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Abstract— Least squares estimation, a regression 
technique based on minimisation of residuals, has 

been invaluable in bringing the best fit solutions to 

parameters in science and engineering. However, in 

dynamic environments such as in Geomatics 

Engineering, formation of these equations can be 

very challenging. And these constraints are ported 

and apparent in most program models, requiring 

users at ease with the subject matter. This paper 

reviews the methods of least squares approximation 

and examines a one-step automated approach, with 

error analysis, through the instrumentality of 
frames, object oriented programming. 
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I. INTRODUCTION 

 

In science and engineering studies, regression 

analysis is a very important tool in providing 

explanatory models to observed phenomena. There 

are instances that range from simple linear 

relationships to rigorous least squares approach. 

 
 

Fig. 1 Scatter Plot 

 

In Fig.1 is a scatter plot from an experiment. The 
quest given this pattern is to obtain a model that is 

explanatory and basis for mathematical and 

scientific projections. This can be done by studying 

the form of pattern through the concepts of 

regression analysis. 

A. Simple Regression Analysis 

 

Imagine points on a scatter diagram that assume 

approximately, the form of a straight line described 

by y = bx + a. Then how a line could be drawn that 

best fit the data becomes a trial. Intuitively, an 

acceptable form maybe be obtained, but what is 

required is mathematical criteria that gives “the best” 

regression line through the points. 
 

 
Fig.2 Regression Analysis 

 

A regression line, Fig 2, is simply a single line 

that fits the data, in terms of having the smallest 

overall distance from the line to the points. In 
Statistics this technique for finding the best-fitting 

line is known as simple linear regression analysis. 

And by due consideration, the best criterion is that 

for which the sum of squares of the residuals is a 

minimum, giving rise to least squares method [1]. 

 

1. Least Squares Method: 

 

Least squares method of estimation can be used 

in linear concept to solve the problem of finding a 

line or curve that best fits a set of data points. 
Consider the usual case of a set of N pairs of 

observations {Xi, Yi} where it is required to find a 

function relating the value of the dependent variable 

(Y) to the values of an independent variable (X). 

 

In this case, the projection is given by the 

following equation [2]: 
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𝑌 = 𝑎 + 𝑏𝑋 
 

In the equation, 𝑌 is the regression line, while a 

and b are the intercept and gradient, respectively. 

And with reference to Fig. 2, the residual 𝜗 has the 

following expression for N points: 

 

𝜗 =   𝑌𝑖 − 𝑌 𝑖 
2

𝑁

𝑖=1

=    𝑌𝑖 − (𝑎 + 𝑏𝑋𝑖  )2

𝑁

𝑖=1

 

 

Given this relationship, the criterion of least squares 

is enforced through partial differentiation. Thus, in 

taking the derivative of 𝜗with respect to a and b 

and setting them to zero a normal set of equations is 

obtained: 
 

𝜕𝜗

𝜕𝑎
= 2𝑁𝑎 + 2𝑏 𝑋𝑖 − 2

𝑁

𝑖=1

 𝑌𝑖𝑋𝑖 = 0

𝑁

𝑖=1

 

And 

𝜕𝜗

𝜕𝑏
= 2𝑏 𝑋𝑖

2 + 2𝑎

𝑁

𝑖=1

 𝑋𝑖 − 2

𝑁

𝑖=1

 𝑌𝑖𝑋𝑖 = 0

𝑁

𝑖=1

 

 

Then solution to the normal equations gives the 

least square estimates of a and b as follows: 

 

 𝑎 = 𝑀𝑌 − 𝑏𝑀𝑋  where 𝑀𝑌  and 𝑀𝑋are the means 

of Y and X, respectively and: 
 

𝑏 =
  𝑌𝑖 −𝑀𝑌  𝑋𝑖 − 𝑀𝑋 

𝑛
𝑖=1

  𝑋𝑖 −𝑀𝑋 
2𝑛

𝑖=1

 

 

While the formula for the best-fitting 

line,  y = bx + a, is same as one used to find a line 

in algebra, the points in this case don’t lie perfectly 

on the line. The line is rather a model around which 

the data lie if a strong linear pattern exists. 

 

 
 

Fig. 3 Standard Error of Estimate 

 

It is always helpful to assess the goodness of the 

fit. This is provided by the standard deviation of 

regression line, known as Standard Error of 

Estimate, Fig 3. It is given as: Sy/x=Sr/N– 2 where 

Sris the sum of squares of residuals, with N the 

number of data, and (N-2) the degrees of freedom. 

It is not always that a linear relationship exists 

between the variables. In that case a linearization 

procedure is necessary. A sample illustration is 

given below:  

 

y= α1e
β1x
lny = lnα1 + β1x 

 

y = α2x
β2
log y = log α2 + β2 log x 

 

II. GENERAL LEAST SQUARES 

 

It may be observed from preceding discussions 

that there are linear, polynomial and sinusoidal or 

other forms of equations with each apparently 

requiring a tailored set of equations. Actually, there 

is a general representative equation, as given below: 

 

y = b0x0+ b1x1+ b2x2+ ・・・ + bmxm+ ℯ    --- (1) 

 

Note thatx0, x1, x2,・・・xm are m + 1 basis 

functions. So wherex0= 1, and xm= 0 for m > 1, a 

simple linear regression equation obtains, otherwise 
it becomes a case of multiple linear equation. 

Furthermore, the expression defaults to polynomial 

form if the basis functions are simple monomials, 

such as when xm⇒xm [3]. 

 

A. Observation Equations 

 

Observations equations are a form based on the 
general model outlined in (1), but as an adaptation to 

suite fields of application. In this instance, the 

interest is in horizontal networks in Geomatics 

Engineering. Therefore, whereas in laboratory 

experiments involving scatter plot diagrams, the 

quest is for an explanatory model, the case in 

surveying can be stated as follows: 

 

1. The functions relating observables, 

angles and distances, to unknown 

positions, Easting and Northing, are 
known through geometry. 

2. The task is to determine the unknown 

positions by the most optimal and 

reliable method. 

3. The best solution is that for which the 

sum of squares of the residuals is a 

minimum.  

 

In this context, an equation is formed for each 

measurement. This comprises of distance, height and 

angle observations, or enough to determine unknown 

variables of Easting (X), Northing (Y), and Height 
(Z). The resulting system of equations are usually 

such that, for m unknowns there are preferably n 

observations where n > m. As illustrated earlier in 

Fig. 3, this leads to a more reliable estimate.  
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Survey measurements are stochastic variables, 

with error considerations. As such, error propagation 

is a common issue, as regards its effect on the 

computed positions. Thus, let: 
 

Y1 = f1(X1, X2, … Xm) 

Y2 = f2(X1, X2, … Xm) 

                        ⋮ 

Yn = fn(X1, X2, … Xm) 

 

where Yn  is a function of variables, X1, X2, ….Xm. 
 

The Jacobian matrix for these equations is 

defined as: 
 

Jyx = 

 

 
 
 

𝜕𝑌1

𝜕𝑋1

𝜕𝑌1

𝜕𝑋2

𝜕𝑌2

𝜕𝑋1

⋮
𝜕𝑌𝑛

𝜕𝑋1

𝜕𝑌2

𝜕𝑋2

⋮
𝜕𝑌𝑛

𝜕𝑋2

…
𝜕𝑌1

𝜕𝑋𝑚

…
 
…

𝜕𝑌2

𝜕𝑋2

⋮
𝜕𝑌𝑛

𝜕𝑋𝑚 

 
 
 

 

 

If the covariance matrix of x is 
 

Cx = 

 

 
 

𝜎𝑥1

2        𝜎𝑥1

  𝑥2

𝜎𝑥2

  𝑥1  

 

⋮

𝜎𝑥𝑚
  𝑥1  

 

𝜎𝑥2

2

⋮

𝜎𝑥𝑚
  𝑥2  

 

… 𝜎𝑥1

  𝑥𝑚  

 

…

 

…

𝜎𝑥2

  𝑥 𝑚  

 

⋮

𝜎𝑥𝑚
2

 

 
 

 

 

then the covariance matrix of y is: Cy = J
yx
 Cx

 J
yx
T  

where 

 

Cy = 

 

 
 

𝜎𝑦1

2        𝜎𝑦1

  𝑦2

𝜎𝑦2

  𝑦1  

 

⋮

𝜎𝑦𝑛

  𝑦1

𝜎𝑦2

2

⋮

𝜎𝑦𝑛

  𝑦2  

 

… 𝜎𝑦1

  𝑦𝑛  

 

…

 

…

𝜎𝑦2

  𝑦𝑛  

 

⋮

𝜎𝑦𝑛

2

 

 
 

 

  
Computations in Surveying Engineering involve 

linear models, y = Ax. In this case, the Jacobian 

matrix Jyx defaults to coefficient matrix, A. Hence 

 

Cy = ACxA
T       ---- (2) 

 

It is not always the case that information 

regarding the variance of observed quantities is 

available or superior to other forms of judgement. 

For instance ten rounds of observation would be 

more reliable than a single measurement. So weights, 
wi offer another option. The relationship may be 

expressed as follows: 

 

𝜎 
2

 

 
 α   

1 

𝑤
 ,  𝜎 

2

 

 
 = 

𝑘 

𝑤
 .   If w  = 1 then k =𝜎 

 

0

2, the 

variance of a measurement of unit weight. 

∴   w =    
𝜎 

 
0
2

𝜎 
 
 
2
  and  W =  𝜎 

 

0

2.𝐂−𝟏  ---- (3) 

where W is the weight matrix. 

 

Define Q, the cofactor as  Q = 𝜎 
 

0

−2.𝐂            ---- (4) 

then pre-multiplying both sides of  (3) by C gives 

  

CW = σ 0

2.𝐈   

 

And substituting for C in (4) gives the result: 

QW = I. 

  

Hence     Q = W
-1

   ---- (5) 
 

B. Model Solutions 

 

A model solution draws from the discussions so 

far, where the weight matrix W is a factor in 

determining the variance of computed positions. 
 

Consider a situation where a linear mathematical 

model is represented by: 
 

 Y  = AX  + C                         ---- (6)  
 

with Y  the adjusted observations, A the coefficient 

matrix, X  the unknowns and C, constants in the 

equation. In reality, Y  = Y + 𝜗  where Y are 

measurements and 𝜗 are residual corrections. Eqn (6) 

then assumes the form of:  

 

Y + 𝜗  = AX  + C    ---- (7)  

                      

It is always helpful to reduce the magnitude of 
unknown quantities to improve computing 

performance. This involves the introduction of 

provisional and approximate values, such that  

 

X  = X0 + X. Substituting into (7)  gives 

 

Y + 𝜗  = A(X0 + X) + C. Hence collecting all,  

 

𝜗 = AX – (Y  -  AX0  - C). Therefore the reduced 

equation with unknown corrections X is:  

 

𝝑 = Ax – b    ---- (8) 

 

The best estimate of solution is obtained when 

the sum of squares of the residuals, 𝝑 = v
T
Wv, is at 

a minimum. Substituting for 𝝑 in (8) and proceeding 
thus [4]: 

 

𝝑 = (Ax – b)
T
W(Ax - b) 

      = (x
T
A

T
 – b

T
)W(Ax – b) 

      = x
T
A

T
WAx - x

T
A

T
Wb - b

T
WAx + b

T
Wb 

 

Therefore 
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𝜕𝝑/𝜕𝐱 = A
T
WAx + (A

T
WA)

T
x – (b

T
WA)

T
 - A

T
Wb  

 

=  2x
T
A

T
WA – 2b

T
WA = 0  

 

Hence, transposing: A
T
WAx = A

T
Wb ---- (9) 

and 

x = (AT
WA)

-1
A

T
Wb      ----(10) 

 

This result is the solution of the linearised model 

of the least squares equation. By equation (2) and [5], 

it can be shown that the variance of x is given by:  

 

𝜎𝑥
2 = 𝜎0

2 (AT
WA)

-1   ----(11) 
 

where 𝜎0
2  = v

T
Wv/(n-m), n being the number of 

observations and, m the range of unknowns, n > m. 
 

III. FIELD APPLICATIONS 

 

Field surveys involve establishing a control 

framework for engineering design and setting out of 

points to plan. As such high precision is required to 

ensure accurate design and compliance during 

construction. This can be achieved by adopting 

rigorous survey techniques and computational 

methods. 
 

A. Linear Process 

 

 
Fig. 5 Topographic Stations 

 

A typical survey is illustrated above, where the 

stations are the centre for collecting grid point 

information in representation of an undulating 

topographic surface. The stations are computed by 

least squares, therefore requiring a linear model for 

implementation. This can be done by applying 
Taylor’s theorem, expanding the function to first 

order approximation [6]: 
 

f(x) =f(x0)+JΔx  ---(12) 
 

where x0 is approximate value, Δx the corrections 

and J the Jacobian matrix. 
 

 
Fig.6 Linear Patch at C 

 

Considering the above cross-section for point C, 

a linear patch is centred on the provisional 

coordinate E0 N0. Then corrections dE and dN are 

solved by least squares to obtain EC = E0+dE, and 

NC = N0+dN. It is for this reason that provisional 

positions should be good enough to reduce the 
number of iterations. 

 

1. Basic Equations: 

 

 

 
 

Fig.7 Position Fixing 

 

Basic Equations can be demonstrated with Fig. 7, 

illustrating the process of fixing a station by angle 

and distance observations. The mathematical 

relationships are as follows: 

 

θ = Tan-1(∆E ∆N )   ---- (13) 
 

𝑙2      =   ∆E2  +   ∆N2    ---- (14) 
 

Recalling Taylor’s expansion in (12), then for  

θ = f(EB, NB, EA, NA), a linear model is: 

 

θ = θ0 + (EB –EB0)
𝜕𝜃𝐴𝐵

𝜕𝐸𝐵
+(NB –NB0)

𝜕𝜃𝐴𝐵

𝜕𝑁𝐵
+ 

 

(EA –EA0)
𝜕𝜃𝐴𝐵

𝜕𝐸𝐴
+(NA –NA0)

𝜕𝜃𝐴𝐵

𝜕𝑁𝐴
 

 

Let 𝑑𝜃  = θ - θ0and dE = E – E0 then after 

simplifying [7]: 

 

𝑑𝜃 =
𝐶𝑜𝑠θ

𝑙
(𝑑𝐸𝐵  − 𝑑𝐸𝐴 ) -  

𝑆𝑖𝑛θ

𝑙
 𝑑𝑁𝐵 − 𝑑𝑁𝐴 -(15) 

 

Similarly, for l = f(EB, NB, EA, NA) 
 
 

𝑑𝑙 = 𝑆𝑖𝑛𝜃(𝑑𝐸𝐵  − 𝑑𝐸𝐴 )+𝐶𝑜𝑠𝜃 𝑑𝑁𝐵 − 𝑑𝑁𝐴 -(16) 

 

In respect of usage, the parameters are defined as 

follows: 

 

𝑑𝜃,𝑑𝑙 Differences between the observed and 

computed values, with the latter derived 

from provisional position 

𝑑𝐸,𝑑𝑁 Unknown corrections to provisional 

values of coordinates 
 

The equations can be further simplified as: 
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𝑑𝑙 = 𝑟(𝑑𝐸𝐵 − 𝑑𝐸𝐴 ) +  𝑠 𝑑𝑁𝐵 − 𝑑𝑁𝐴  -- (17) 

𝑑𝜃 = 𝑝(𝑑𝐸𝐵  − 𝑑𝐸𝐴 ) -  𝑞 𝑑𝑁𝐵 − 𝑑𝑁𝐴  -- (18) 

 

where p = 
𝐶𝑜𝑠θ

𝑙
 and q = 

𝑆𝑖𝑛θ

𝑙
. Similarly, r = 𝑆𝑖𝑛𝜃 and 

s = 𝐶𝑜𝑠𝜃 . Then taking into account the stochastic 

nature of the variables, the residual component v is 

added to obtain the standard observation equations: 

 

𝑣𝑙 = 𝑟(𝑑𝐸𝐵 − 𝑑𝐸𝐴 ) +  𝑠 𝑑𝑁𝐵 − 𝑑𝑁𝐴 - 𝑑𝑙 -- (19) 

𝑣𝜃 = 𝑝(𝑑𝐸𝐵 − 𝑑𝐸𝐴 ) -  𝑞 𝑑𝑁𝐵 − 𝑑𝑁𝐴 - 𝑑𝜃 -- (20) 

 

A derivative for angle observation,∠𝐵𝐴𝐶  equation 

from (20) is: 

 

𝑣𝐵𝐴𝐶 = {𝑝(𝑑𝐸𝐶 − 𝑑𝐸𝐴 )  -  𝑞 𝑑𝑁𝐶 − 𝑑𝑁𝐴 -𝑑𝜃}𝐴𝐶  −
{𝑝(𝑑𝐸𝐵  − 𝑑𝐸𝐴 ) -  𝑞 𝑑𝑁𝐵 − 𝑑𝑁𝐴 - 𝑑𝜃}𝐴𝐵   

     --- (21) 

 

Hence 

𝑣𝐵𝐴𝐶 = (𝑝𝐴𝐵 − 𝑝𝐴𝐶 )𝑑𝐸𝐴 +  (𝑞𝐴𝐶 − 𝑞𝐴𝐵)𝑑𝑁𝐴 – 

𝑝𝐴𝐵𝑑𝐸𝐵   + 𝑞𝐴𝐵𝑑𝑁𝐵 + 𝑝𝐴𝐶𝑑𝐸𝐶  - 𝑞𝐴𝐶𝑑𝑁𝐶 - 𝑑𝜃𝐵𝐴𝐶   

--- (22) 

 

Equations (19) and (22) form the basis of 

computation for horizontal positions in precision 

surveys. There is the option of 3D computation, but 

most often levelling provides superior height 

information in a separate network. However, it is a 

good choice to have default configurations, by 

providing for variables s and 𝝓 (Fig. 7) in support of 

3D computations.   
 

B. Examples 

 

 
 

Fig. 8 Traverse Survey 

 

A typical traverse survey involving angle and 

distance measurements is illustrated in Fig. 8, where 
P, Q, R and S are control stations and A, B, C and D 

are unknown stations. As such there are eight 

unknown parameters (Ei, Ni) and sixteen 

observations. A best fit solution is desirable. 

 
1. Coefficient Matrix: 

 

A coefficient matrix is the starting point in 

computation, representing the formation of least 

squares equations. Proceeding according to Eqn. 

(19) and (22), the matrix is constructed as follows: 

 

 

 
Table 1 

 

2. Computation: 

 

Computation based on the resultant equation is: 

𝑣16,1 = 𝐴16,8𝑋8,1 - 𝑏16,1 . It involves a number of 

stages: 

 
i. Collation 

ii. Classification 

iii. Data Input 

iv. Computation 

 

Collation involves compiling observations and 

measurements into a single list, while in 

classification, a decision is made as regards fixed 

points in the network. 

 

In data input, the construction of the coefficient 
matrix and equations is implicit, following the 

guidelines of network diagram. In non-static 

situations, this mode is prone to misrepresentation 

and errors. And so, the results of computation would 

always depend on the correctness in the three stages, 

as afore-mentioned. 
 

IV. AUTOMATION 

 

The stages listed above are obviously manual and 
was the case at the early stages of computer 

applications. Yet, even at present, this modality still 

persists in many instances, ported into computer 

solutions. What is most desirable is a fully 

automated approach, robust and able to cope with 

dynamic networks. 
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A. Frames 

The concept of frames as discussed widely in [8] 

is one of knowledge representation. With origins in 

Artificial Intelligence this notion has evolved into 

what is generally regarded as object oriented 

programming. 

 

 
 

Fig. 9 KR in Least Squares Computation 

 

The process outlined earlier is an informal 
approach as would a human expert. But in Fig. 9 is 

an illustration of the relationship as how this 

expertise could be represented and translated into a 

formal expression that is understood by the machine.  

 

It follows therefore that the stages in manual 

approach can be replaced by a single instruction in 

frame-based technique and object oriented 

programming [9]. 

 

1. Compilation: 

 

Compilation features three main interacting 

nodes, namely Compile, Station Description and 

Traverse Field Book. The connexion is best 

described in a semantic net [10], [11], as in Fig. 10. 

 

 
 

Fig. 10 Semantic Net 

A starting node is the station record that provides 

format and details of information regarding 

observations from instrument station. The field 

book, on the other hand is a collection or container 

database with contents of all the observations and 

measurement in the survey. 

 

Compile fetches the field book and along with the 

station data structure, generates mean values of 

reduced measurements to create a new data set. The 
latter becomes the input source in subsequent 

computations. 

 
 

Fig. 11 Compile Frame 
 

The semantic net at a glance is a useful summary, 

but does not provide full details. To go further 

requires frame representation as in Fig. 11.The slots 

and fillers are apparent as data fields and types. Then 

the advantage of methods is obvious, as being able 

to interact with other frames and execute routines. 

Thus, in the second method, Generate DataSet 

carries out the exercise after loading the field book.  

 

2. Station Scanning: 
 

Station scanning is a process that amongst others 

identifies fixed points in the network. There are 

therefore three contending frames, namely Control 

Database, Complied Dataset, and Fixed Stations in 
the Dataset. 

 

The concept of Control database draws from 

manual administration where there is always a 

register of known Trig/Control points. Usually 

before the project begins, decisions are made as to 

which of these points will serve in the project. At 

times, also fixed stations are chosen on the fly and 

later admitted for computation. In all cases controls 

are defined with respect to a particular datum and 

there are always sufficient overlaps to allow result 
computed in one datum to be listed in another. 

 

In the fore going therefore, all known fixed points 

are listed in the control database. It is a simple 

matter of frame intersection search to identify them 
in the dataset, Fig. 12. 

 

 
Fig. 12 Intersection Search 

 

Fixed Station Set = DataSet∩Control DataBase 

 

Once this is accomplished, the class of the 

stations are updated as fixed points, otherwise a free 

status becomes applicable. 
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3. Graph Analysis: 

 

Graph Analysis provides a description of the 

network, an analogy to field diagram. Often 

designed networks are not followed in the field and 

it is in this context that this analysis, especially in 
large dynamic networks, provides a reliable on-the-

field report. 

 

With respect to traverse survey, Fig. 8, the 

analysis is based on theory of directed graph, where 

thenodes and edges complete the description. 
 

 
 

Fig. 13 Graph Frame 

 

A typical frame is illustrated in Fig. 13, where 

interaction with Dataset generates reference list of 

observations in PDataSet. Methods 1 and 2, then 

provide the description. 
 

In observation equations model, Graph Analysis 

is not critical for computations itself, but it does 

provide the basis for processing cycles and closures, 

conditions in the network. 

 

4. Formation of Equations: 
 

Formation of equations is the culminating process 

setting the stage for computation. It is a routine 

embedded within the Least Squares frame. 

 

 
 

Fig. 15 Computation Frame 

 

The computation begins with a call through 

Method2 to Equations frame, by way of Data4, for 

each observation. Itis processed to fill the row for 

that observation, depending on either of Angle, 

Distance or Zenith measurement. Upon return, the 

data is used to update the A, B and W matrices 

defined in Data 1 and 2.And following the equations, 

Method3 provides solution in x = (AT
WA)

-1
A

T
Wb. 

B. Cycle Processing 

 

The essence of cycle processing is to generate 

error information to determine internal and external 

consistency in the network. By description a graph 

maybe defined as acyclic, meaning there are no 

cycles [12]. However in context of survey 

applications, the emphasis is on adaptation, 

recognition of geometry and topology. Therefore, a 

cycle or loop starts from a node, passing through 

other nodes and terminating at the start node. Thus, 

where a DAG exists, the entities can be reduced to 
cycles by reversing observed directions in affected 

segments. 

 

Processing cycles starts with a spanning tree and 

addition of cross or back edges. The key algorithms 

are Breadth First Search and Depth First Search 

[13]. 

 
Fig. 14 

 

In Fig 14 is a model diagram of a field survey. 

Typically, work originates from a control point and 

terminates like wise. Thus, observed directions are 

important in computations and are reflected in 

processing algorithms. With respect to the model, 
the survey involves transfer of position from X, 

proceeding and closing at Y. Further observations 

allow determination of C and D, to complete the 

network as a connected graph. 

 

1. Breadth First Search: 

 

Breadth First Search starts by investigating each 

direction emanating from X, the first station.  It then 

moves to next layer, the next station B until finally 

all the nodes are connected in a spanning tree, Fig 16. 
 

 
 

Fig. 16 

 

Next fundamental cycles are constructed by 

adding cross edges. There are 5 cycles where the 

fifth, XBYX ensures consistency with external 

framework. 
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2. Depth First Search: 

 

Depth First Search, operating from the first 

station X follows a one-way route in the main 

direction of survey, until the last stop D, when there 

is no further path to proceed.  It then retraces its way 
backwards to investigate unexplored routes, BC, 

until completion that leads to a spanning tree, Fig 17. 

 

 
 

Fig. 17 

 

Back edges are then fitted to construct 

fundamental cycles, in order to establish the 

condition equations. These cycles are: XABX, 

ABCA, BYCB, YDCY, and XBYX. 

 

3. Model Solution: 

 
A model solution arises out of comparison of the 

two search options, BFS and DFS. The consensus of 

opinion is that choice depends on the nature of data 

structure. In this regard, a survey route is 

characterized by depth and DFS is a natural 

representation. Furthermore, it does not entail huge 

memory requirements. 

 

BFS nevertheless has advantage of minimum path 

length in cycle formation. Involving cross edges, the 

cycles have less overlap and agrees more readily 
with visual observations of geometry. However it 

does not lend with run of survey and topology. 

 

Generally, as described in [14], the best option is 

offered by Depth - Limited Search, which is to say 

that the finest solution lies in improving DFS. Thus, 

in this application, DFS is adopted and have proved 

very robust and reliable. 

 

V. PROGRAMMING 

 

In programming, frames give way to models in 

object oriented design and an example of which may 

be found in Pascal language such as, Lazarus [15] 

and Delphi [16].  The Least Squares frame now 

assumes the form description below. 

PLsqAdj = ^TLsqAdj; 

TLsqAdj = object(TObject) 

A,AT,N,NInv:TRealMatrix; 

  B,ATWB,Q,V,X,X_,L:TRealVector; 

  Equation: PEquationObj; 

SightDist,UnitVariance,SightVar:double; 

:                  :  : 

FixedPts,FreePts,List : PCollection;Dim:integer; 

FixedSet,FreeSet,DataSet: array[0..70] Of Char; 

Obs, UnKnws: longInt;; 

constructorInit; 

:         :  : 

procedureFormEquations; 

procedureSolveForX; 

destructor Done; virtual; 

end; 

 

It may be noted, the complement between the two 

models.While frames offer design basis, object 
models provide the required platform for 

implementation. 

 

A. Algorithm 

 

The algorithms address formation of equations 

and generation of errors for each cycle in the 

network. 
 

1. Formation of Equations: 

 

The procedure FormEquations is critical in its role 

of constructing the coefficient matrix and equations. 

The program steps for modelling this formation can 

be described with respect to the Survey in Fig 8. 
 

 

 
 

Fig. 18 

 

1. Form a list of free stations in the network 

and store in a vector, STN1xN, Fig 18. 

2. Assign index, sequence of numbers, to each 

station in the vector. 

3. Create another vector, the size of unknowns. 

4. Then for any observation involving a station, 

say C in BC D, locate the station and index. 
5. Multiply the index by dimension, 2 or 3,to 

compute column positions in the row of 

coefficient matrix:  ∴ Col = 2 x Index 

6. Store the coefficient for dEC at:Col -1. 

7. Store the coefficient for dNC at: Col. 

8. Do the same for B and D, and Return to 4. 

 

In the foregoing, with respect to Fig. 8 and Table 

1, it can be seen that there is agreement in columns 5 

and 6 for coefficients of dEC and dNC. 
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2. Generation of Cycles: 

 

In earlier discussions, the DFS was demonstrated 

as a more suitable algorithm for cycle processing. 

However, for implementation the mechanism differs 

from standard approach involving stacks etc. Rather 
what is adopted in this instance is an alternative to 

suit survey applications. 

 

 
 

Fig. 19 Program Steps 

 

With respect to Fig. 6 representing the network, a 

program implementation is described with 

illustrations in Fig 19. Thus, RefGraph is a variable 
representation for the structure as edge list. The 

same form applies to SpanTree and BackEdges. 

SpanIndex is a node list. 

 

The process starts with initialization where 

SpanIndex, SpanTree are empty. The first segment 

XA, invariably the origin of the survey is evaluated 

and inserted into SpanTree. At the same time, the 

nodes X and A are inserted into SpanIndex. The 

target station A becomes the reference in forward 

tracking that yield the edge AB. Both the SpanIndex 
and SpanTree are subsequently updated. Forward 

tracking continues until a leaf, D, is encountered. 

Back tracking then follows until B is accessed and a 

new segment BC is found and explored, Fig 17. 

 

Completion produces a DFS spanning tree. The 

back edges are generated, and form the basis for 

constructing fundamental cycles and condition 

equations in the network. Thus, by so doing, 

provides the determination of internal and external 

errors, consistencies in the survey. 
 

B. Optimisation 

 

The purpose of optimisation is to harness all the 

frames or instructions into a minimum, to achieve 

high productivity. To this end, there are a number of 

options to consider. 

 

 

1. Frame Integration: 
 

In the discussions so far, the impression might be 

that each of the frames have to be run separately. 

Well, except where it is necessary to carry users 

along in the progress of computations, by pause or 

interface enquiries, this should not be the case.  

 
 

 
 

Fig.20 Frames in Stack 

 

Ideally, the software should interact with field 

data, reach conclusions and then compute results in 

one instruction. This can be done by the starting 

frame, Compute, invoking required routines as 

illustrated in a PUSH and POP arrangement, Fig. 16. 

 
 

2. Datum Transformation: 

 

 
 

Fig.21 Datum in Frames 

 

In the diagram above are control points in their 
respective datum. It is common to carry out a project 

in A, for instance, and supply the results in C. This is 

mostly an office activity, involving Least Squares 

estimation.  
 

 
 

Fig. 22 Results List 

 

It would be best though to compute as in 1, and 

simply list results in any desired datum as in Fig. 22. 
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VI. CONCLUSION 

 

This paper has reviewed the principle of Least 

Squares estimation from its origin in Statistics, 

Regression Analysis. And further, onto the 
adaptation of its use in Geomatics Engineering. It is 

evident that Least Squares computation is the 

optimal method for getting best results. However, 

adopting this technique has always been fraught with 

challenges.  

 

The approach discussed in this paper has resolved 

these issues with automation. So save input activity 

and registration of control points, the process is 

straight forward. Furthermore, with automated 

facilities for error analysis, to compute work in one 

datum and list results in another, entire computation 
including reduction of detail points, can now be 

carried out in the field rather than office.  

 

On the whole, it is another step towards the goal 

of field-to-finish in productivity. 
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