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Abstract

This paper finds a limiting region for the number of subjects required and hence number of failed in
screening test in multi-centric clinical trials. This situation follows a properly normalized independent vector
sequences comprising of moving maxima (Y"yn) for m (>1) multi centric set up in clinical trials, where
1<k(n)<n. Results are given for bi-centric and multi-centric situations , under certain conditions on k(n) for
p=© case.
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1. Introduction

The number of failure subjects to make it to the clinical trial till the fixed number of inclusions is reached on
the j™ day follows Negative Binomial Distribution (NBD). Consider k(n) number of days, and hence the
maximum failures moves and hence screening subjects , as and when k(n) changes. This is exactly the moving
maxima, which is due to Rothmann and Russo (1991) . The scheme of finding number of failures for fixed
number of inclusion of subjects on each day is adopted at each center , The moving maxima of number of
screening subjects, that include failures and test passed subjects, on j" day at each centre constitute vector
sequence of independent components of i™ centre moving maxima. Thus to provide optimum resources at the
centre to minimize the cost involved , doctors /company might be interested to know the strong limiting regions
in which the moving maxima of number of screening subjects of multi-centre lie.

Let r be the number of subjects passes the screening tests i.e. the sample size required for the multi-centric trial.
Let {X,, n>1} be a sequence of number of screening subjects required to meet r and is independent identically
distributed random variables (i.i.d.r.v) with common probability mass function
P(X=k)=p(k)= *Vec(.y a" (1-a)"", k=r, r+1,..., 0<a<I .

Define, moving maxima Y‘k(n) = max(Xn+1 , Xnsz 5 --.., Xns k) Where k(n) is a sequence of positive integers ,
2< k(n) <n, for i" multi-centre , i=1,2,3,....
Condition on k(n) in Hebbar and Vadiraja(1997) is used in this paper.

k(n) is non-decreasing (1.2)

Sup [ k(n+1) — k(n)] <u (finite) (2.1)

and

K(n) = [n/(logn)™] where t(n) >p, 0<p<ccasn > « (3.1)
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Let b, = - logn/log(1-a) is a real sequence and that (logk(n)/logn) > A

as n 2o where A € [0,1)

In view of this, it is planned to get the strong limiting regions for vector sequences of independent copies of
moving maxima for Negative Binomial Distribution (NBD). For p € [0,0) , Vadiraja and Nagesha (2016)
showed the limit sets. Here it is proceeded with p = . Throughout, &;’s, i=1,2,.. are sufficiently small positive
constants. However, for ease of computation, results are proved for bi-centric case only. On similar lines to this,
the result of multi-centric vector sequence can be proved. Below the theorems are stated.

Theorem 1. The almost sure limit set of the vector sequence

{ Y @/ bny Yok ! by } n>1, coincides with the region S;={(x,y): A<x,y<1+ A, x +y < 1+ A } where A € [0,1).

Theorem 2. The almost sure limit set of the vector sequence

LY /00y Yoy ! B seees Yoy / by 3 n=1,m>0 coincides with the region Si={(x,y,...,2): A <x,y,...z < 1+ A, x

+y+.+z2< 1+ A } where A € [0,1).

Remark: Let Yk(n)* = max(Xn+1, Xnez - X nek(n) ) b€ the forward moving maxima. Then the above results hold

good.
2. Proofs.
The proof of Theorem 1 is built up through the following lemmas.
Let for every a, <a< a, , there exists a constant ¢ > 0 such that
cao <pi< ca;' for all i.
Lemmal.2. LetS; ={(Xy): A<x,y<1+A, x+ty <1+ A}
For every € >0,
P(Ylk(li) > (x+€) by, sz(li) > yhyii.0.)=0
PCY kaiy > X bii, Yoy > (y+ €) by 1.0.)=0
and P(Y iy > X by, Yoy >y bji i.0.)=1
where 1= [i] and 07'=(x+y-2 A +€/2)
Proof:
Note that = i_, i 0« Pi = O for i large
K(li)* Zixvlitoe Pi = 0 forilarge and x> A
K(li ) * Z i=y vii 10 Pi = O for i large and y> A
(2.2) is achieved as follows. For all i large,
PCY iy > (x+€) bii, Yokaiy > Ybii ) ={Z i vii 00 Pi 1 {2 iy v 00 P
const. {1-{1-(1-a0)"")} "} {1-{1-(1-a0)")} "}
in view of (1.2).

= const. K2(l;) (1-a0)*"; * (1-a0)"%
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=const. exp { log (K*(l) (1-a0)™"*" * (1-a0)")}
=const. exp { 2log k(I,) + (x+y+e)b;; * log(1-ao)}
=const. exp{ 2log k(l;) - (x+y+e) log I; log(1-ap)/ log(1-a0)}
=const. exp { - log I; ((-2 log k(I})/ log I;) +x+y+e€)}
=const. |; **y-24"®

= const. i Y24%) (7.2)
For every e>0 and i large,
O(x+y-2A+€) = 1+ (8.2)
where 8, =[0 ¢/2] > 0.
In view of (8.2) and (7.2) ,
= P(Y'qiy > bi(xte), Yoiay > Ybyi) <oo
Through Borel-Cantelli (B-C ) lemma , (2.2) follows. The proof of (3.2) is similar. The proof of (4.2) is
established through B-C lemma.
Note that
PCY iy > 0ii(X), Yoy > biiy) ) = const. K2(l) (1-a1)" * (1-a1)""s 9.2)

in view of (1.2). For every >0 and i large, we have
RHS(9.2) > const. |; ¥4
=const. i %

where &, = 30e/2>0 for every e>0 and i large. To prove (4.2), it is sufficient to show Yik(") ‘s are independent for

all i large , i =1,2,.. Observe that,

k() + 1 -l = L[k 1+ 21 - Big/ ] (10.2)

RHS (10.2) 2o for large i and for 6 >0 i.e x+y <2A

as lia/ I D1 (k(liy) *liaf s ;) 0, 1-1ia/ I ~h i@V

Hence, whenever 6>1,i.e. (X+y-2A)<1

R.H.S(10.2) is ~ |; as i—oo. Further for (1- A)'< 0<I, the expression inside the square bracket of (10.2) is ~ hi”
Y as i—oo, since i * k(I)/ ; >0

Thus, for 0 > (1-A)?, i.e. for x+y < 1+ A,
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R.H.S (10.2) tends to o as i—o0.
Thus, the events under consideration are independent, for all i large.
Lemma 2.2 . Forall x> A,y > A with x+y > 1+ A and for every € > 0,

P(Y 'k > ba(x+e), Yok > ba(y+e) 1.0.)=0

(11.2)

Proof:
P(Y k@ > ba(x+€), Y > bu(y+€) = {2 ixrgypiitom Pit P {2 isyrey bl o P73
= const. {1-{1-(L-a0)* ")} } {1-{1-(1-a0)("*"i)} "}
in view of (1.2).
= const. k*(1;) (1-a0)™""; * (1-a0) ***"y
= const, i Y2412
For every >0, x+y>1+A and for n large ,
O(X+Y-2A+2€) > 1453, 5,=30€/2 >0.
An appeal to (13.2), (12.2) and B_C lemma, the lemma is proved.
Lemma 3.2 . For every €>0 and xo = A
P(Y' < (Xo-€)b, 1.0.)=0
P(Y%qm < (Xo-€)b, i.0.)=0
Proof:
(14.2) is established by showing the following and (16.2) follows on similar lines.
P(Y' < (Xo-€)b, 1.0.)=0
and
P(Y'm < (Xote)b, 1.0.)=1
Note that by the independence,

P(Y 'k < (Xo©)bn) = {Z iz 010 oy on Pit H<O
= exp. { - k() = iz(x0-0 bn 0 Pi- 1

in view of (5.2) as n - co. From (1.2) for all large i
RHS(18.2) < exp. { -const. k(1) X i=(xoc bn 10 (1-20)' }
< exp. { -const. k(n) (1-ag)*®*™ }

<[ const./ k(n) (1-a0)(><0-s)bn ]M

M being a positive integer. Fix M large so that

ISSN: 2231-5373 http://www.ijmttjournal.org

(12.2)

(13.2)

(14.2)

(15.2)

(16.2)

(17.2)

(18.2)

(19.2)

Page 232


http://www.ijmttjournal.org/

International Journal of Mathematics Trends and Technology (IJMTT) — Volume 37 Number 4 — September 2016

RHS(19.2) < n™¥? <™ 5, >0, (20.2)

Hence an appeal to B-C lemma, (16.2) is shown.

Next, we show (17.2). Consider,

P(Y 'k < (Xo+e)bn ) > limy o {2 i=0to (x0ve) bN it}

= limy . exp. { - (1+0(1)) kN) Z i xose om0 Pi 1

> limy .. exp. { - const. k(N) (1-a)% ™™ }

> limy .. exp. { - const. N}

similar to that at (20.2).

=1

Hence, (17.2). Thus , the proof of (14.2) is complete. Similarly (15.2) can be shown. Hence the proof of lemma.

Proof of Theorem 1: S is a required limit set by lemmas 2.2 and 3.2. It is concluded with the fact that the limit
set is necessarily closed from the lemmal.2 . This completes the proof of theorem1.
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