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and fast method. The goal of this paper is to discuss, 

in depth, the convexity in the 1
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I. INTRODUCTION 

Optimization (mathematical programming) is a sub-

field of operations research and it has a widely grown 

in the last three decades. The goal of any optimization 

problem is to maximize (or minimize) one or more of 

objective functions under a determined set of 

conditions. Optimization can be applied to many fields 

like business, mining and engineering. Optimization is 

used in our daily life (e.g. moving from a place to 

another). 

The model of a simple mathematical programming 

problem is: 

max ( )
x M

g x  

where :g U R   is the crisp objective function and 

M U  is the feasible set of the problem. U  is the 

universe of the problem. 

Convex optimization problem involves maximizing 

concave functions over convex sets. They can be 

converted into a minimization problem of convex 

functions by multiplying the objective function by 

minus one. One of the advantages of convex 

optimization is that it covers a broad range of practical 

optimization problems. Also, there are some non-

convex problems that can be reformulated into convex 

problems. The other advantage is that if the decision 

set of the problem is convex, any local optimum is 

also a global optimum. There are some books that 

discuss convex optimization (e.g. Rockafellar [2], 

Stoer and Witzgall [3], Holmes [4], Bazaraa and 

Shetty [5], Ekeland and Temam [6], Ioffe and 

Tihomirov [7], Barbu and Precupanu [8] and Ponstein 

[9]). We assume that the reader has a previous 

knowledge of convex optimization. 

In many actual optimization problems, the decision 

maker is not able to define the objective function 

and/or the set of constraints precisely but rather can 

define them in a "rough sense". Rough set theory 

(RST), introduced by Pawlak [1], provides a flexible 

mathematical tool to the decision maker to solve such 

problems.  

Recently, Youness [10] combined rough set theory 

with mathematical programming. He described a new 

type of mathematical programming problems in which 

the feasible region is rough and called it RMPP. He 

defined new concepts, namely, "convex rough set", 

"local rough optimal solution" and "global rough 

optimal solution". Osman et al. [11] extended the 

previous work and demonstrated that the roughness 

may exist in the objective function, the feasible set or 

both of them. They classified rough programming 

problems into three classes according to the place of 

roughness. They discussed the convexity in the 1
st
 

class of the RMPPs in which the decision set is rough 

and the objective function is crisp. In their discussion, 

they showed that the lower and/or upper 

approximations of rough feasible set could be convex. 

They also introduced new concepts such as: "Upper 

convex" and "Lower convex".  

In this paper, we extend the above mentioned works, 

and propose and prove some theorems related to the 

convexity in the 1
st
 class of RMPPs.  

 

II. ROUGH SET THEORY 

RST has been proven to be an excellent 

mathematical tool dealing with vague or imprecise 

descriptions of objects. Therefore, many researchers 

applied RST to many domains such as pattern 

recognition, data mining, artificial intelligence, image 

processing, machine learning and medical applications 

[1].  

The rough set methodology proposed by Pawlak [1], 

in 1982, assumed that any imprecise concept is 

characterized by a pair of precise concepts called the 

lower and the upper approximations. RST is based on 

equivalence relation that partitions the universe into 

classes of indiscernible objects. 

RST expresses imprecision by employing a 

boundary region of a set. If the boundary region of a 

set is empty, then the set is crisp (exact) otherwise the 

set is rough (inexact). RST uses equivalence relation 

to group objects with similar characteristics into 

indiscernibility classes and any vague set is 

characterized by a pair of precise sets called the lower 

and the upper approximations. The lower 

approximation includes all objects that surely belong 

to the concept of interest, where the upper 

approximation includes all objects which possibly 

belong to that imprecise concept. The main advantage 

of using RST in handling imprecise concepts is that it 

does not need any additional information. 
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Let U  be a non-empty finite set of objects, called 

the universe, and E U U  be an equivalence 

relation on U . The ordered pair A=(U, E) is called an 

approximation space generated by E  on U . E  

generates a partition 
1 2

/ { , ,...., }
m

U E Y Y Y  where 

1 2
, ,....,

m
Y Y Y  are the equivalence classes of the 

approximation space A . Based on the equivalence 

relation E , the mapping [ ] : 2
U

E
U   is given by 

[ ] { | }
E

x y U xEy . Shortly, the subset [ ]
E

x U  

is the equivalence class containing x.  

In RST, any subset M U  is defined in terms of 

the equivalence classes of the approximation space A  

by its lower and upper approximations (i.e. *
( )E M  and 

*
( )E M , respectively) as follows: 

*

*

( ) { |[ ] }

( ) { |[ ] }

E

E

E M x U x M

E M x U x MI
 

Therefore, 
*

*( ) ( )E M M E M  

The difference between the upper and the lower 

approximations is called the boundary of M  and is 

denoted by 
*

*
( ) ( ) ( )

E
BN M E M E M . For 

simplicity, let * *( )E M M , 
* *
( )E M M  and 

( )
E BNBN M M . 

 

III. THE 1
ST

 CLASS OF RMPPS [11] 

Let ( , )A U E  be an approximation space 

generated by an equivalence relation E  on the 

universe U . Therefore, 1 2
/ { , ,...., }

m
U E Y Y Y  is 

the partitioned universe generated by E  on U  where 

1 2
, ,....,

m
Y Y Y  are the equivalence classes of the 

approximation space A . 

A RMPP over the universe U  takes the following 

form:  

*

*

(1)
max ( )

. .

x M
g x

s t M M M
 

where 
*

:g M R  is the crisp objective function. 

M U  is the set of constraints of the problem, that 

is roughly defined in the universe U  by  
*

M and 
*

M , 

where:  

*
{ | [ ] }

E
M x U x M  

*
{ | ([ ] ) }

E
M x U x M  

Definition 3.1: In problem (1), the optimal value 

g  of the objective function is defined by its lower 

and upper bounds 
*

g  and 
*

g , respectively, such that: 

*

*

max{ , }

max{ , }

g

g
 

where 

*

max ( )

max min ( )

max ( )

BN

BN

x M

x YY M

x M

g x

g x

g x

 

Definition 3.2: In problem (1), a point x  is a 

surely-feasible solution, if and only if 
*

x M . 

Definition 3.3: In problem (1), a point x  is a 

possibly-feasible solution, if and only if 
*

x M . 

Definition 3.4: In problem (1), a point x  is a 

surely-not feasible solution, if and only if 
*

x M . 

Definition 3.5: In problem (1), a point x  is a 

surely-optimal solution, if and only if 
*( )g x g . 

Definition 3.6: In problem (1), a point x  is a 

possibly-optimal solution, if and only if *( )g x g . 

Definition 3.7: In problem (1), a point x  is a 

surely-not optimal solution, if and only if 

*( )g x g . 

Definition 3.8: In problem (1), there are four 

optimal sets covering all possible degrees of 

feasibility and optimality, as follows: 

 The set of all surely-feasible, surely-optimal 

solutions is denoted by 
s sF O , and it is 

defined by: 
*

*
{ | }( )

s s x MFO g x g . 

 The set of all surely-feasible, possibly-

optimal solutions is denoted by 
s pF O , and it 

is defined by: 

* *{ | ( ) }
s p x MFO g x g . 

 The set of all possibly-feasible, surely-

optimal solutions is denoted by 
p sF O , and it 

is defined by: 
* *{ | }( )

p s x MF O g x g . 

 The set of all possibly-feasible, possibly-

optimal solutions is denoted by 
p pF O , and it 

is defined by: 
*

*{ | ( ) }
p p x MF O g x g . 

 

IV. CONVEXITY IN 1
ST

  CLASS OF RMPPS 

Convex sets and concave functions have many 

attractive properties in mathematical programming. 

For example, any local maximum point of a concave 

function over a convex set is also a global maximum 

point. In this section, we present some significant 
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properties of RMPPs that have convex rough set and 

concave crisp function.  

Definition 4.1: A rough set M  is U - convex, if 

its upper approximation 
*

M  is convex [11]. 

Definition 4.2: A rough set M  is L - convex, if its 

lower approximation 
*

M  is convex [11]. 

Definition 4.3: A rough set M is convex, if its 

upper and lower approximations (i.e. 
*

M  and 
*

M ) 

are convex [11]. 

Definition 4.4: A function ( )g x  is concave on a 

convex set S , if 

1 2 1 2
( (1 ) ) ( ) (1 ) ( )g x x g x g x  for 

each 
1 2
,x x S  and for each (0,1) [12]. 

Definition 4.5: A function ( )g x  is strictly concave 

on a nonempty convex set S , if 

1 2 1 2
( (1 ) ) ( ) (1 ) ( )g x x g x g x  for 

each 
1 2
,x x S  and for each (0,1)  [12]. 

Definition 4.6: A function ( )g x  is quasiconcave 

on a convex set S , if 

1 2 1 2
( (1 ) ) min{ ( ), ( )}g x x g x g x  for each 

1 2
,x x S  and for each (0,1)  [12]. 

Definition 4.7: A function ( )g x  is strictly 

quasiconcave on a nonempty convex set S , if for each 

1 2
,x x S  with 

1 2
( ) ( )g x g x , we have  

1 2 1 2
( (1 ) ) min{ ( ), ( )}g x x g x g x  for each 

(0,1)  [12]. 

Definition 4.8: A function ( )g x  is strongly 

quasiconcave on a nonempty convex set S , if for each 

1 2
,x x S  with 

1 2
x x , we have 

1 2 1 2
( (1 ) ) min{ ( ), ( )}g x x g x g x  for each 

(0,1)  [12]. 

Theorem 4.1: In problem (1), if 
*

M  is a nonempty 

convex set and 
*

x M  is a local optimal solution 

then: 

1) If ( )g x  is a strictly quasiconcave function, 

then x  is a surely-global optimal solution. 

2) If ( )g x  is a strongly quasiconcave function, 

then x  is the unique surely-global optimal 

solution. 

3) If ( )g x  is a strongly quasiconcave function 

and 
*

x M , then x  is the unique global 

optimal solution (i.e. 

{ }
s s s p p s p p

F O F O F O F O x ). 

Proof:  

1) Suppose, on the contrary, that there is an 
*

x̂ M  with ˆ( ) ( )g x g x . By convexity 

of 
*

M ,  
*ˆ (1 ) , (0,1)x x M . 

Since x  is a local maximum by assumption, 

then ˆ( ) ( (1 ) ), (0, )g x g x x  

for some (0,1) . But since ( )g x  is 

strictly quasiconcave and ˆ( ) ( )g x g x  , 

then ˆ( (1 ) ) ( )g x x g x  

, (0,1) . This contradiction shows that 

x̂  does not exist. 

2) Since x  is a local optimal solution, then 

there is an  - neighborhood )(N x  around 

x  where ( ) ( )g x g x  for 

*
( )x M N x . Assume by 

contradiction to the conclusion of the theory 

that there is a point 
*

x̂ M  such that x̂ x  

and ˆ( ) ( )g x g x . By strong quasiconcavity, 

it follows that 

ˆ ˆ( (1 ) ) min{ ( ), ( )} ( )g x x g x g x g x

 ,  (0,1) . But for  small enough, 

*ˆ (1 ) ( )x x M N x and hence 

local optimality of  x is violated.  

3) If ( )g x  is a strongly quasiconcave function 

and 
*

x M , then
*

* ( )g g x g . Thus, 

x  is a unique surely and possibly optimal 

solution. Hence, 

{ }
s s s p p s p p

F O F O F O F O x . 

Theorem 4.2: In problem (1), if 
*

M  is a nonempty 

convex set and 
*

x M  is a local optimal solution 

then: 

1) If ( )g x  is a concave function, then x  is a 

surely-global optimal solution. 

2) If ( )g x  is a strictly concave function, then 

x  is the unique surely-global optimal 

solution. 

3) If ( )g x  is a strictly concave function and 

*
x M , then x  is the unique global 

optimal solution (i.e. 

{ }
s s s p p s p p

F O F O F O F O x ). 

Proof: It is similar to the above proof. 

Theorem 4.3: In problem (1), if M  is a nonempty 

U - convex set and ( )g x  is a concave function on 

*
M , then the point 

*
x M  is a surely-optimal 

solution to this problem if and only if ( )g x  has a 

subgradient  at x  such that ( ) 0
t

x x  for all 

*
x M .  
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Proof: Assume that 
*

x M  where 

( ) 0
t

x x ,  
*

x M .  is a subgradient of  g  

at x . By concavity of g , 

( ) ( ) ( ) ( )
t

g x g x x x g x , 
*

x M  and 

therefore x  is a surely-optimal solution to the 

problem. 

To show the converse, assume that x  is a surely-

optimal solution to the problem, and form the 

following two sets in U : 

1

*

2

{( , ) | , ( ) ( )}

{( , ) | , 0}

S x x y x U y g x g x

S x x y x M y
 

It is easy to prove that both 
1

S  and 
2

S  are convex 

sets. Also 
1 2

S S  because otherwise there 

would be a point ( , )x y  where 
*

x M , 

0 ( ) ( )y g x g x  contradicting the assumption 

that x  is an optimal solution of the problem. Since 

1 2
S S , then there is a hyperplane that separates 

1
S  and 

2
S . Thus, there is a nonzero vector 

0
( , )  

and a scalar  such that: 

0

*

0

( ) , , ( ) ( ) (1)

( ) , , 0 (2)

t

t

x x y x U y g x g x

x x y x M y
 

If we let x x  and 0y  in (2), then 0 . 

Next, letting x x  and 0y  in (1) makes 

. Since this is true for 0 , then 0  

and 0 . Briefly, we conclude that 0  and 

0 . If 0 , then from (1) 
0

( ) 0
t

x x , 

x U . If we let 
0

x x , then  

2

0 0
0 ( ) || ||

t
x x  

and thus 
0

0 . Since 
0

( , ) (0,0) , then 0 . 

Dividing (1) and (2) by  and denoting 
0

/  by 

, we obtain the following inequalities: 

*

0

0 ( ) , , ( ) ( ) (3)

( ) 0, , 0 (4)

t
x x y x U y g x g x

x x y x M y
 

By letting 0y  in (4), we obtain ( ) 0
t

x x , 

*
x M . From (3), it is clear that 

( ) ( ) ( )
t

g x g x x x , x U . 

Thus,  is a subgradient of g  at x  such that 

( ) 0
t

x x , 
*

x M . 

Theorem 4.4: In problem (1), if M  is a nonempty 

U - convex set and ( )g x  is a concave function on 

*
M  where 

*
M  is open, then the point 

*
x M  is a 

surely-optimal solution to this problem if and only if 

there is a zero subgradient of ( )g x  at x . 

Proof: By the previous theorem, x  is a surely-

optimal solution if and only if ( ) 0
t

x x , 

*
x M  where  is a subgradient of g  at x . 

Since 
*

M  is open, then 
*

x x M  for some 

positive . Hence, 
2

|| || 0 . This means that 

0 . 

Theorem 4.5: In problem (1), if M  is a nonempty 

U - convex set and ( )g x  is a differentiable concave 

function on 
*

M , then the point 
*

x M  is a surely-

optimal solution to this problem if and only if 

( )( ) 0
t

g x x x , 
*

x M . Furthermore, if 
*

M  

is open then the point 
*

x M  is a surely-optimal 

solution to this problem if and only if ( ) 0g x . 

Proof: It is straightforward. 

Theorem 4.6: Consider the problem: min ( )g x  

subject to x M , where 
*

M  (the upper 

approximation of the rough set M ) is a nonempty 

convex set and ( )g x  is a concave function on 
*

M . If 

*
x M  is a local optimal solution then 

( ) 0
t

x x  for all 
*

x M  where  is a 

subgradient of g  at x . 

Proof: Assume that 
*

x M  is a local optimal 

solution. Then there is an  - neighborhood ( )N x  

where ( ) ( )g x g x , 
*

( )x M N x . Let 

*
x M , and notice that there is 

*
( ) ( )x x x M N x  for 0, o . 

Thus, ( ( )) ( )g x x x g x . 

Let  be a subgradient of g  at x  and by 

concavity of g , we have 

( ) ( ( )) ( )g x g x x x x x . 

The above two inequalities imply that 

( ) 0
t

x x , and dividing by 0 , we get the 

required result. 

Theorem 4.7: Consider the problem: min ( )g x  

subject to x M , where 
*

M  (the upper 

approximation of the rough set M ) is a convex set 

and ( )g x  is a differentiable concave function on 
*

M . 

If 
*

x M  is a local optimal solution then 

( ) 0
t

g x x , 
*

x M  where  is a subgradient 

of g  at x . 

Proof: It is straightforward. 

Theorem 4.8: Consider the problem: min ( )g x  

subject to x M , where 
*

M  (the upper 
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approximation of the rough set M ) is a nonempty 

compact polyhedral set and ( )g x  is a concave 

function on 
*

M . Then, there is an optimal solution 
*

x M  to the problem, where x  is an extreme point 

of 
*

M . 

Proof: Since 
*

M  is compact, g  assumes a 

minimum at 
*

x M . If x  is an extreme point of 
*

M , then the result is acquired. Otherwise, 

1

k

j jj
x x where 

1
1, 0

k

j jj
, and 

j
x  

is an extreme point of 
*

M  for 1,2,...,j k . By the 

concavity of g , we have 

1 1
( ) ( ) ( )

k k

j j j jj j
g x g x g x  

But since ( ) ( )
j

g x g x , for 1,2,...,j k , the 

above inequality implies that ( ) ( )
j

g x g x  for 

1,2,...,j k . Hence,  the extreme points 

1 2
, , ...,

k
x x x are optimal solutions to the problem and 

the proof is complete. 

Theorem 4.9: Consider the problem: min ( )g x  

subject to x M , where 
*

M  (the upper 

approximation of the rough set M ) is a nonempty 

compact polyhedral set and ( )g x  is a quasiconcave 

function on 
*

M . Then, there is an optimal solution 
*

x M  to the problem, where x  is an extreme point 

of 
*

M . 

Proof: Since g  is a function on 
*

M  and hence 

gets a minimum at 
*

x M . If there is an extreme 

point whose objective is equal to ( )g x , then the 

result is acquired. Otherwise, let 
1 2
, , ...,

k
x x x  be 

extreme points of 
*

M , and suppose that 

( ) ( )
j

g x g x  for 1,2,...,j k . 

x  can be represented as 
1

k

j jj
x x where 

1
1, 0

k

j jj
, 1,2,...,j k . 

Since ( ) ( )
j

g x g x  for each j , then 

1

( ) min ( ) (1)
j

j k

g x g x  

Now consider the set 
*

{ | ( ) }M x g x . 

Notice that 
*

j
x M  for 1,2,...,j k  and 

*
M  is a 

convex set. Hence, 
1

k

j jj
x x  belongs to 

*
M . 

By quasiconcavity of g , ( )g x , which 

contradicts (1). This contradiction shows that 

( ) ( )
j

g x g x  for some extreme point 
j

x  and the 

result is obtained. 

 

V. CONCLUSIONS 

In this paper, we provided some essentials of 

convex sets, convex functions, and convex 

optimization problems in a rough environment.  
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