced by the spin of 

microelements and viscosity-pressure dependence 

provide an enhancement in the load-carrying capacity 

and lengthen the response time as compared to the 

classical iso-viscous Newtonian-lubricant case  
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Naduvinamani and Archana[25] analyzed the effect of 

viscosity variation on the micropolar fluid squeeze 

film lubrication of a short journal bearing. Sinha et 

al.[26] studied the variation in viscosity with 

temperature in journal bearing lubricant with additives 

using the micropolar theory. They established that, the 

additives in lubricant increase the temperature in 

journal bearing. Jaya Chandra Reddy at. al.[27] 

analysed that the Effect of viscosity variation on the 

squeeze film performance of a narrow hydrodynamic 

journal bearing operating with couple stress fluids and 

reported that the couple stress fluid as a lubricant 

improves the squeeze film characteristics and results 

in a longer bearing life. Whereas the viscosity 

variation factor decreases the load carrying capacity 

and squeeze film time. 

The effect of pressure-dependent viscosity 

and micropolar fluids in squeeze film circular plate is 

analysed in this paper and the results are compared 

with iso-viscous lubricant case given in appendix A. 

The results are presented in table 1. The results are in 

excellent agreement with the iso-viscous lubricant 

case given in appendix A.   

2 Mathematical Formulation and solution of the 

problem 

The basic equations governing the flow of micropolar 

lubricants [1] under the usual assumptions of 

lubrication theory for thin films [28] are 

Conservation of linear momentum  

    

2
1

2
0

2

v pu

y ry


 

  
    
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                  (2)  

  Conservation of angular momentum 

    

2

1
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  
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  
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                        (3)  

 

Conservation of mass 

    
1

( ) 0
v

ru
r r y

 
 

 
                                       (4)  

 where u, v are the velocity components of the 

lubricant in the r and z directions, respectively, v1 is 

the microrotational velocity component,  is the spin 

viscosity,  is the viscosity coefficient for micropolar 

fluids, and  is the Newtonian viscosity coefficient.  

The relevant boundary conditions for the velocity and 

microrotational velocity components are   

At the lower surface (y = 0)  

u = 0, v = 0                                                       (5a)        

v1 = 0                                                                (5b) 

At the upper surface (y = h)                                          

u = 0, v = 
h

t




                                   (6a)            

v1 = 0                                                                (6b)   

The solution of equations (2) and (4) subject to the 

corresponding boundary conditions given in the 

equations (5a), (5b), (6a), and (6b) is obtained as  
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where,  
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where, the symbols have their usual meaning as given 

in nomenclature.  

The micropolar parameters N and l are assumed to be 

independent of viscosity variation for mathematical 

simplicity. It is assumed that  and   varies in the 

same way as  varies. 

 The modified Reynolds equation for the 

pressure in the film region is obtained by using 

equations (7) in the continuity equation (5) and then 

integrating over the film thickness and also using the 

boundary conditions for v given in equations (5a) and 

(6a) in the form.   

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 37 Number 3 – September 2016 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 178 

  , , 12p p h
g N l h e r r

r r t

  


  
                    (9)  

where, 3 2 2( , , ) 12 6
2

Nh
g N l h h l h Nlh Coth

l

 
    

 
                                                                                 

                                                                         (10) 

The volume flow rate of the lubricant is given by 

  
0

2

h

Q r udy                       (11) 

Substituting the expression for u from equation (7) in 

equation (11) the volume flux is obtained in the form 
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Using the non-dimensional quantities 
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In equations (9) and (12) the non-dimensional 

modified Reynolds equation and the non-dimensional 

volume flow rate are obtained in the form           

*
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Reynolds equations in region I: (0  r*  K) 
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Reynolds equations in region II: (K  r*  1) 
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The pressure boundary conditions are
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where *

1Q  and *

2Q
 

are the nondimensional volume 

flow rates in region I and region II respectively. 

Solving equations (16) and (18) using the boundary 

conditions (20), (21), (22) and (23) gives
 

Pressure in region I: (0    r*  K) 
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Pressure in region II: (K   r*  1) 
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The load carrying capacity W is obtained in the form 
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The non-dimensional load carrying capacity is 

obtained in the form 
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The squeezing time for reducing the film thickness 

from an initial value h2
*
 = 1 to a final value hf

*
 is given 

by 
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Figure 1 Squeeze film between circular stepped plates 

with viscosity-pressure dependency and Micropolar 

fluids. 

3 Results and Discussions 

The lubricating effect of the micropolar 

fluids, on the circular step plate squeeze films is 

studied through the parameters N and l
*
 respectively. 

The parameter   
1 2

/ 2N      is the coupling 

number and it characterizes the coupling of linear and 

rotational motion arising from the micro motion of the 

fluid molecules or the lubricant additives. Thus N 

signifies the coupling between the Newtonian and 

rotational viscosities. As  tend to zero, N also tends 

to zero, and the expressions for the bearing 

characteristics obtained in this paper reduce to their 

counter parts in classical Newtonian theory. The 

second non-dimensional couplestress parameter 

 *

2l l h
 

with  
1 2

4l   , characterizes an 

interaction between the bearing geometry and the 

fluid. The effect of pressure dependent viscosity on the 

circular stepped plates is analyzed through the 

pressure dependent viscosity parameter

 2 3

0 2( / )G R dh dt h  . In the limiting case G  

0, the modified Reynolds equations (16) and (18), non 

dimensional pressure equations (24) and (25), non-

dimensional load carrying capacity equation (27) and 

non-dimensional squeeze film time equation (28) 

reduce to the iso-viscous case given in the 

Appendix(A1 to A4). 

 

Figure 2 Variation of non-dimensional pressure P
*
 

with r
*
 for different values of N and G with l

* 
= 0.3, 

h1
*
 = 1.2, K = 0.7. 

  The following range of parameters is used for the 

discussion of squeeze film characteristics 

N = 0, 0.2, 0.3, 0.4, 0.6, l
*
 = 0, 0.3, G = 0, 0.2, 0.03, 

0.4, 0.06,  K = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. 

 

Figure 3 Variation of non-dimensional pressure P
*
 

with r
*
 for different values of l

* 
 and G  

               with N = 0.3, h1
*
 = 1.2, K = 0.7. 

3.1 Pressure 

Figure 2 shows the variation of non 

dimensional pressure P
*
 with r

*
 for different values of 

coupling number (N) and viscosity parameter(G) with 
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l* = 0.3, h1* = 1.2, K = 0.7. It is observed that P* is 

maximum at r
*
 = 0 further P

*
 decreases for increasing 

values of r
*
. It is also observed that P

*
 increases for 

increasing values of N and G. The effect of l
*
 on the 

variation of non dimensional pressure is depicted in 

figure 2. It is observed that non dimensional pressure 

increases with increasing values of l
*
. The effects of 

dimensionless parameters N and G with h1
*
 = 1.2 on 

the variation of non dimensional maximum pressure 

P
*
max with K is depicted in figure 4. It is observed that 

maximum pressure is decreases for increasing values 

of K. Further maximum pressure P
*

max increases for 

increasing values of N and G. 

 

Figure 4 Variation of non-dimensional maximum 

pressure P 
*

max with K for different values  

 of N and G with l
* 
= 0.3, h1

*
 = 1.2.

                                                                            

 3.2 Load Carrying Capacity: 

The variation of non-dimensional load carrying 

capacity with h1
* for different values of N and G is 

shown in figure 5. It is observed that the non-

dimensional load carrying capacity W* decreases with 

increasing values of h1
*. It is also observed that the 

non-dimensional load carrying capacity increases with 

increasing values of N and G. Figure 6 depicts the non 

dimensional load carrying capacity varies as the a 

function of the couple stress parameter l*, for different 

values of N and G. It is observed that the non-

dimensional load carrying capacity increases with 

increasing values of l*. Figure 7 shows the variation of 

non-dimensional load carrying capacity with K. It is 

observed that non-dimensional load carrying capacity 

decreases with increasing value of K.  

 

Figure 5 Variation of non-dimensional load carrying 

capacity W
*
 with h1

*
 for different values  

 of N and G with l
* 
= 0.3, K = 0.7. 

The relative percentage increase in the non 

dimensional load carrying capacity *W
R  is defined by

*W
R   * * * 100PDV Non PDV Non PDV XW W W   . Table 2 

shows the values of *W
R  for different values K and G 

with h1
*
 = 1.2. It is observed that an increase of nearly 

4.03% in W


 for K = 0.6,           G = 0.04, N = 0.2 and 

l
*
 = 0.3. 

 

Figure 6 Variation of non-dimensional load carrying 

capacity W
*
 with h1

*
 for different values  

 of l
* 
and G with N = 0.3, K = 0.7. 
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Figure 7 Variation of non-dimensional load carrying 

capacity W
*
 with K for different values  

 of N and G with l
* 
= 0.3, h1

*
 = 1.2. 

3.3 Squeeze Film Time: 

The variation of non-dimensional squeeze film time T* 

with hf
* for different values of N and G is presented in 

figure 8. It is observed that the increasing values of hf
* 

decreases the non-dimensional squeeze film time.  

Further it is observed that the non-dimensional 

squeeze film time increases with the increasing values 

of N and G respectively. Figure 9 shows the variation 

of non dimensional squeeze film time with couple 

stress parameter l*. It is observed that the non-

dimensional squeeze film time increases with 

increasing values of l*. Figure 10 depicts the variation 

of non-dimensional squeeze film time with K for 

different values of N and G. It is observed that the 

non-dimensional load carrying capacity decreases with 

the increasing values of K. 

  *

* * * 100PDV Non PDV Non PDVT
R XT T T    . Table 2 

shows the values of *T
R  for different values K and G 

with hf
*
 = 0.6. It is observed that an increase of nearly 

25.12% in T  for K = 0.6,          G = 0.06, N = 0.4 and 

l
*
 = 0.3.

 

4 Conclusions: 

On the basis of micropolar fluids theory introduced by 

Eringen[1-2] and Bartz and Ehert[22] analysis for 

pressure-dependent viscosity the theoretical study is 

presented in this paper. On the basis of the theoretical 

results presented, the following conclusions are drawn: 

1. Non-dimensional pressure, load carrying 

capacity, squeeze film time are functions of  

viscosity parameter G, coupling number N, and 

couple stress parameter l
*
. 

2. The non dimensional pressure, non dimensional 

load carrying capacity, and non dimensional 

squeeze film time decreases with increasing 
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value of non dimensional step distance (K) and 

increases as compared with iso-viscous lubricant 

case. 

 
Figure 10 Variation of non-dimensional squeeze film 

time T
*
 with K for different values of  N and G with l

* 

= 0.3, hs
*
 = 0.2, hf

*
 = 0.6. 

 
Figure 8 Variation of non-dimensional squeeze film 

time T
*
 with hf

*
 for different values of N  and G with  

l
* 
= 0.3, hs

*
 = 0.2, K = 0.7. 

 

Figure 9 Variation of non-dimensional squeeze film 

time T
*
 with hf

*
 for different values of l

*  

 
and G with N = 0.3, hs

*
 = 0.2, K = 0.7. 
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Nomenclature 

 

G        viscosity parameter 

h       non-dimensional film thickness  

1h        maximum film thickness 

2h        minimum film thickness 

sh       step height ratio  2sh h  

KR       the position of the step 0 < KR < R. 

l          couplestress parameter  
1 2

4   

l      non-dimensional couple stress parameter  

            2l h
 

N        Coupling number
 

p        pressure in the film region 

1p      fluid film pressure in the region 0 ≤ r ≤ KR    

*
1p     non-dimensional fluid film pressure in the    

          region 0 ≤ r
*
 ≤ K               

2p    fluid film pressure in the region  KR ≤ r ≤ R 

*
2p

 
 non-dimensional fluid film pressure in the  

        region K ≤ r
*
 ≤ 1   

Q     volume flow rate. 

1Q
  

 volume flow rate in the region 0 ≤ r ≤ KR 

*
1Q   non-dimensional volume flow rate in the  

         region 0 ≤ r
*
 ≤ K  

2Q     volume flow rate in the region KR ≤ r ≤ R 

*
2Q    non-dimensional volume flow rate in the  

          region  K ≤ r
*
 ≤ 1         

R       radius of the circular plate 

RT
*
     relative time of approach 

RW
*
     relative load carrying capacity 

,r y    
radial and axial coordinates 

T       time of approach 

T
 non-dimensional time of approach    

         2 4

2 0Wth R  

,u v
  

velocity components in r and y directions 

W     load carrying capacity 

W 

 non-dimensional load carrying capacity   

         3 4

2 0 /Wh R dh dt 
 

Greek Symbols 

        coefficient of pressure-dependent viscosity 

    material constant responsible for couple  

          stresses 

       dynamic Viscosity 

 0      viscosity at atmospheric pressure 

 

Appendix A: 

The squeeze film characteristics for the lubrication 

between circular step bearings are obtained as: 

The dimensionless Pressure is obtained as 

Pressure in region I: (0    r*  K) 
2 *2 2

*

1 * * * * *

1 1 2

3( ) 3(1 )

( , , ) ( , )

K r K
p

f N h l f N l

 
                   (A1)

 

Pressure in region II: (K   r*  1) 
*2

*

2 * *

2

3(1 )

( , )

r
p

f N l


                                                (A2) 

The dimensionless load-carrying capacity is obtained 

as 
4 4

*

* * * * *

1 1 2

3 3 (1 )

2 ( , , ) 2 ( , )

K K
W

f N h l f N l

  
    (A3) 

The dimensionless time-height relationship is obtained 

as 

 

*

1 4 4

* *

2* * * * * * *

1 2 3 2 2

3 3 (1 )

2 ( , , , ) 2 ( , , )
fh

K K
T dh

f N h h l f N h l

   
  

  


                        

                                                                   

(A4)        
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